首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EPCs (endothelial progenitor cells) regenerate the vascular endothelial cells and keep the integrity of the vascular endothelium and thus may retard the onset of atherosclerosis. Steady state levels of EPCs in the circulation were found to be correlated with cardiovascular event risks. Given the close relationship between insulin and the cardiovascular system, we tested the long-term effects of moderate-dose insulin treatment on bone marrow-derived EPCs. Rat bone marrow EPCs were exposed to various levels of insulin under normal (5 mmol/l) or high (40 mmol/l) glucose conditions for 7 days. Insulin at levels near the physiological range (0.1, 1 nmol/l) up-regulated EPCs proliferation, stimulated NO (nitric oxide) production and reduced EPC senescence and ROS (reactive oxygen species) generation under both normal- and high-glucose conditions. Glucose exerted deleterious effects on EPCs contrary to insulin. Western blot analysis suggested concomitant decrease of Akt phosphorylation and eNOS (endothelial nitric oxide synthase) expression by high-glucose treatment and increase with insulin administration. Thus, insulin promoted several activities of EPCs, which suggested a potential endothelial protective role of insulin. Akt/eNOS pathway may be involved in the modulation of EPCs function by glucose and insulin.  相似文献   

2.

Background

Bone marrow-derived endothelial progenitor cells (EPCs), especially late EPCs, play a critical role in endothelial maintenance and repair, and postnatal vasculogenesis. Although the actin cytoskeleton has been considered as a modulator that controls the function and modulation of stem cells, its role in the function of EPCs, and in particular late EPCs, remains poorly understood.

Methodology/Principal Finding

Bone marrow-derived late EPCs were treated with jasplakinolide, a compound that stabilizes actin filaments. Cell apoptosis, proliferation, adhesion, migration, tube formation, nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation were subsequently assayed in vitro. Moreover, EPCs were locally infused into freshly balloon-injured carotid arteries, and the reendothelialization capacity was evaluated after 14 days. Jasplakinolide affected the actin distribution of late EPCs in a concentration and time dependent manner, and a moderate concentration of (100 nmol/l) jasplakinolide directly stabilized the actin filament of late EPCs. Actin stabilization by jasplakinolide enhanced the late EPC apoptosis induced by VEGF deprivation, and significantly impaired late EPC proliferation, adhesion, migration and tube formation. Furthermore, jasplakinolide attenuated the reendothelialization capacity of transplanted EPCs in the injured arterial segment in vivo. However, eNOS phosphorylation and NO production were increased in late EPCs treated with jasplakinolide. NO donor sodium nitroprusside (SNP) rescued the functional activities of jasplakinolide-stressed late EPCs while the endothelial NO synthase inhibitor L-NAME led to a further dysfunction induced by jasplakinolide in late EPCs.

Conclusions/Significance

A moderate concentration of jasplakinolide results in an accumulation of actin filaments, enhancing the apoptosis induced by cytokine deprivation, and impairing the proliferation and function of late EPCs both in vitro and in vivo. NO donor reverses these impairments, suggesting the role of NO-related mechanisms in jasplakinolide-induced EPC downregulation. Actin cytoskeleton may thus play a pivotal role in regulating late EPC function.  相似文献   

3.

Aims

Our previous studies revealed that echinocystic acid (EA) showed obvious attenuation of atherosclerosis in rabbits fed a high-fat diet. However, the underlying mechanisms remain to be elucidated. Considering the importance of endothelial progenitor cells (EPCs) in atherosclerosis, we hypothesise that EPCs may be one of the targets for the anti-atherosclerotic potential of EA.

Main methods

After in vitro cultivation, EPCs were exposed to 100 μg/mL of oxidised low-density lipoprotein (oxLDL) and incubated with or without EA (5 and 20 μM) for 48 h. An additional two groups of EPCs (oxLDL + 20 μM EA) were pre-treated with either wortmannin, an inhibitor of the phosphoinositide 3-kinase (PI3K) pathway, or nitro-l-arginine methyl ester (l-NAME), an endothelial nitric oxide synthase (eNOS)-specific inhibitor. Assessment of EPC apoptosis, adhesion, migration, and nitric oxide (NO) release was performed using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) staining, cell counting, caspase-3 activity assay, transwell chamber assay, and Griess reagent, respectively. The protein expression of protein kinase B (Akt) and eNOS was detected using Western blot.

Key findings

Treatment of EPCs with oxLDL induced significant apoptosis and impaired adhesion, migration, and NO production. The deleterious effects of oxLDL on EPCs were attenuated by EA. However, when EPCs were pre-treated with wortmannin or l-NAME, the effects of EA were abrogated. Additionally, oxLDL significantly down-regulated eNOS protein expression as well as repression of eNOS and Akt phosphorylation.

Significance

The inhibitory effect of oxLDL on Akt/eNOS phosphorylation was attenuated by EA. Taken together, the results indicate that EA protects EPCs from damage caused by oxLDL via the Akt/eNOS pathway.  相似文献   

4.
Circulating endothelial progenitor cells (EPCs) play a key role in restoring endothelial function and enhancing angiogenesis. However, the effects of low-dose aspirin on circulating EPCs are not well known. We investigated the effects of low-dose aspirin on EPC migration, adhesion, senescence, proliferation, apoptosis and endothelial nitric oxide synthase (eNOS) expression. EPC migration was detected by a modified Boyden chamber assay. EPC adhesion assay was performed by counting adherent cells on fibronectin-coated culture dishes. EPC senescence was assessed by both senescence-associated-beta-galactosidase staining and DAPI staining. EPC proliferation was analyzed by MTT assay. EPC apoptosis was evaluated by flow cytometric analysis. eNOS protein expression was measured by Western blotting analysis. Aspirin promoted EPC migratory and adhesive capacity at concentrations between 0.1 and 100micromol/L and prevented senescence at concentrations between 50 and 100micromol/L. Meanwhile, aspirin in a range of these concentrations did not affect EPC proliferation, apoptosis or eNOS expression. Our findings indicate that low-dose aspirin promotes migration and adhesion and delays the onset of senescence of EPCs.  相似文献   

5.
The aim of this investigation was to determine whether tumour necrosis factor-alpha (TNF-α) has any effect on endothelial progenitor cells (EPCs). Total mononuclear cells were isolated from peripheral blood by Ficoll density gradient centrifugation, and then the cells were plated on fibronectin-coated culture dishes. After 7 days culture, attached cells were stimulated with tumour necrosis factor-α (final concentrations: 0, 10, 20, 50 and 100 mg/l) for 0, 6, 12, 24 and 48 h. EPCs were characterized as adherent cells double positive for DiLDL-uptake and lectin binding, by direct fluorescence staining. EPC proliferation and migration were assayed using the MTT assay and modified Boyden chamber assay, respectively. EPC adhesion assay was performed by re-plating those cells on fibronectin-coated dishes, and adherent cells were counted. Tube formation activity was assayed using a tube formation kit. Levels of apoptosis were revealed using an annexin V apoptosis detection kit. Vascular endothelial growth factor Receptor-1 (VEGF-R1) and stromal derived factor-1 (SDF-1) mRNA, assessed by real-time RT-PCR inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were assayed by western blot analysis. Incubation of EPCs with tumour necrosis factor-α reduced EPC proliferation, migration, adhesion, tube formation capacity, iNOS and eNOS in concentration- and time-dependent manners. Tumour necrosis factor-α reduced proliferation, migration, adhesion and tube formation capacity of EPCs. TNF-α increased EPC apoptosis level, reduced VEGF-R1 and SDF-1 mRNA expression; tumour necrosis factor-α also reduced iNOS and eNOS in the EPCs.  相似文献   

6.
Chen J  Jin J  Song M  Dong H  Zhao G  Huang L 《Gene》2012,496(2):128-135

Objective

C-reactive protein (CRP), the prototypic marker of inflammation, has been shown to be an independent predictor of atherosclerosis. CRP can regulate receptor for advanced glycation end-products (RAGE) expression in endothelial progenitor cells (EPCs). Endothelial nitric oxide synthase (eNOS) deficiency is a pivotal event in atherogenesis. It is believed that decreased eNOS bioactivity occurs early in atherogenesis. Therefore, we tested the hypothesis that CRP can alter eNOS expression and promote apoptosis in EPCs through RAGE.

Methods and results

EPCs, isolated from bone marrow, were cultured in the presence or absence of LPS-free CRP (5, 10, 15, 20, and50 μg/ml). RAGE protein expression and siRNA were measured by flow cytometric analysis. PCR was used to detect eNOS mRNA expression. eNOS protein expression was measured by Western blot analysis. A spectrophotometer was used to assess eNOS activity. A modified Boyden's chamber was used to assess the migration of EPCs and the number of recultured EPCs was counted to measure adhesiveness. A MTT assay was used to determine proliferation. Apoptosis was evaluated by annexin V immunostaining and TUNEL staining. Co-culturing with CRP caused a significant down-regulation of eNOS expression, inhibited the proliferation, migration, and adhesion of EPCs, and induced EPC apoptosis. In addition, these effects were attenuated during RAGE protein expression blockade by siRNA.

Conclusions

CRP, at concentrations known to predict cardiovascular event, directly quenches the expression of eNOS and diminishes NO production, and may serve to impair EPC function and promote EPC apoptosis through RAGE. These data further support a direct role of CRP in the development and/or progression of atherosclerosis and indicate a new pathophysiologic mechanism of disturbed vascular adaptation in atherosclerosis.  相似文献   

7.
Oxidized low density lipoprotein (OxLDL) is one of the most important risk factors of cardiovascular disease. Here, we study the impact of OxLDL on endothelial progenitor cells (EPCs) and determine whether OxLDL affects EPCs by an inhibitory effect on endothelial nitric oxide synthase (eNOS). It was found that OxLDL decreased EPC survival and impaired its adhesive, migratory, and tube-formation capacities in a dose-dependent manner. However, all of the detrimental effects of OxLDL were attenuated by pretreatment of EPCs with lectin-like oxidized low density lipoprotein receptor (LOX-1) monoclonal antibody or l-arginine. Western blot analysis revealed that OxLDL dose-dependently decreased Akt phosphorylation and eNOS protein expression and increased LOX-1 protein expression. Furthermore, OxLDL caused a decrease in eNOS mRNA expression and an increase in LOX-1 mRNA expression. These data indicate that OxLDL inhibits EPC survival and impairs its function, and this action is attributable to an inhibitory effect on eNOS.  相似文献   

8.
Bone marrow (BM)-derived endothelial progenitor cells (EPCs) play a critical role in tumor vasculogenesis because they provide both instructive (release of pro-angiogenic cytokines, such as VEGF) and structural (vessel incorporation and stabilization) functions. Celastrol, derived from Trypterygium wilfordii Hook F., a traditional Chinese medicine plant, has been studied for its antitumorigenic properties, but its mechanism of action is not well understood. The aims of this study are to investigate the effects of Celastrol on VEGF-induced functional activity of BM-EPCs and to identify any mechanisms associated with this process. Here, we show that Celastrol attenuates VEGF secretion in BM-EPCs in vitro. This attenuation, in turn, inhibits the in vitro VEGF-induced cell viability, cell-cell adhesion, cell-ECM adhesion, migration response and vascular tube formation of BM-EPCs. Additionally, Celastrol inhibits the phosphorylation of VEGFR2, endothelial nitric oxide synthase (eNOS), and Akt to attenuate cell functions. Taken together, the present study demonstrates that Celastrol decreases Akt/eNOS signaling in BM-EPCs in vitro. These findings identify novel mechanisms that regulate EPC function and may provide new insights for the medicinal use of Celastrol.  相似文献   

9.
Endothelial progenitor cells (EPCs) exhibit impaired function in the context of diabetes, and advanced glycation end products (AGEs), which accumulate in diabetes, may contribute to this. In the present study, we investigated the mechanism by which AGEs impair late EPC function. EPCs from human umbilical cord blood were isolated, and incubated with AGE-modified albumin (AGE-albumin) at different concentrations found physiologically in plasma. Apoptosis, migration, and tube formation assays were used to evaluate EPC function including capacity for vasculogenesis, and expression of the receptor for AGEs (RAGE), Akt, endothelial nitric oxide synthase (eNOS), and cycloxygenase-2 (COX-2) were determined. Anti-RAGE antibody was used to block RAGE function. AGE-albumin concentration-dependently enhanced apoptosis and depressed migration and tube formation, but did not affect proliferation, of late EPCs. High AGE-albumin increased RAGE mRNA and protein expression, and decreased Akt and COX-2 protein expression, whilst having no effect on eNOS mRNA or protein in these cells. These effects were inhibited by co-incubation with anti-RAGE antibody. These results suggest that RAGE mediates the AGE-induced impairment of late EPC function, through down-regulation of Akt and COX-2 in these cells.  相似文献   

10.
Hyperhomocysteinemia (HHcy) has been shown to induce endothelial dysfunction in part as a result of enhanced oxidative stress. Function and survival of endothelial progenitor cells (EPCs, defined as sca1(+) c-kit(+) flk-1(+) bone marrow-derived cells), which significantly contribute to neovascularization and endothelial regeneration, depend on controlled production of reactive oxygen species (ROS). Mice heterozygous for the gene deletion of methylenetetrahydrofolate reductase (Mthfr(+/-)) have a 1.5- to 2-fold elevation in plasma homocysteine. This mild HHcy significantly reduced the number of circulating EPCs as well as their differentiation. Mthfr deficiency was also associated with increased ROS production and reduced nitric oxide (NO) generation in Mthfr(+/-) EPCs. Treatment of EPCs with sepiapterin, a precursor of tetrahydrobiopterin (BH(4)), a cofactor of endothelial nitric oxide synthase (eNOS), significantly reduced ROS and improved NO production. mRNA and protein expression of eNOS and the relative amount of eNOS dimer compared with monomer were decreased by Mthfr deficiency. Impaired differentiation of EPCs induced by Mthfr deficiency correlated with increased senescence, decreased telomere length, and reduced expression of SIRT1. Addition of sepiapterin maintained cell senescence and SIRT1 expression at levels comparable to the wild type. Taken together, these results demonstrate that Mthfr deficiency impairs EPC formation and increases EPC senescence by eNOS uncoupling and downregulation of SIRT1.  相似文献   

11.
OBJECTIVE: Angiotensin converting enzyme (ACE) inhibitors significantly improve survival in patients with atherosclerosis. Although ACE inhibitors reduce local angiotensin II (AngII) formation, serine proteases form AngII to an enormous amount independently from ACE. Therefore, our study concentrates on the effect of the ACE-inhibitor ramiprilat on chemokine release, AngII receptor (ATR) expression, and NF-kappaB activity in monocytes stimulated with AngII. METHODS AND RESULTS: AngII-induced upregulation of IL-8 and MCP-1 protein and RNA in monocytes was inhibited by the AT1R-blocker losartan, but not by the AT2R-blocker PD 123.319. Ramiprilat dose-dependently suppressed AngII-induced upregulation of IL-8 and MCP-1. The suppressive effect of ramiprilat on AngII-induced chemokine production and release was in part caused by downregulation of NF-kappaB, but more by a selective and highly significant reduced expression of AT1 receptors as shown in monocytes and endothelial cells. CONCLUSION: In our study we demonstrated for the first time that ramiprilat reduced expression of AT1R in monocytes and endothelial cells. In addition, ramiprilat downregulated NF-kappaB activity and thereby reduced the AngII-induced release of IL-8 and MCP-1 in monocytes. This antiinflammatory effect, at least in part, may contribute to the clinical benefit of the ACE inhibitor in the treatment of coronary artery disease.  相似文献   

12.
Risk factors for coronary heart disease including low-density lipoprotein (LDL) cholesterol can reduce the number and activity of endothelial progenitor cells (EPCs), thereby hindering their usefulness for treating cardiovascular disease in transplants. The aim of this study was to investigate whether hepatocyte growth factor (HGF) can protect EPCs from the inhibition caused by LDL cholesterol. EPCs derived from mouse bone marrow were isolated and cultured in medium supplemented with different concentrations of LDL cholesterol. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, modified Boyden chambers and flow cytometry were used to evaluate EPC proliferation, migration and apoptosis. The role of Akt in this process was also evaluated through observing the expressions of total Akt and Akt phosphorylation, and pharmacological analysis. Our results indicate that LDL cholesterol inhibits the proliferation and migration of EPCs, and induces their apoptosis. However, HGF improves the activity of EPCs inhibited by LDL cholesterol, and it simultaneously decreases EPC apoptosis induced by LDL cholesterol. Blockade of phosphoinositide-3 kinase (PI3K) by Ly294002 attenuates the effect of HGF. Furthermore, our experiments suggest that HGF increases the level of phosphorylated Akt in EPCs rather than Akt. However, PI3K inhibitor reduces the increase of phosphorylated Akt level induced by HGF. These findings suggest HGF promotes endothelial progenitor cells migration, proliferation and survival impaired by low-density lipoprotein cholesterol via the PI3K/Akt signaling pathway.  相似文献   

13.
Zhang Z  Qun J  Cao C  Wang J  Li W  Wu Y  Du L  Zhao P  Gong K 《Molecular biology reports》2012,39(4):4445-4454
Circulating endothelial progenitor cells (EPCs) have a critical role in endothelial maintenance and repair. Apolipoprotein A-I mimetic peptide D-4F has been shown to posses anti-atherogenic properties via sequestration of oxidized phospholipids, induction of remodeling of high density lipoprotein and promotion of cholesterol efflux from macrophage-derived foam cells. In this study, we test the effects of D-4F on EPC biology. EPCs were isolated from the peripheral venous blood of healthy male volunteers and characterized by 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine-labeled acetylated LDL uptake and ulex europaeus agglutinin binding and flow cytometry. Cell proliferation, migration, adhesion, nitric oxide production and endothelial nitric oxide synthase (eNOS) expression in the absence and presence of D-4F or simvastatin (as a positive control), were assayed. We demonstrated that D-4F significantly enhanced EPC proliferation, migration and adhesion in a dose-dependent manner compared with vehicle. However, all of the favorable effects of D-4F on EPCs were dramatically attenuated by preincubation with NOS inhibitor L-NAME. Further, D-4F also increased nitric oxide production in culture supernatant and the levels of eNOS expression and phosphorylation. The stimulatory effects of D-4F (10 μg/ml) on EPC biology were comparable to 0.5 μM simvastatin. These results suggest that eNOS/NO pathway mediates the functional modulation of EPC biology in response to D-4F treatment and support the notion that the beneficial role of D-4F on EPCs may be one of the important components of its anti-atherogenic potential.  相似文献   

14.
Akt signaling and its role in postnatal neovascularization   总被引:2,自引:0,他引:2  
Postnatal neovascularization has been known to be involved in not only angiogenesis but also vasculogenesis. Several lines of evidence suggest a link between neovascularization and Akt, a family member of serine/threonine protein kinases. Akt phosphorylates endothelial NO synthase (eNOS) and thereby enhances endothelial NO synthesis and influences postnatal vessel growth. Akt signaling is activated by a variety of stimuli in endothelial cells and endothelial progenitor cells (EPCs). Activation of the Akt kinase orchestrates a number of signaling pathways potentially involved in angiogenesis. Dominant negative Akt overexpression leads to functional blocking of EPC bioactivity. Because neovascularization is implicated in the pathophysiology of a number of diseases and is becoming an important therapeutic strategy for those diseases, further dissection of the Akt pathway and elucidation of the downstream effector molecules will lead to a better understanding of postnatal neovascularization and may provide avenues for the development of novel therapeutic interventions. In this review, molecular mechanisms of Akt signal pathway will be discussed with special emphasis on its role in neovascularization.  相似文献   

15.
Angiogenesis requires the mobilization of progenitor cells from the bone marrow (BM) and homing of progenitor cells to ischemic tissue. The cholesterol lowering drug Statins can stimulate angiogenesis via mobilization of BM derived endothelial progenitor cells (EPCs), promoting EPC migration, and inhibiting EPC apoptosis. The chemokine stromal cell-derived factor-1 (SDF-1) augments EPC chemotaxis, facilitates EPC incorporation into the neovasculature. The combined use of a statin to mobilize EPCs and local over-expression of SDF-1 to augment EPC homing to ischemic muscle resulted in superior angiogenesis versus use of either agent alone. Their effects are through augmenting EPC mobilization, incorporation, proliferation, migration, and tube formation while inhibiting EPC apoptosis. Statin and SDF-1 therefore display synergism in promoting neovascularization by improving reperfusion of ischemic muscle, increasing progenitor cell presentation and capillary density in ischemic muscle, and diminishing apoptosis. These results suggest that the combination of statin and SDF-1 may be a new therapeutic strategy in the treatment of limb ischemia.  相似文献   

16.
Angiogenesis requires the mobilization of progenitor cells from the bone marrow (BM) and homing of progenitor cells to ischemic tissue. The cholesterol lowering drug Statins can stimulate angiogenesis via mobilization of BM derived endothelial progenitor cells (EPCs), promoting EPC migration, and inhibiting EPC apoptosis. The chemokine stromal cell-derived factor-1 (SDF-1) augments EPC chemotaxis, facilitates EPC incorporation into the neovasculature. The combined use of a statin to mobilize EPCs and local overexpression of SDF-1 to augment EPC homing to ischemic muscle resulted in superior angiogenesis versus use of either agent alone. Their effects are through augmenting EPC mobilization, incorporation, proliferation, migration and tube formation while inhibiting EPC apoptosis. Statin and SDF-1 therefore display synergism in promoting neovascularization by improving reperfusion of ischemic muscle, increasing progenitor cell presentation and capillary density in ischemic muscle, and diminishing apoptosis. These results suggest that the combination of statin and SDF-1 may be a new therapeutic strategy in the treatment of limb ischemia.Key words: angiogenesis, endothelial progenitor cells, statin, SDF-1, migrationAngiogenesis is the process by which new vessels form in ischemic tissue. The cytokine Stromal Cell Derived Factor-1 (SDF-1) is released into the circulation in response to ischemia and is an initiating signal in the angiogenesis process. SDF-1 mobilizes bone marrow cells (BMC) by binding to the cell surface receptor CXCR4. BMCs then enter the circulation and migrate to the ischemic site following the SDF-1 gradient. On arrival, BMCs promote angiogenesis by providing cellular elements such as endothelial cells (EC) and perivascular cells and also by secreting signaling proteins that mature the angiogenesis process. BMC surface CXCR4 expression and the SDF-1/CXCR4 interaction are essential for BMC to home to the injured site.Cell-based strategies to improve neovascularization of ischemic tissue have been achieved by injecting mononuclear cells derived from either BM1 or peripheral blood, directly into ischemic muscle,2 or by mobilizing BM-MNC with cytokines3 or other drugs such as statins.46Statins are 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors and are primarily used to lower circulating cholesterol levels. In addition to reducing cholesterol synthesis, inhibition of the mevalonate pathway prevents synthesis of isoprenoid intermediates including geranylgeranylpyrophosphate. Geranylgeranylation is important in the posttranslational modification of intracellular signaling proteins, including Rho GTPases. This mechanism underlies many of the pleiotropic effects including the ability of statins to stabilize endothelial nitric oxide synthase mRNA and increase nitric oxide biosynthesis. In fact, statins have been shown to protect against ischemic injury of the heart and stimulate angiogenesis in ischemic limbs of normocholesterolemic animals.7,8 The mechanism of action of statins has been demonstrated via mobilization of BM endothelial progenitor cells (EPCs) and facilitation of EPC incorporation into the neovasculature through a phosphoinositide-3 (PI-3) kinase-dependent pathway.46 Statins have also been reported to enhance EPC migration, augment EPC chemotaxis and inhibit EPC apoptosis both in vitro and in vivo.4,9,10SDF-1, an 89-amino acid polypeptide, is a member of the chemokine CXC subfamily originally isolated from murine bone marrow stromal cells.11 SDF-1 was initially identified as a potent chemoattractant for lymphocytes and monocytes, and as an enhancer of B cell proliferation. SDF-1 is considered to be a key regulator of hematopoietic stem cell trafficking between BM and the peripheral circulation. SDF-1 is highly expressed in ischemic tissues.12,13 Elevation of SDF-1 levels in peripheral blood results in BMC mobilization to the peripheral circulation with a concurrent decrease within the BM.14 SDF-1 not only mobilizes progenitor cells in BM but also directs them to the ischemic site by promoting cell migration and proliferation.3,15 SDF-1 may generate a gradient similar to developmental morphogens during ischemia that provides the cues and directions for progenitor cell mobilization into peripheral blood and homing to ischemic tissues.16,17 Furthermore, SDF-1 also reduces EPC apoptosis and enhances survival of the progenitor cells.3,18 SDF-1, either delivered locally in its protein form,3,19,20 or generated in situ via plasmid and viral vector-mediated gene expression,10,21,22 enhances neovascularization by augmenting EPC recruitment into ischemic tissues.SDF-1 binding to its receptor CXCR4 on the cell surface provides essential signals for mobilization and homing of EPCs to the injured site.2325 SDF-1 binding with CXCR4 triggers internalization of CXCR4. This SDF-1/CXCR4 interaction results in elevation of cytoplasmic Ca2+ levels26 and phosphorylation of PI-3 kinase and other protein kinases, e.g. Akt,21 MEK/ERK27,28 and Janus kinase (JAK)-2.29 Activation of Akt protein kinase further upregulates the activity of eNOS by increasing both eNOS expression and phosphorylation, which in turn catalyzes the production of nitric oxide (NO), an important signal molecule for vascular protection and remodeling.21,26 Disruption of SDF-1/CXCR4 interaction impaired incorporation of EPC into sites of ischemia, and disturbed ischemic limb neo-vascularization.30To explore if the combined use of a statin to mobilize BM EPCs and local overexpression of SDF-1 to augment EPC homing to ischemic muscle will result in superior angiogenesis versus use of either agent alone, we used the murine hindlimb ischemia model to determine the effects of Fluvastatin and SDF-1 on angiogenesis.10 Fluvastatin (5 mg/kg) was injected intra-peritoneally into the mice daily for 7 days to mobilize progenitor cells prior to ischemia-inducing surgery. NIH 3T3 cells transduced with the retroviral vector carrying SDF-1 gene were injected I.M. into the ischemic limb after surgery to locally deliver SDF-1 to ischemic muscle.22 The number of circulating EPCs increased 9–18 fold seven days post statin/SDF-1 treatment.Our data of single treatment with Fluvastatin are consistent with the previous reports that statins not only augment mobilization of progenitor cells by increasing circulating EPC originated from BM,4,31 but also modulate their differentiation. We further give a new insight view of the mechanism for statin induced EPC mobilization. We found that statin induced activation of matrix metalloproteinases (MMP)-2 and -9 in EPC. The increased MMP activity could result in degradation of extracellular matrix.17 Progenitor cells will be such mobilized into circulation when the cellular attachment is reduced within the bone marrow niches. We show that statin alone can enhance the phosphorylation of Akt, promote EPC proliferation, migration and inhibit cell apoptosis in vitro. The proangiogenic effects of statin are also illustrated in vivo using a murine hind-limb ischemia model. In this model, Fluvastatin treatment results in more EPC in circulation, more BM derived progenitor cells in ischemic muscle, more cell proliferation, enhanced capillary formation, and diminished cell apoptosis; these effects end up in improved reperfusion versus control. The beneficial effects of statin on angiogenesis are independent of cholesterol since the total serum cholesterol level is not changed by Fluvastatin treatment under these experimental conditions.To be noted, the effect of statins on EPCs was found to be concentration dependent. EPC proliferation, migration and the inhibition of apoptosis are enhanced at low statin concentrations (10 nM and 100 nM) but are significantly inhibited at a higher statin concentration (1,000 nM). The toxic effect of statin at high concentration cannot be compensated by addition of SDF-1, indicating that Statin causes apoptosis in a pathway different from the pathway that SDF-1 uses to prevent EPC apoptosis. Increased apoptosis at the higher statin concentration could explain the reversed effect of stain in angiogenesis. These findings are consistent with the reports in which statins were found to have proangiogenic effects at low therapeutic concentrations but angiostatic effects at high concentrations, the latter effect being reversible by geranylgeranyl pyrophosphate.32,33Combined statin and SDF-1 treatment significantly enhanced angiogenesis versus treatment with either reagent alone. More cell proliferation and less apoptosis were observed both in vitro and in vivo, along with increased cell migration and tube formation in vitro, and enhanced progenitor cell incorporation and higher capillary density in ischemic tissue in vivo. It is interesting to note that neither statin nor SDF-1 alone promotes EPC tube formation, but combined treatment results in significant EPC tube formation. These results suggest that SDF-1 and statin have different mechanisms of action with regards to the promotion of neovascularization. It is possible that each drug affects a specific subset of progenitor cells.The facilitative effect of both statin and SDF-1 on EPC proliferation and migration is involved with Akt phosphorylation and endothelial nitric oxide synthase (eNOS) activation. The mechanism by which statins promote angiogenesis is through, at least partly, improved nitric oxide bioavailability. Statins have been reported to induce eNOS mRNA stability34 and eNOS activity through a PI3k/Akt dependent pathway.31,3537 However, neither eNOS mRNA/protein expression nor EPCs are reported to be essential for the therapeutic effect of Fluvastatin on hypoxia-induced pulmonary hypertension; Fluvastatin improved eNOS phosphorylation by a mechanism independent of Akt activation.38 Our data favor a mechanism involving Akt phosphorylation since phosphorylated Akt is increased when EPCs are cultured in the presence of statin, and statin-enhanced EPC proliferation and migration were inhibited by the PI3K/Akt inhibitor LY294002.The angiogenic effects of SDF-1 also involve increased production of NO26 as NO is essential for EC migration and angiogenesis. SDF-1α gene transfer has been shown to enhance eNOS activity.21 Our in vitro data confirmed the involvement of Akt and eNOS in SDF-1 mediated cell migration.10 Phosphorylated Akt is increased when EPCs are cultured in the presence of SDF-1. The facilitative effect of SDF-1 on EPC migration is blocked by both the Akt inhibitor LY294002 and the eNOS inhibitor L-NMMA. In contrast, L-NMMA does not reverse the inhibitory effect of SDF-1 on apoptosis, indicating that the inhibitory effect of SDF-1 on apoptosis is not mediated through NO.22We also show that the expression of MMP-2 and MMP-9 was increased when EPCs were cultured in the presence of statin or SDF-1. MMPs are a family of proteolytic enzymes that degrade components of the extracellular matrix (ECM). Degradation of ECM is an essential step for cell mobilization and migration. Our data indicate that the novel effect of statin and SDF-1 on migration is through enhancement of MMP-2 and MMP-9 activity, resulting in ECM degradation, thus promoting progenitor cell mobilization and migration. Both Akt phosphorylation and expression of MMP-2 and MMP-9 in EPCs are further enhanced by combined treatment with statin and SDF-1. This result indicates that treatment of EPCs with either statin or SDF-1 as monotherapy results in a sub-maximal angiogenic response. The effects of statin partially overlap with that of SDF-1; and the combined use of two factors appears to have an optimal effect on progenitor cells (Fig. 1).Open in a separate windowFigure 1Effect of statins and SDF-1 on promoting angiogenesis. Statin enhances the phosphorylation of Akt with a yet undefined mechanism. SDF-1 binding with the G-protein coupled membrane receptor CXCR4 results in phosphorylation of protein kinases like PI3 kinase and Akt. Activation of Akt then upregulates the activities of MMPs and eNOS. NOS catalyze the synthesis of NO which is essential for the EPC migration. MMPs degrade extracellular matrix to initiate cell migration. Activation of Akt also prevents cell apoptosis. These reactions promote cell migration and proliferation and enhance EPC survival. EPCs from bone marrow are thus mobilized into circulation. The circulating EPC are homed into ischemia area in lure of SDF-1. EPCs contribute to neovascularisation, either directly by incorporation into endothelium and differentiation into endothelial cells or indirectly by differentiating into perivascular cells that provide physical support and secrete signaling proteins and structural enzymes enabling the angiogenesis process. The effects of statin partially overlap with that of SDF-1; and the combined use of two factors appears to have an additive/synergistic effect on progenitor cells.In summary, the combination of progenitor cell mobilization with statin and targeted recruitment into the ischemic bed by SDF-1 leads to improved blood flow in the ischemic limb versus treatment with either agent alone. Statin and SDF-1 therefore display synergism in promoting neovascularization. This result suggests that the combination of statin and SDF-1 may be a new therapeutic strategy in the treatment of limb ischemia. However, the use of statins as a clinical modifier of angiogenesis is still unproven. A great number of patients have been treated with these drugs and if they were potently proangiogenic, one might expect to see an increased risk of tumors. However, there is no evidence that these drugs encourage tumor development. Likewise, there is no definitive evidence for an antiangiogenic, tumor-modulating action of statins. We await further studies with interest.  相似文献   

17.
18.
Angiotensin II (AngII) is an important factor that promotes the proliferation of cancer cells, whereas celastrol exhibits a significant antitumor activity in various cancer models. Whether celastrol can effectively suppress AngII mediated cell proliferation remains unknown. In this study, we studied the effect of celastrol on AngII-induced HepG2 cell proliferation and evaluated its underlying mechanism. The results revealed that AngII was able to significantly promote HepG2 cell proliferation via up-regulating AngII type 1 (AT1) receptor expression, improving mitochondrial respiratory function, enhancing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, increasing the levels of reactive oxygen species (ROS) and pro-inflammatory cytokines. The excess ROS from mitochondrial dysfunction is able to cause the apoptosis of tumor cells via activating caspase3 signal pathway. In addition, the reaction between NO and ROS results in the formation of peroxynitrite (ONOO?), and then promoting cell damage. celastrol dramatically enhanced ROS generation, thereby causing cell apoptosis through inhibiting mitochodrial respiratory function and boosting the expression levels of AngII type 2 (AT2) receptor without influencing NADPH oxidase activity. PD123319 as a special inhibitor of AT2R was able to effectively decreased the levels of inflammatory cytokines and endothelial nitric oxide synthase (eNOS) activity, but only partially attenuate the effect of celastrol on AnII mediated HepG2 cell proliferation. Thus, celastrol has the potential for use in liver cancer therapy. ROS derived from mitochondrial is an important factor for celastrol to suppress HepG2 cell proliferation.  相似文献   

19.
Oxidative stress is one of the mechanisms of ageing‐associated vascular dysfunction. Angiotensin‐converting enzyme 2 (ACE2) and microRNA (miR)‐18a have shown to be down‐regulated in ageing cells. Our previous study has shown that ACE2‐primed endothelial progenitor cells (ACE2‐EPCs) have protective effects on endothelial cells (ECs), which might be due to their released exosomes (EXs). Here, we aimed to investigate whether ACE2‐EPC‐EXs could attenuate hypoxia/reoxygenation (H/R)‐induced injury in ageing ECs through their carried miR‐18a. Young and angiotensin II‐induced ageing ECs were subjected to H/R and co‐cultured with vehicle (medium), EPC‐EXs, ACE2‐EPCs‐EXs, ACE2‐EPCs‐EXs + DX600 or ACE2‐EPCs‐EXs with miR‐18a deficiency (ACE2‐EPCs‐EXsanti‐miR‐18a). Results showed (1) ageing ECs displayed increased senescence, apoptosis and ROS production, but decreased ACE2 and miR‐18a expressions and tube formation ability; (2) under H/R condition, ageing ECs showed higher rate of apoptosis, ROS overproduction and nitric oxide reduction, up‐regulation of Nox2, down‐regulation of ACE2, miR‐18a and eNOS, and compromised tube formation ability; (3) compared with EPC‐EXs, ACE2‐EPC‐EXs had better efficiencies on protecting ECs from H/R‐induced changes; (4) The protective effects were less seen in ACE2‐EPCs‐EXs + DX600 and ACE2‐EPCs‐EXsanti‐miR‐18a groups. These data suggest that ACE‐EPCs‐EXs have better protective effects on H/R injury in ageing ECs which could be through their carried miR‐18a and subsequently down‐regulating the Nox2/ROS pathway.  相似文献   

20.
In the vasculature, physiological levels of nitric oxide (NO) protect against various stressors, including mechanical stretch. While endothelial NO production in response to various stimuli has been studied extensively, the precise mechanism underlying stretch-induced NO production in venous endothelial cells remains incompletely understood. Using a model of continuous cellular stretch, we found that stretch promoted phosphorylation of endothelial NO synthase (eNOS) at Ser1177, Ser633 and Ser615 and NO production in human umbilical vein endothelial cells. Although stretch activated the kinases AMPKα, PKA, Akt, and ERK1/2, stretch-induced eNOS activation was only inhibited by kinase-specific inhibitors of PKA and PI3K/Akt, but not of AMPKα and Erk1/2. Similar results were obtained with knockdown by shRNAs targeting the PKA and Akt genes. Furthermore, inhibition of PKA preferentially attenuated eNOS activation in the early phase, while inhibition of the PI3K/Akt pathway reduced eNOS activation in the late phase, suggesting that the PKA and PI3K/Akt pathways play distinct roles in a time-dependent manner. Finally, we investigated the role of these pathways in stretch-induced endothelial exocytosis and leukocyte adhesion. Interestingly, we found that inhibition of the PI3K/Akt pathway increased stretch-induced Weibel-Palade body exocytosis and leukocyte adhesion, while inhibition of the PKA pathway had the opposite effects, suggesting that the exocytosis-promoting effect of PKA overwhelms the inhibitory effect of PKA-mediated NO production. Taken together, the results suggest that PKA and Akt are important regulators of eNOS activation in venous endothelial cells under mechanical stretch, while playing different roles in the regulation of stretch-induced endothelial exocytosis and leukocyte adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号