首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
An internal noise-driven oscillator was studied in a two-variable Drosophila model, where both positive feedback and negative feedback are crucial to the circadian oscillations. It is shown that internal noise could sustain reliable oscillations for the parameter which produces a stable steady state in the deterministic system. The noise-sustained oscillations are interpreted by using phase plane analysis. The period of such oscillations fluctuates slightly around the period of deterministic oscillations and the coherence of oscillations becomes the best at an optimal internal noise intensity, indicating the occurrence of intrinsic coherence resonance. In addition, in the oscillatory region, the coherence of noisy circadian oscillations is suppressed by the internal noise, but the period is hardly affected, demonstrating the robustness of the Drosophila model for circadian rhythms to the intrinsic noise.  相似文献   

4.
Journal of Mathematical Biology - We analyse a continuum model for genetic circuits based on a partial integro-differential equation initially proposed in Friedman et al. (Phys Rev Lett...  相似文献   

5.
Xiong M  Li J  Fang X 《Genetics》2004,166(2):1037-1052
In this report, we propose the use of structural equations as a tool for identifying and modeling genetic networks and genetic algorithms for searching the most likely genetic networks that best fit the data. After genetic networks are identified, it is fundamental to identify those networks influencing cell phenotypes. To accomplish this task we extend the concept of differential expression of the genes, widely used in gene expression data analysis, to genetic networks. We propose a definition for the differential expression of a genetic network and use the generalized T2 statistic to measure the ability of genetic networks to distinguish different phenotypes. However, describing the differential expression of genetic networks is not enough for understanding biological systems because differences in the expression of genetic networks do not directly reflect regulatory strength between gene activities. Therefore, in this report we also introduce the concept of differentially regulated genetic networks, which has the potential to assess changes of gene regulation in response to perturbation in the environment and may provide new insights into the mechanism of diseases and biological processes. We propose five novel statistics to measure the differences in regulation of genetic networks. To illustrate the concepts and methods for reconstruction of genetic networks and identification of association of genetic networks with function, we applied the proposed models and algorithms to three data sets.  相似文献   

6.
7.
8.
9.
Phase variation: genetic analysis of switching mutants   总被引:50,自引:0,他引:50  
M Silverman  M Simon 《Cell》1980,19(4):845-854
Site-specific inversion of a controlling element is responsible for flagellar phase transition in Salmonella. When a 900 bp DNA sequence is in one configuration, it allows the expression of the H2 gene, a structural gene which codes for the flagellar antigen. When it is in the opposite configuration, the H2 gene is not expressed. A hybrid λ phage containing the invertible control region and the adjacent H2 gene was constructed, and expression of the H2 gene was shown to be regulated by the orientation of the inversion region. Transposon Tn5 insertion derivatives of this hybrid phage were isolated and λH2::Tn5 mutants defective for inversion (H2 switching) were selected and characterized. Two classes of switching phenotypes were observed among the mutants—those which had slightly reduced frequencies of transition from expression of the H2 gene (H2 on) to nonexpression (H2 off) (intermediate class) and those in which the frequency of transition was reduced at least three orders of magnitude (null class). Physical mapping of the Tn5 insertion sites revealed that in all mutants the insertion was located inside the inversion region. Tn5 insertion sites in the null class of mutants defined a region of DNA including approximately 500 bp which was necessary for inversion. Genetic complementation tests showed that these λH2::Tn5 mutants could invert the H2 gene control element if the 500 bp region was introduced in the trans configuration. It is concluded that a gene is located inside the inversion segment and codes for a protein which is required for the inversion event. Furthermore, the two sites at which the crossover event occurred functioned in a cis configuration and were required for inversion. The presence of a gene which is involved in controlling site-specific recombination events may be a general feature of transposon-like elements.  相似文献   

10.
Epistasis refers to the nonadditive interactions between genes in determining phenotypes. Considerable efforts have shown that, even for a given organism, epistasis may vary both in intensity and sign. Recent comparative studies supported that the overall sign of epistasis switches from positive to negative as the complexity of an organism increases, and it has been hypothesized that this change shall be a consequence of the underlying gene network properties. Why should this be the case? What characteristics of genetic networks determine the sign of epistasis? Here we show, by evolving genetic networks that differ in their complexity and robustness against perturbations but that perform the same tasks, that robustness increased with complexity and that epistasis was positive for small nonrobust networks but negative for large robust ones. Our results indicate that robustness and negative epistasis emerge as a consequence of the existence of redundant elements in regulatory structures of genetic networks and that the correlation between complexity and epistasis is a byproduct of such redundancy, allowing for the decoupling of epistasis from the underlying network complexity.  相似文献   

11.
I present an algorithm that determines the longest path between every gene pair in an arbitrarily large genetic network from large scale gene perturbation data. The algorithm's computational complexity is O(nk(2)), where n is the number of genes in the network and k is the average number of genes affected by a genetic perturbation. The algorithm is able to distinguish a large fraction of direct regulatory interactions from indirect interactions, even if the accuracy of its input data is substantially compromised.  相似文献   

12.
In this paper, input-to-state stability problems for a class of recurrent neural networks model with multiple time-varying delays are concerned with. By utilizing the Lyapunov–Krasovskii functional method and linear matrix inequalities techniques, some sufficient conditions ensuring the exponential input-to-state stability of delayed network systems are firstly obtained. Two numerical examples and its simulations are given to illustrate the efficiency of the derived results.  相似文献   

13.
Fluctuations and slow variables in genetic networks   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

14.
Switches (bistability) and oscillations (limit cycle) are omnipresent in biological networks. Synthetic genetic networks producing bistability and oscillations have been designed and constructed experimentally. However, in real biological systems, regulatory circuits are usually interconnected and the dynamics of those complex networks is often richer than the dynamics of simple modules. Here we couple the genetic Toggle switch and the Repressilator, two prototypic systems exhibiting bistability and oscillations, respectively. We study two types of coupling. In the first type, the bistable switch is under the control of the oscillator. Numerical simulation of this system allows us to determine the conditions under which a periodic switch between the two stable steady states of the Toggle switch occurs. In addition we show how birhythmicity characterized by the coexistence of two stable small-amplitude limit cycles, can easily be obtained in the system. In the second type of coupling, the oscillator is placed under the control of the Toggleswitch. Numerical simulation of this system shows that this construction could for example be exploited to generate a permanent transition from a stable steady state to self-sustained oscillations (and vice versa) after a transient external perturbation. Those results thus describe qualitative dynamical behaviors that can be generated through the coupling of two simple network modules. These results differ from the dynamical properties resulting from interlocked feedback loops systems in which a given variable is involved at the same time in both positive and negative feedbacks. Finally the models described here may be of interest in synthetic biology, as they give hints on how the coupling should be designed to get the required properties.  相似文献   

15.

Background  

The study of synchronization among genetic oscillators is essential for the understanding of the rhythmic phenomena of living organisms at both molecular and cellular levels. Genetic networks are intrinsically noisy due to natural random intra- and inter-cellular fluctuations. Therefore, it is important to study the effects of noise perturbation on the synchronous dynamics of genetic oscillators. From the synthetic biology viewpoint, it is also important to implement biological systems that minimizing the negative influence of the perturbations.  相似文献   

16.
17.
Robustness and evolvability in genetic regulatory networks   总被引:3,自引:0,他引:3  
Living organisms are robust to a great variety of genetic changes. Gene regulation networks and metabolic pathways self-organize and reaccommodate to make the organism perform with stability and reliability under many point mutations, gene duplications and gene deletions. At the same time, living organisms are evolvable, which means that these kind of genetic perturbations can eventually make the organism acquire new functions and adapt to new environments. It is still an open problem to determine how robustness and evolvability blend together at the genetic level to produce stable organisms that yet can change and evolve. Here we address this problem by studying the robustness and evolvability of the attractor landscape of genetic regulatory network models under the process of gene duplication followed by divergence. We show that an intrinsic property of this kind of networks is that, after the divergence of the parent and duplicate genes, with a high probability the previous phenotypes, encoded in the attractor landscape of the network, are preserved and new ones might appear. The above is true in a variety of network topologies and even for the case of extreme divergence in which the duplicate gene bears almost no relation with its parent. Our results indicate that networks operating close to the so-called "critical regime" exhibit the maximum robustness and evolvability simultaneously.  相似文献   

18.
Gene networks are likely to govern most traits in nature. Mutations at these genes often show functional epistatic interactions that lead to complex genetic architectures and variable fitness effects in different genetic backgrounds. Understanding how epistatic genetic systems evolve in nature remains one of the great challenges in evolutionary biology. Here we combine an analytical framework with individual-based simulations to generate novel predictions about long-term adaptation of epistatic networks. We find that relative to traits governed by independently evolving genes, adaptation with epistatic gene networks is often characterized by longer waiting times to selective sweeps, lower standing genetic variation, and larger fitness effects of adaptive mutations. This may cause epistatic networks to either adapt more slowly or more quickly relative to a nonepistatic system. Interestingly, epistatic networks may adapt faster even when epistatic effects of mutations are on average deleterious. Further, we study the evolution of epistatic properties of adaptive mutations in gene networks. Our results show that adaptive mutations with small fitness effects typically evolve positive synergistic interactions, whereas adaptive mutations with large fitness effects evolve positive synergistic and negative antagonistic interactions at approximately equal frequencies. These results provide testable predictions for adaptation of traits governed by epistatic networks and the evolution of epistasis within networks.  相似文献   

19.
We present an approximation scheme for deriving reaction rate equations of genetic regulatory networks. This scheme predicts the timescales of transient dynamics of such networks more accurately than does standard quasi-steady state analysis by introducing prefactors to the ODEs that govern the dynamics of the protein concentrations. These prefactors render the ODE systems slower than their quasi-steady state approximation counterparts. We introduce the method by examining a positive feedback gene regulatory network, and show how the transient dynamics of this network are more accurately modeled when the prefactor is included. Next, we examine the repressilator, a genetic oscillator, and show that the period, amplitude, and bifurcation diagram defining the onset of the oscillations are better estimated by the prefactor method. Finally, we examine the consequences of the method to the dynamics of reduced models of the phage lambda switch, and show that the switching times between the two states is slowed by the presence of the prefactor that arises from protein multimerization and DNA binding.  相似文献   

20.
We present a simple model of genetic regulatory networks in which regulatory connections among genes are mediated by a limited number of signaling molecules. Each gene in our model produces (publishes) a single gene product, which regulates the expression of other genes by binding to regulatory regions that correspond (subscribe) to that product. We explore the consequences of this publish-subscribe model of regulation for the properties of single networks and for the evolution of populations of networks. Degree distributions of randomly constructed networks, particularly multimodal in-degree distributions, which depend on the length of the regulatory sequences and the number of possible gene products, differed from simpler Boolean NK models. In simulated evolution of populations of networks, single mutations in regulatory or coding regions resulted in multiple changes in regulatory connections among genes, or alternatively in neutral change that had no effect on phenotype. This resulted in remarkable evolvability in both number and length of attractors, leading to evolved networks far beyond the expectation of these measures based on random distributions. Surprisingly, this rapid evolution was not accompanied by changes in degree distribution; degree distribution in the evolved networks was not substantially different from that of randomly generated networks. The publish-subscribe model also allows exogenous gene products to create an environment, which may be noisy or stable, in which dynamic behavior occurs. In simulations, networks were able to evolve moderate levels of both mutational and environmental robustness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号