首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The submersed freshwater macrophyte Utricularia inflata is a recent invader of Adirondack Mountain lakes (NY, USA). Previous experiments suggested that U. inflata can indirectly change nutrient cycling in Adirondack lake ecosystems by reducing the growth of native isoetid macrophytes, which in turn affects sediment chemistry. A 13-week greenhouse experiment was conducted to test the hypothesis that shading can explain the detrimental effect of U. inflata on the native short-statured isoetid, Eriocaulon aquaticum. Eriocaulon aquaticum has a dense root system that oxidizes sediment by releasing oxygen; it also takes up carbon dioxide from sediment. Growth and asexual reproduction of E. aquaticum grown under shaded conditions was reduced significantly compared to an unshaded control (< 0.001). Shading resulted in sediment changes: redox potential fell from 216 mV in the absence of shading to 76 mV under four layers of shade cloth (< 0.0001). Shading also increased the concentration of extractable sediment ammonium (P < 0.01), as well as carbon dioxide concentrations (< 0.0001) and pH of porewater (P < 0.05). The effect of U. inflata on the native isoetids and consequently on sediment chemistry closely matched the impact of shade cloth with similar light attenuation. Our results indicate that the principal mechanism by which U. inflata affects native isoetids and sediment chemistry is shading.  相似文献   

2.
The submersed macrophyte Utricularia inflata has invaded lakes in northern New York State, thereby threatening native isoetids such as Eriocaulon aquaticum. Isoetids often dominate and modify softwater lakes due to their capacity to oxidize sediment and thus influence solute mobilization. Greenhouse experiments tested the hypotheses that U. inflata invasion could result in higher porewater iron (Fe) concentrations and greater ammonium (NH4 +) and Fe release from the sediment into the water column, and that this mobilization would stimulate further U. inflata growth. In the first experiment, three levels of U. inflata impact on E. aquaticum were imposed using sediment cores overlain by lake water: E. aquaticum alone, E. aquaticum with a cover of U. inflata, and bare sediment—the latter to simulate local extirpation of the isoetid by the invasive. After 16 weeks, sediment porewater NH4 + and total dissolved Fe concentrations were significantly higher (P < 0.05) for the U. inflata and bare sediment treatments. Water column concentrations of these solutes were five-fold higher (P < 0.05) for the bare sediment treatment than E. aquaticum alone, indicating that isoetid extirpation by U. inflata can compromise water quality. A second experiment demonstrated that U. inflata grew faster over bare sediment than over sediment with E. aquaticum (P < 0.05), likely due to greater solute mobilization in the absence of E. aquaticum. Where U. inflata causes a decline of native isoetids in Adirondack Mountain lakes, changes to lake sediment and water chemistry can create a positive feedback loop further escalating the impact of this invasive species.  相似文献   

3.
We investigated the impact of inundative releases of the parasitoid, Encarsia formosa Gahan (Hymenoptera: Aphelinidae), for control of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), on cut gerbera (Gerbera jamesonii L.) under controlled greenhouse conditions. Experimental units consisted of ten plants covered and separated from other units by gauze tents. We assessed three release rates of the aphelinid parasitoid: a 7-week experiment with a standard release rate (10 m−2/14 days), and a subsequent 3-month trial with high (100 m−2/week) and very high (1,000 m−2/week) release rates. Experimental units without release of parasitoids served as control treatment. Gerbera plants were infested initially with 50–100 juvenile and 50–70 adult whiteflies in the first experiment, and in the second experiment with less than 50 juveniles per plant and 50–70 adults. Whitefly and parasitoid population density were assessed in weekly intervals using infestation and activity categories. Results show that parasitized whiteflies were present in all treatments within 2 weeks after initial release. Unfortunately, it was not possible to control whiteflies with standard release rates of E. formosa. Although parasitism rates slightly increased, the effect on whitefly populations was negligible. Large amounts of honeydew and growth of sooty mold fungi caused the termination of the first experiment. In a second experiment, E. formosa was tested at 10–100 times higher release densities. In contrast to the first experiment, whitefly densities increased steadily during the first 8 weeks, but remained constant until the end of the experiment in both treatments. Parasitism by E. formosa reached its maximum after 8 weeks. We discuss possible reasons for the low efficiency of E. formosa as a whitefly antagonist in greenhouse production of gerbera.  相似文献   

4.
Free-floating Utricularia inflata Walt. has the potential to alter native isoetid communities as it expands its range from the Atlantic coastal plain into northeastern New York lakes. This field study assessed (1) in situ growth potential for U. inflata at varying depths (1.0-3.0 m), (2) displacement of U. inflata from sites with different exposures to wind and water movement, and (3) U. inflata's relative abundance over a depth range (0.5 m, 1.0 m, 1.5 m, 2.0 m, and 2.5 m) at each of nine Adirondack Mountain lake sites varying in exposure. Plants grew well in shallow water (RGR: 0.014-0.039 day−1) at depths from 1.0 m to 2.5 m, but lost mass at 3.0 m. Significantly fewer U. inflata plants remained at sites and depths with greater exposure to wave action, as well as those with greater water current. Vegetation sampling confirmed greater relative frequency of U. inflata at sheltered sites and along deeper contours. Despite its potential to grow well in shallow water, water movement can prevent the accumulation of U. inflata there, and thus provide a refuge for native species able to withstand wave exposure.  相似文献   

5.
Submerged aquatic vegetation is known as a key structural component and regulator in ecosystems. In this mesocosm study, we examine community- and system-level responses to the presence of Vallisneria americana (L), a deep-rooted macrophyte. Phytoplankton, bacteria and filamentous algal biomasses were significantly lowered in the presence of V. americana. In addition, mesocosms with macrophytes had significantly reduced porewater phosphate and iron, water column dissolved organic carbon and total suspended solids, but elevated sediment redox. All mesocosms were net autotrophic (gross primary production/respiration >1). Compared to the macrophyte treatments, the control mesocosms had lower diel net primary production (NPP) midway through the experiment (d 16), but at the end of the experiment (d 36), the controls had the higher values, presumably due to increased filamentous algae. NPP and NPP/R were constant in the macrophyte treatments, whereas NPP/R increased significantly from middle to end of the experiment in the controls. We show that community and system-level responses to the presence of V. americana have significant consequences on system structure and function.  相似文献   

6.
Seasonal cycling of Fe in saltmarsh sediments   总被引:2,自引:1,他引:1  
This study combines an analysis of porewater chemistry with new, solid phase wet chemical extractions to examine the seasonal cycling of Fe in vegetated and unvegetated (cyanobacterial mat) saltmarsh sediments. Saltmarsh sediments are shown to contain more solid phase reactive Fe than other marine sediments studied so far. From the partitioning and speciation of solid Fe, and solid/soluble reduced S analysis in 10 sediment cores, we have observed that a majority of solid Fe in these sediments is cycled rapidly and completely between oxidized reactive Fe and reduced Fe as pyrite. Vegetated porewaters showed a lower pH and much higher Fe(II) concentrations on average than unvegetated porewaters in the top 10 cm, whereas sulfate, alkalinity, and sulfide concentrations were similar in the two environments. The amorphous Fe(III) oxide fraction showed a high negative correlation to solid and soluble reduced S (r 2 = –0.86 and –0.71, respectively) in surface vegetated sediments whereas the crystalline Fe(III) oxide fraction showed a high negative correlation (r 2 = –0.96) to sulfide only at depth. Though reactive Fe was observed in unvegetated sediments, no seasonal trend was apparent and the speciation of solid Fe revealed that most of it was reduced. Solid phase and porewater chemistry support the dominant role of the biota (Spartina alterniflora and bacteria) in controlling the reactivity of Fe and suggest that the current definition of solid phase, reactive Fe should be expanded to include crystalline Fe(III) minerals which are available for pyrite formation in saltmarsh sediments. In support of previous saltmarsh studies, we present evidence that the redox cycle of solid Fe is controlled by sulfate reduction and sediment oxidation which respond to both annual cycles (light, temperature) and to short-term, episodic effects such as weather and tides.  相似文献   

7.
铜锌复合污染对铜富集植物大聚藻抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
以前期筛选的铜富集植物大聚藻为材料,采用两因素随机区组试验设计,通过盆栽试验研究了不同浓度铜锌复合污染对大聚藻抗氧化酶活性的影响,以揭示铜富集植物大聚藻对重金属的耐性机理,为芦溪河及其它类似污染河流的生态恢复与植被重建提供参考依据。结果表明:(1)铜锌复合污染条件下,大聚藻生物量都表现出低促高抑现象。(2)铜锌复合污染时,大聚藻MDA含量随铜锌浓度升高表现出先升高后降低的变化。(3)铜锌复合污染对大聚藻抗氧化酶系统活性均有不同程度的影响,低浓度铜锌复合污染对SOD(超氧化物歧化酶)、POD(过氧化物酶)和CAT(过氧化氢酶)有促进作用,而随浓度的升高则表现出不同的规律。研究发现,铜锌胁迫下,大聚藻细胞应急防御系统被启动,SOD、POD和CAT发挥作用,体内过量自由基及时被清除,使大聚藻能够保持高的耐性。  相似文献   

8.
The contribution of sediment interstitial water and the water column to the transpiration stream of Myriophyllum aquaticum (Vellozo) Verdcourt was determined to estimate the significance of mass flow in supply of sediment nutrients for plant growth. Sediment interstitial water accounted for about 2% of the water transpired over a 37 day period. Because of the small volume of water that originated in the sediment we concluded that mass flow did not significantly enhance nutrient supply to the roots of M. aquaticum. Relative growth rate (RGR) of adventitious, water roots was greater than whole plant RGR, and RGR of sediment roots was not significantly different from zero, indicating a shift in the biomass allocation after emergence of the apical meristem into the air. Water use, measured by the transpiration coefficient, averaged 260 ml H2O mg DW-1, which is similar to C-4 terrestrial plants. M. aquaticum has leaf characteristics commonly associated with xerophytic habitats. These characteristics may be necessary if a high transpiration rate and a mechanical requirement for high cell turgor pressure, required by a reliance upon hydrostatic pressure for support of the aerial stems, are mutually exclusive because of morphological constraints on hydraulic conductivity.  相似文献   

9.
In the mangrove surrounding the coastal lagoon of La Mancha, Veracruz, Mexico, we studied litter fall, litter standing crop, and turnover rates in four different mangrove settings, based on the ecological classification of Lugo and Snedaker (1974). We studied those three prominent ecological processes at the basin, fringe and riverine mangrove settings, being the last one a relict riverine stand. The aim was to describe and compare litter dynamics among mangrove types in a lagoon with an ephemeral inlet, as a way of understanding functional heterogeneity within this coastal ecosystem. The daily average values of litter fall were different (P < 0.01) among mangrove site basin I, formed by Avicennia germinans and Rhizophora mangle (2.35 g/m2/day); basin II, formed by Laguncularia racemosa, Avicennia germinans, and Rhizophora mangle (2.93 g/m2/day); fringe with Rhizophora mangle (2.13 g/m2/day); and relic riverine, also with R. mangle (4.70 g/m2/day). The amount of litter standing crop was different among sites (P < 0.001), and also between the dry and rainy season, for each mangrove type (P < 0.001). Turnover ratios were higher in basin I and basin II sites (6.34 and 7.44 times per year) than in relic riverine and fringe mangroves (1.49 and 2.39 times per year). Interstitial salinity and sediment nutrients varied among mangrove types and could influence litter production. Since this lagoon has an ephemeral inlet, continuous inundation throughout 7–8 months per year has an important effect on litter dynamics.  相似文献   

10.
The N-terminal domain of glucose-dependent insulinotropic polypeptide (GIP) plays an important role in regulating biological activity. This study examined biological properties of several N-terminal truncated forms of GIP and two novel forms with substitutions at Phe position-6 with Arg or Val. GIP(6-42), GIP(R6-42), GIP(V6-42), GIP(7-42) and GIP(9-42) stimulated cAMP production in BRIN-BD11 cells similar to native GIP, whereas responses to GIP(3-42), GIP(4-42), GIP(5-42) and GIP(8-42) were reduced (P < 0.01 to P < 0.001). GIP-induced cyclic AMP production was significantly inhibited by GIP(3-42), GIP(4-42), GIP(5-42), GIP(6-42), GIP(R6-42), GIP(7-42) and GIP(8-42) (P < 0.001). Compared with native GIP, in vitro insulinotropic activity of GIP(3-42), GIP(4-42), GIP(5-42), GIP(7-42) and GIP(8-42) was reduced (P < 0.05 to P < 0.001), with GIP(4-42), GIP(5-42), GIP(7-42) and GIP(8-42) also potently inhibiting GIP-stimulated insulin secretion (P < 0.001). In ob/ob mice, GIP(4-42) and GIP(8-42) increased (P < 0.05 to P < 0.01) plasma glucose concentrations compared to the glucose-lowering action of native GIP. When GIP(8-42) was co-administered with native GIP it countered the ability of the native peptide to lower plasma glucose and increase circulating insulin concentrations. These data confirm the importance of the N-terminal region of GIP in regulating bioactivity and reveal that sequential truncation of the peptide yields novel GIP receptor antagonists which may have functional significance.  相似文献   

11.
为揭示罗汉松土壤微生物对不同氮磷钾养分水平的响应及规律,该研究以两年生罗汉松(Podocarpus macrophyllus)幼苗为试验树种,采用L9正交试验控制盆栽土壤的氮磷钾养分水平梯度,使用稀释平板涂布法和Biolog-ECO微平板法探讨不同土壤氮磷钾养分水平对罗汉松土壤微生物量和群落多样性及其对6种碳源的利用特征。结果表明:(1)随氮添加量的增加,土壤细菌(P<0.05)和放线菌数量(P<0.001)减少,真菌(P<0.001)及固氮菌数量(P<0.01)显著增加,土壤微生物群落的Pielou 指数(P<0.001)降低,Simpson指数(P<0.05)和McIntosh指数(P<0.001)升高,从而降低了土壤微生物对6种碳源的利用强度,特别是对难利用碳源胺类(P<0.001)、羧酸(P<0.001)、聚合物(P<0.001)及其他化合物(P<0.001)的利用强度显著降低。(2)磷添加量的增加显著降低了土壤微生物群落的Shannon指数(P<0.05)。(3)钾添加量的增加显著降低了土壤微生物群落的Shannon指数和Pielou指数及微生物群落对碳水化合物和氨基酸(P<0.01)两类易利用碳源的强度。综上所述,氮添加和钾添加是影响罗汉松土壤微生物群落功能多样性的主要因素,在罗汉松培育时应注意少量多次施肥,降低氮和钾的添加量,适当提高磷添加量,以促进罗汉松的生长及其可持续培育。该研究从微生物的角度为罗汉松施肥及管护提供了理论依据。  相似文献   

12.
In this study, we aimed to understand the influence of plant type on the monthly variations of diel CH4 fluxes from Spartina alterniflora and Suaeda salsa of coastal salt marshes at three growth stages (July, August and September). Dissolved CH4 concentrations in porewater and sediment redox potentials were monitored, as were aboveground plant biomass and stem densities. CH4 fluxes exhibited clear monthly variations and peaked in September in the S. alterniflora and S. salsa mesocosms. However, no discernible diel variation was observed in the CH4 flux in the S. salsa mesocosm, probably due to its weak gas transport capacity. By contrast, notable diel variations of CH4 flux with the peak of 1.42 and 3.67 mg CH4 m−2 h−1 at 12:00 and the lowest of 0.75 and 2.11 mg CH4 m−2 h−1 at 3:00 or 6:00 were observed in the S. alterniflora mesocosm on 11 August and 11 September, respectively, but not in July mainly due to low plant biomass masking diel variations in the porewater CH4 concentration. The ratios of the maximum flux to minimum flux over the course of the day in the S. alterniflora mesocosm on 10 July, 11 August and 11 September were 1.28, 1.89 and 1.76, respectively, and corresponding values for porewater CH4 concentration were 1.31, 1.39 and 1.17, respectively. CH4 flux significantly correlated with CH4 concentration in porewater, and both were significantly related to air temperature. These findings indicate that CH4 production and CH4 flux at the middle growth stage (August) exhibited greater responses to changes in air temperature, which in turn induced the higher diel variation. The higher diel cycle for CH4 flux in August than in September was likely due to the higher proportion of CH4 oxidized during diffusion within the aerenchyma system. Our results suggest that the extent of diel variations in CH4 flux may have depended on the gas transport capacity of plants, and the highest diel variation occurred at the middle growth stage.  相似文献   

13.
Interpretation of photosynthetic pigment data using iterative programs such as CHEMTAX are widely used to examine algal community structure in the surface ocean. The accuracy of such programs relies on understanding the effects of environmental parameters on the pigment composition of taxonomically diverse algal groups. Phaeocystis antarctica is an important contributor to total autotrophic production and the biogeochemical cycling of carbon and sulfur in the Southern Ocean. Here we report the results of a laboratory culture experiment in which we examined the effects of ambient dissolved iron concentration on the pigment composition of colonial P. antarctica, using a new P. antarctica strain isolated from the southern Ross Sea in December 2003. Low-iron (<0.2 nM dissolved Fe) filtered Ross Sea seawater was used to prepare the growth media, thus allowing sub-nanomolar iron additions without the use of EDTA to control dissolved iron concentrations. The experiment was conducted at relatively low irradiance (∼20 μE m−2 s−1), with P. antarctica primarily present in the colonial form—conditions that are typical of the southern Ross Sea during austral spring. Relative to the iron-limited control treatments (0.22 nM dissolved Fe), iron addition mediated a decrease in the ratio of 19′-hexanoyloxyfucoxanthin to chlorophyll a, and an increase in the ratio of fucoxanthin to chlorophyll a. Our results also suggest that the ratio of 19′-hexanoyloxyfucoxanthin to chlorophyll c3 (Hex:Chl c3 ratio) may be a characteristic physiological indicator for the iron-nutritional status of colonial P. antarctica, with higher Hex:Chl c3 ratios (>3) indicative of Fe stress. We also observed that the ratio of fucoxanthin to 19′-hexanoyloxyfucoxanthin (Fuco:Hex ratio) was highly correlated (r 2 = 0.82) with initial dissolved Fe concentration, with Fuco:Hex ratios <0.05 measured under iron-limited conditions (dissolved Fe <0.45 nM). Our results corroborate and extend the results of previous experimental studies, and, combined with pigment measurements from the southern Ross Sea, are consistent with the hypothesis that the interconversion of fucoxanthin and 19′-hexanoyloxyfucoxanthin by colonial P. antarctica is used as a photo-protective or light-harvesting mechanism, according to the availability of dissolved iron.  相似文献   

14.
The aim of this study was to examine the impact of bioturbation by the Manila clam, Ruditapes philippinarum, on sediment stability. A laboratory benthic annular flume system (AFS) was deployed to evaluate the relationship between sediment stability of a subtidal mudflat and density of the infaunal clam under the influence of different current velocities. There was a significant correlation between mean erosion rate and current velocities in all treatments with clams (p < 0.001). There was also a significant correlation between mean erosion rate and R. philippinarum density (p < 0.001), reflecting bioturbation-enhanced sediment erosion. The effects of clam density on sediment erodability were more marked at the lower current velocities. In the control, the critical erosion velocity (Ūcrit) was about 32 cm s−1. With increasing R. philippinarum density, Ūcrit decreased down to the minimum value of about 20 cm s−1 at a density of 206 clams m−2. This study demonstrated that the burrowing activity of R. philippinarum reduces sediment stability, particularly at relatively low current velocities (25 cm s−1) and at densities below those found in the clam cultivation areas within the Sacca di Goro lagoon.  相似文献   

15.
Effects of the burrowing mayfly, Hexagenia, on nitrogen and sulfur fractions of sediment, and overlying water were determined. Laboratory microcosms were used to reproduce the benthic environment. The activities of Hexagenia increased sediment Eh (1.98 ± 0.486 (22) mV · day −1), and decreased pH in sediment (−0.007 ± 0.001 (22) day −1) and overlying water(-0.024 ± 0.004 (10) day−1). In the control, Eh decreased and pH did not change. The presence of Hexagenia also markedly increased ammonia in sediment (5.46 ± 0.14 (22) ppm N · day−1) and overlying water (0.792 ± 0.154 (10) ppm N · day−1), while the control did not change. In addition, the sulfate fraction of sediment (0.177 ± 0.006 (17)% dry mass) and water (50.0 ± 4.9 (5) mg · I−1) in microcosms with Hexagenia was greater than that of the control (0.151 ± 0.005 (16)% dry mass; 14.7 ± 1.71 (3) mg · 1−1) at the termination of the experiment. Hexagenia may also stimulate the mineralization of carbon-bonded sulfur. The general role of Hexagenia in altering sediment chemistry is discussed.  相似文献   

16.
Occurrence of widespread epizootics among larval and cultured shrimp has put on viable preventive approaches such as application of probiotics on a high priority in aquaculture. In the present study, four probiotics bacteria were isolated from marine fish and shrimp intestine based on the antagonistic activity and nonpathogenic to the host. The isolates of probiotics strains Streptococcus phocae PI80, Enterococcus faecium MC13, Lactococcus garvieae LC149, B49 and one commercial probiotics (ECOFORCE) were fed to post larvae of Penaeus monodon obtained from two different hatcheries to analyze the growth and protection against Vibrio harveyi and V. parahaemolyticus. Growth of P. monodon post larvae fed with probiotic strain S. phocae PI80 was significantly (P < 0.001) higher when compared with control and other three strains in both experiments. The treatment of post larvae with B49 reduced the growth as well as Specific growth rate. Among the three probiotic strains S. phocae PI80 and E. faecium MC13 have effectively inhibited the pathogens. In experiment I high survival (92%) were observed in S. phocae PI80 treated post larvae when challenged with Vibrio harveyi followed by E. faecium MC13 (84%), B49 (76%) and ECOFORCE (68%) but PI80 did not protect the post larvae in the same experiment when they were exposed to V. parahaemolyticus. The probiotic isolate of MC13 has protected the post larvae against V. parahaemolyticus when compared to other probiotics and control. Similarly in the second experiment feeding of S. phocae enhanced the survival of larvae when challenged with V. harveyi. The laboratory studies proved that bacterial probionts S. phocae and E. faecium isolated from shrimp and brackishwater fish has potential applications for controlling pathogenic vibriosis in shrimp culture.  相似文献   

17.
The impact of sediment coring on measured rates of sulfate reduction(SRR) by the whole core 35S-injection technique was assessed inmarshsediment vegetated by Spartina anglica. Simultaneously,therole of extraction method (centrifugation vs. sippers) for determination ofporewater DOC in vegetated sediment was evaluated. SRR was measuredinsitu with radiotracer injected directly into the sediment and in atime series from 1 to 24 h after coring. SRR incubations carriedout within 6 h (June) or 12 h (August) of coringyielded up to an order of magnitude higher rates than measured insitu. The enhancement of SRR was instantaneous but temporary andcorrelated with measured porewater DOC concentrations. Cores sampled fromrootedsediments should therefore not be used for sulfate reduction incubations withinthe first 12 h due to the effect of DOC leaching from roots cutduring the coring procedure. The labile fraction of leached DOC appears to beexhausted after a pre-incubation period of at least 12 h.Measurement of porewater DOC is also problematic in vegetated sediment.Porewater extraction by centrifugation of sediment may result in up to oneorderof magnitude higher DOC concentrations than in porewater obtained by anondestructive sipper technique. DOC is probably forced out of roots duringcentrifugation resulting in erroneously high porewater DOC concentrations.  相似文献   

18.
We have carried out field and laboratory experiments to examine the iron requirements of colonial Phaeocystis antarctica in the Ross Sea. In December 2003, we performed an iron/light-manipulation bioassay experiment in the Ross Sea polynya, using an algal assemblage dominated by colonial Phaeocystis antarctica, collected from surface waters with an ambient dissolved Fe concentration of ∼0.4 nM. Results from this experiment suggest that P. antarctica growth rates were enhanced at high irradiance (∼50% of incident surface irradiance) but were unaffected by iron addition, and that elevated irradiance mediated a significant decrease in cellular chlorophyll a content. We also conducted a laboratory iron dose–response bioassay experiment using a unialgal, non-axenic strain of colonial P. antarctica and low-iron (<0.2 nM) filtered seawater, both collected from the Ross Sea polynya in December 2003. By using rigorous trace-metal clean techniques, we performed this dose–response iron-addition experiment at ∼0°C without using organic chelating reagents to control dissolved iron levels. At the relatively low irradiance of this experiment (∼20 μE m−2 s−1), estimated nitrate-specific growth rate as a function of dissolved iron concentration can be described by a Monod relationship, yielding a half-saturation constant with respect to growth of 0.45 nM dissolved iron. This value is relatively high compared to reported estimates for other Antarctic phytoplankton. Our results suggest that seasonal changes in the availability of both iron and light play critical roles in limiting the growth and biomass of colonial Phaeocystis antarctica in the Ross Sea polynya.  相似文献   

19.
Trigonella foenum graecum seed powder (TSP) and sodium orthovanadate (SOV) have been reported to have antidiabetic effects. However, SOV exerts hypoglycemic effects at relatively high doses with several toxic effects. We used low doses of vanadate in combination with TSP and evaluated their antidiabetic effects on antioxidant enzymes and membrane-linked functions in diabetic rat brains. In rats, diabetes was induced by alloxan monohydrate (15 mg/100 g body wt.) and they were treated with 2 IU insulin, 0.6 mg/ml SOV, 5% TSP and a combination of 0.2 mg/ml SOV with 5% TSP for 21 days. Blood glucose levels, activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), Na+/K+ ATPase, membrane lipid peroxidation and fluidity were determined in different fractions of whole brain after 21 days of treatment. Diabetic rats showed high blood glucose (P < 0.001), decreased activities of SOD, catalase and Na+/K+ ATPase (P < 0.01,P < 0.001 andP < 0.01), increased levels of GPx and MDA (P < 0.01 andP < 0.001) and decreased membrane fluidity (P < 0.01). Treatment with different antidiabetic compounds restored the above-altered parameters. Combined dose ofTrigonella and vanadate was found to be the most effective treatment in normalizing these alterations. Lower doses of vanadate could be used in combination with TSP to effectively counter diabetic alterations without any toxic effects.  相似文献   

20.
Greenup  A. L.  Bradford  M. A.  McNamara  N. P.  Ineson  P.  Lee  J. A. 《Plant and Soil》2000,227(1-2):265-272
Vegetation composition was found to be an important factor controlling CH4 emission from an ombrotrophic peatland in the UK, with significantly greater (P < 0.01) CH4 released from areas containing both Eriophorum vaginatumL. and Sphagnum, than from similar areas without E. vaginatum. Positive correlations were observed between the amount of E. vaginatum and CH4 emission, with the best predictor of flux being the amount of below-ground biomass of this species (r 2 = 0.93). A cutting experiment revealed that there was no significant difference (P > 0.05) in CH4 flux between plots with E. vaginatum stems cut above the water table and plots with intact vegetation, yet there was a 56% mean reduction in CH4 efflux where stems were cut below the water table (P < 0.05). The effect of E. vaginatum on CH4 release was mimicked by the presence of inert glass tubes. These findings suggest that the main short-term role of E. vaginatum in the ecosystem is simply as a conduit for CH4 release. The longer-term importance of E. vaginatum in controlling CH4 fluxes through C substrate input was suggested by the positive correlation between the night-time CO2 and CH4 fluxes (r 2 = 0.70), which only occurred when the vegetation was not senescent. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号