首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial Metabolism of Quinoline by Comamonas sp.   总被引:1,自引:0,他引:1  
An aerobic bacterial strain which can use quinoline as the sole carbon and energy source has been isolated from activated sludge and identified as Comamonas sp. The microbial metabolism of quinoline by this strain has been investigated. A pH 8 and a temperature of 30 °C were the optimum degradation conditions of quinoline. Five intermediates including 2-oxo-1,2-dihydroquinoline, 5-hydroxy-6-(2-carboxyethenyl)-1H-2-pyridone, 6-hydroxy-2-oxo-1,2-dihydroquinoline, 5,6-dihydroxy-2-oxo-1,2-dihydroquinoline, and 8-hydroxy-2-oxo-1,2-dihydroquinoline were found during quinoline biodegradation. The presence of these intermediates suggested that at least two pathways were involved for quinoline degradation by Comamonas sp. and a reasonable degradation route was proposed to account for the intermediates observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Two strains, using 6-hydroxyquinoline as sole source of energy, carbon and nitrogen, have been isolated. These bacteria, designated 31/1 Fa1 and 31/2 A1, are also able to degrade quinoline. According to their physiological properties strain 31/1 Fa1 has been identified as Pseudomonas diminuta and strain 31/2 A1 as Bacillus circulans. 6-Hydroxy-2-oxo-1,2-dihydroquinoline was found as intermediate in the degradation of 6-hydroxyquinoline and quinoline. 2-Oxo-1,2-dihydroquinoline was the first metabolite in the degradation of quinoline.  相似文献   

3.
Metabolism of dibenzothiophene by a Beijerinckia species.   总被引:9,自引:8,他引:1       下载免费PDF全文
Beijerinckia B8/36 when grown with succinate in the presence of dibenzothiophene, accumulated (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene and dibenzothiophene-5-oxide in the culture medium. Each metabolite was isolated in crystalline form and characterized by a variety of chemical techniques, cis-Naphthalene dihydrodiol dehydrogenase, isolated from Pseudomonas putida, oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene to a compound that was tentatively identified as 1,2-dihydroxydibenzothiophene. The same product was formed when crude cell extracts of the parent strain of Beijerinckia oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene under anaerobic conditions. Further metabolism of 1,2-dihydroxydibenzothiophene by heat-treated cell extracts led to the formation of 4[2-(3-hydroxy)-thionaphthenyl]-2-oxo-3-butenoic acid. The latter compound was metabolized by crude cell extracts to 3-hydroxy-2-formylthionaphthene. Further degradation of this metabolite was not observed.  相似文献   

4.
Metabolism of dibenzothiophene by a Beijerinckia species   总被引:9,自引:0,他引:9  
Beijerinckia B8/36 when grown with succinate in the presence of dibenzothiophene, accumulated (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene and dibenzothiophene-5-oxide in the culture medium. Each metabolite was isolated in crystalline form and characterized by a variety of chemical techniques, cis-Naphthalene dihydrodiol dehydrogenase, isolated from Pseudomonas putida, oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene to a compound that was tentatively identified as 1,2-dihydroxydibenzothiophene. The same product was formed when crude cell extracts of the parent strain of Beijerinckia oxidized (+)-cis-1,2-dihydroxy-1,2-dihydrodibenzothiophene under anaerobic conditions. Further metabolism of 1,2-dihydroxydibenzothiophene by heat-treated cell extracts led to the formation of 4[2-(3-hydroxy)-thionaphthenyl]-2-oxo-3-butenoic acid. The latter compound was metabolized by crude cell extracts to 3-hydroxy-2-formylthionaphthene. Further degradation of this metabolite was not observed.  相似文献   

5.
From soil enrichment cultures four strains, using quinoline-4-carboxylic acid as sole source of energy and carbon, have been isolated. According to their physiological properties these bacteria have been identified as Microbacterium sp. designated H2, as Agrobacterium sp. designated 1b and Pimelobacter simplex designated 4B and 5B. Metabolites of the degradation pathway of quinoline-4-carboxylic acid have been isolated and identified. With Pimelobacter simplex 4B and 5B 2-oxo-1,2-dihydroquinoline-4-carboxylic acid and 8-hydroxycoumarin-4-carboxylic acid were isolated. The Agrobacterium strain accumulated 2-oxo-1,2-dihydroquinoline-4-carboxylic acid and 2-oxo-1,2,3,4-tetrahydroquinoline-4-carboxylic acid in the media during growth; with Microbacterium sp. H2 we only found 8-hydroxycoumarin-4-carboxylic acid. With mutants of Microbacterium sp. H2 which were induced with N-methyl-N'-nitro-N-nitrosoguanidine we found 2-oxo-1,2-dihydroquinoline-4-carboxylic acid, 8-hydroxy-coumarin-4-carboxylic acid and 2,3-dihydroxyphenyl-succinic acid.  相似文献   

6.
Quinoline oxidoreductase from Rhodococcus spec. B1 was purified 39-fold to apparent homogeneity in a 5-step procedure with a recovery of 26%. The Mr of the native enzyme as determined by gel chromatography was 300,000. SDS polyacrylamide gel electrophoresis of the enzyme revealed 3 protein bands corresponding to Mr 82,000, 32,000, and 18,000. The enzyme contains 1.3 atoms of molybdenum, 8 atoms of iron, 8 atoms of acid-labile sulphur, 2 molecules of FAD and 2 molecules of molybdopterin cytosine dinucleotide. Cyanide, 4-hydroxymercuribenzoate and methanol were effective as inhibitors. The amino-terminal protein sequences of the 3 subunits of quinoline oxidoreductase from Rhodococcus B1 compared to those of quinoline oxidoreductase from Pseudomonas putida 86 revealed no difference among 71 amino acids examined.  相似文献   

7.
The soil bacterium Pseudomonas putida 86 uses quinoline as a sole source of carbon and energy. Quinoline 2-oxidoreductase (Qor) catalyzes the first metabolic step converting quinoline to 2-oxo-1,2-dihydroquinoline. Qor is a member of the molybdenum hydroxylases. The molybdenum ion is coordinated by two ene-dithiolate sulfur atoms, two oxo-ligands, and a catalytically crucial sulfido-ligand, whose position in the active site was controversial. The 1.8 A resolution crystal structure of Qor indicates that the sulfido-ligand occupies the equatorial position at the molybdenum ion. The structural comparison of Qor with the allopurinol-inhibited xanthine dehydrogenase from Rhodobacter capsulatus allows direct insight into the mechanism of substrate recognition and the identification of putative catalytic residues. The active site protein variants QorE743V and QorE743D were analyzed to assess the catalytic role of E743.  相似文献   

8.
A bacterial strain was isolated with the ability to use 1H-4-oxoquinoline as the sole source of carbon, nitrogen and energy. On the basis of its physiological properties, this isolate was classified as Pseudomonas putida. 1H-3-Hydroxy-4-oxoquinoline, N-formylanthranilic acid, anthranilic acid and catechol were identified as intermediates in the degradation pathway. The latter was further degraded by ortho-cleavage. The enzymatic conversion of 1H-4-oxoquinoline into 1H-3-hydroxy-4-oxoquinoline requires oxygen and NADH. Experiments with 18O2 showed that the oxygen consumed in this enzymatic reaction is derived from the atmosphere.  相似文献   

9.
Microbial degradation of quinoline and methylquinolines.   总被引:6,自引:4,他引:2       下载免费PDF全文
Several bacterial cultures were isolated that are able to degrade quinoline and to transform or to degrade methylquinolines. The degradation of quinoline by strains of Pseudomonas aeruginosa QP and P. putida QP produced hydroxyquinolines, a transient pink compound, and other undetermined products. The quinoline-degrading strains of P. aeruginosa QP and P. putida QP hydroxylated a limited number of methylquinolines but could not degrade them, nor could they transform 2-methylquinoline, isoquinoline, or pyridine. Another pseudomonad, Pseudomonas sp. strain MQP, was isolated that could degrade 2-methylquinoline. P. aeruginosa QP was able to degrade or to transform quinoline and a few methylquinolines in a complex heterocyclic nitrogen-containing fraction of a shale oil. All of the quinoline- and methylquinoline-degrading strains have multiple plasmids including a common 250-kilobase plasmid. The 225-, 250-, and 320-kilobase plasmids of the P. aeruginosa QP strain all contained genes involved in quinoline metabolism.  相似文献   

10.
Microbial transformation of quinoline by a Pseudomonas sp.   总被引:7,自引:5,他引:2       下载免费PDF全文
A Pseudomonas sp. isolated from sewage by enrichment culture on quinoline metabolized this substrate by a novel pathway involving 8-hydroxycoumarin. During early growth of the organism on quinoline, 2-hydroxyquinoline accumulated as the intermediate; 8-hydroxycoumarin accumulated as the major metabolite on further incubation. 2,8-Dihydroxyquinoline and 2,3-dihydroxyphenylpropionic acid were identified as the other intermediates. Inhibition of quinoline metabolism by 1 mM sodium arsenite led to the accumulation of pyruvate, whereas inhibition by 5 mM arsenite resulted in the accumulation of 2-hydroxyquinoline as the major metabolite and 2,8-dihydroxyquinoline as the minor metabolite. Coumarin was not utilized as a growth substrate by this bacterium, but quinoline-grown cells converted it to 2-hydroxyphenylpropionic acid, which was not further metabolized. Quinoline, 2-hydroxyquinoline, 8-hydroxycoumarin, and 2,3-dihydroxyphenylpropionic acid were rapidly oxidized by quinoline-adapted cells, whereas 2,8-dihydroxyquinoline was oxidized very slowly. Quinoline catabolism in this Pseudomonas sp. is therefore initiated by hydroxylation(s) of the molecule followed by cleavage of the pyridine ring to yield 8-hydroxycoumarin, which is further metabolized via 2,3-dihydroxyphenylpropionic acid.  相似文献   

11.
Bacteria have been isolated with the ability to use 3-chloroquinoline-8-carboxylic acid as sole source of carbon and energy. According to their physiological properties, these bacteria have been classified as Pseudomonas spec. Two metabolites of the degradation pathway have been isolated and identified. The first metabolite was 3-(3-carboxy-3-oxopropenyl)-2-hydroxy-5-chloropyridine, the meta-cleavage product of 3-chloro-7,8-dihydroxyquinoline. The second metabolite, 5-chloro-2-hydroxynicotinic acid, was not further metabolized by this organisms.  相似文献   

12.
From soil enrichment culture of quinoline-4-carboxylic acid-degrading bacterium was isolated. The organism was identified as Microbacterium sp. Mutants were induced with N-methyl-N'-nitro-N-nitrosoguanidine. One mutant accumulated successively two metabolites which were identified as 2-oxo-1,2-dihydro-quinoline-4-carboxylic acid and 8-hydroxy-2-oxo-2H-1-benzopyran-4-carboxylic acid.  相似文献   

13.
A continuous evolutionary pressure of the biotic and abiotic world has led to the development of a diversity of microbial pathways to degrade and biomineralize aromatic and heteroaromatic compounds. The heterogeneity of compounds metabolized by bacteria like Pseudomonas putida indicates the large variety of enzymes necessary to catalyse the required reactions. Quinoline, a N-heterocyclic aromatic compound, can be degraded by microbes along different pathways. For P. putida 86 quinoline degradation by the 8-hydroxycoumarin pathway has been described and several intermediates were identified. To select enzymes catalysing the later stages of the 8-hydroxycoumarin pathway P. putida 86 was grown with quinoline. The FMN-containing enzyme xenobiotic reductase A (XenA) was isolated and analysed for its reactivity with intermediates of the 8-hydroxycoumarin pathway. XenA catalyses the NADPH-dependent reduction of 8-hydroxycoumarin and coumarin to produce 8-hydroxy-3,4-dihydrocoumarin and 3,4-dihydrocoumarin, respectively. Crystallographic analysis of XenA alone and in complex with the two substrates revealed insights into the mechanism. XenA shows a dimeric arrangement of two (beta/alpha)(8) barrel domains each binding one FMN cofactor. High resolution crystal structures of complexes with 8-hydroxycoumarin and coumarin show different modes of binding for these molecules in the active site. While coumarin is ideally positioned for hydride transfer from N-5 of the isoalloxazine ring to C-4 of coumarin, 8-hydroxycoumarin forms a non-productive complex with oxidised XenA. Orientation of 8-hydroxycoumarin in the active site appears to be dependent on the electronic state of the flavin. We postulate that XenA catalyses the last step of the 8-hydroxycoumarin pathway before the heterocyclic ring is hydrolysed to yield 3-(2,3-dihydroxyphenyl)-propionic acid. As XenA is also found in P. putida strains unable to degrade quinoline, it appears to have more than one physiological function and is an example of how enzymes with low substrate specificity can help to explain the variety of degradation pathways possible.  相似文献   

14.
From sewage and soil isoquinoline-degrading organisms were enriched. Two strains could be isolated which were able to utilize isoquinoline as sole carbon source. The bacteria were tentatively identified as Alcaligenes faecalis and Pseudomonas diminuta with respect to their morphological and physiological characters. When growing on isoquinoline both strains excrete a metabolite into the medium which was identified as 1-oxo-1,2-dihydroisoquinoline. Alcaligenes faecalis was cultivated in continuous culture on 1-oxo-1,2-dihydroisoquinoline to improve growth on isoquinoline and degradative activity.  相似文献   

15.
Carbazole is a nitrogen-containing heteroaromatic compound that occurs as a widespread and mutagenic environmental pollutant. The 2'aminobiphenyl-2,3-diol 1,2-dioxygenase involved in carbazole degradation was purified to near electrophoretic homogeneity from Pseudomonas sp. LD2 by a combination of ion-exchange chromatography, ammonium sulfate precipitation, and hydrophobic interaction chromatography. This purification was challenging due to the great instability of the enzyme under many standard conditions. The enzyme was also purified to electrophoretic homogeneity from recombinant Escherichia coli expressing the 2'aminobiphenyl-2,3-diol 1,2-dioxygenase-encoding gene cloned from Pseudomonas sp. LD2. The molecular mass of the native enzyme was determined by gel filtration to be 70 kDa. The subunit molecular masses were determined to be 25 and 8 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the dioxygenase is an [alpha2beta2] heterotetramer. The optimal temperature and pH for the enzymatic production of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) from 2,3-dihydroxybiphenyl were determined to be 40 degrees C and 8.0, respectively. The maximum observed specific activity on 2,3-dihydroxybiphenyl was 48.1 mmol HOPDA min(-1) mg(-1). This indicated a maximum observed turnover rate of 360,000 molecules HOPDA enz(-1) s(-1). The K'm inhibition constant Ks and Vmax on 2,3 dihydroxybiphenyl were determined to be 5 microM, 37 microM, and 44 mmol min(-1) mg(-1), respectively. These results show that 2'aminobiphenyl-2,3-diol 1,2-dioxygenase is a meta-cleavage enzyme related to the 4,5-protocatechuate dioxygenase family, with comparable purification challenges posed by intrinsic enzyme instability.  相似文献   

16.
Microbial degradation of quinoline and methylquinolines   总被引:12,自引:0,他引:12  
Several bacterial cultures were isolated that are able to degrade quinoline and to transform or to degrade methylquinolines. The degradation of quinoline by strains of Pseudomonas aeruginosa QP and P. putida QP produced hydroxyquinolines, a transient pink compound, and other undetermined products. The quinoline-degrading strains of P. aeruginosa QP and P. putida QP hydroxylated a limited number of methylquinolines but could not degrade them, nor could they transform 2-methylquinoline, isoquinoline, or pyridine. Another pseudomonad, Pseudomonas sp. strain MQP, was isolated that could degrade 2-methylquinoline. P. aeruginosa QP was able to degrade or to transform quinoline and a few methylquinolines in a complex heterocyclic nitrogen-containing fraction of a shale oil. All of the quinoline- and methylquinoline-degrading strains have multiple plasmids including a common 250-kilobase plasmid. The 225-, 250-, and 320-kilobase plasmids of the P. aeruginosa QP strain all contained genes involved in quinoline metabolism.  相似文献   

17.
The TOL plasmid-encoded enzymes of the methyl-benzoate pathway in Pseudomonas putida mt-2 cometabolized 3-trifluoromethyl (TFM)-benzoate. Two products, 3-TFM-1,2-dihydroxy-2-hydrobenzoate (3-TFM-DHB) and 2-hydroxy-6-oxo-7,7,7-trifluoro-hepta-2,4-dienoate (7-TFHOD) were identified chemically and by spectroscopic properties. TFM-substituted analogues of the metabolites of the methylbenzoate pathway were generally converted at drastically reduced rates. The catechol-2,3-dioxygenase from Pseudomonas putida showed moderate turnover rates with 3-TFM-catechol. The catechol-1,2-dioxygenase of Rhodococcus rubropertinctus N657 was totally inhibited by 3-TFM-catechol and did not cleave this substrate. Hammett-type analysis showed the catechol-1,2-dioxygenase reaction to be strongly dependent on the electronic nature of the substituents. Electronegative substituents strongly inhibited catechol cleavage. The catechol-2,3-dioxygenase reaction, however, was only moderately sensitive to electronegative substituents.  相似文献   

18.
Microbial transformation of quinoline by a Pseudomonas sp   总被引:1,自引:0,他引:1  
A Pseudomonas sp. isolated from sewage by enrichment culture on quinoline metabolized this substrate by a novel pathway involving 8-hydroxycoumarin. During early growth of the organism on quinoline, 2-hydroxyquinoline accumulated as the intermediate; 8-hydroxycoumarin accumulated as the major metabolite on further incubation. 2,8-Dihydroxyquinoline and 2,3-dihydroxyphenylpropionic acid were identified as the other intermediates. Inhibition of quinoline metabolism by 1 mM sodium arsenite led to the accumulation of pyruvate, whereas inhibition by 5 mM arsenite resulted in the accumulation of 2-hydroxyquinoline as the major metabolite and 2,8-dihydroxyquinoline as the minor metabolite. Coumarin was not utilized as a growth substrate by this bacterium, but quinoline-grown cells converted it to 2-hydroxyphenylpropionic acid, which was not further metabolized. Quinoline, 2-hydroxyquinoline, 8-hydroxycoumarin, and 2,3-dihydroxyphenylpropionic acid were rapidly oxidized by quinoline-adapted cells, whereas 2,8-dihydroxyquinoline was oxidized very slowly. Quinoline catabolism in this Pseudomonas sp. is therefore initiated by hydroxylation(s) of the molecule followed by cleavage of the pyridine ring to yield 8-hydroxycoumarin, which is further metabolized via 2,3-dihydroxyphenylpropionic acid.  相似文献   

19.
A key intermediate, (3R-cis)-1,3,4,5-tetrahydro-3-hydroxy-4-(4-methoxyphenyl)-6-(trifluorome thyl)- 2H-1-benzazepin-2-one (compound II or SQ32191), with high optical purity was made by the stereoselective microbial reduction of the parent ketone 1. Several strains of bacterial and yeast cultures were screened for the ability to catalyse the stereoselective reduction of 4,5-dihydro-4-(4-methoxyphenyl)-6-(trifluoromethyl)-1H-1-benzazepin++ +-2,3-dione [compound I or SQ32425]. Microorganisms from the genera Nocardia, Rhodococcus, Alkaligenes, Corynebacterium, Arthrobacter, Hansenula, and Candida reduced compound I to compound II with 60-70% conversion yield. In contrast, microorganisms from the genera Pseudomonas and Acinetobacter reduced compound I stereospecifically to (trans)-1,3,4,5-tetrahydro-3-hydroxy-4-(4-methoxyphenyl)-6-(trifluoromet hyl-2H- 1-benzazepin-2-one (compound III or SQ32408). Among various cultures evaluated, N. salmonicolor SC6310 effectively catalysed the transformation of compound I to compound II with 96% conversion yield at 1.5-2.0 gl-1 concentration. Compound II was isolated and identified by NMR analysis, mass spectrometry, and comparison to an authentic sample. Preparative scale fermentation process and transformation process were developed using cell suspensions of N. salmonicolor SC6310 to catalyse the transformation of compound I to compound II. The isolated compound II had a melting point of 222 degrees C (reference 221-223 degrees C), optical rotation of +130.4 (reference +128 degrees C), and optical purity of greater than 99.9% as analyzed by NMR and chiral HPLC.  相似文献   

20.
O P Shukla 《Microbios》1989,59(238):47-63
A Gram-negative, oxidase positive, polar flagellated rod, characterised as Pseudomonas stutzeri, has been isolated from sewage by enrichment culture on quinoline. The organism utilizes quinoline as the sole source of carbon, nitrogen and energy, and liberates UV absorbing and phenolic metabolites during its growth on quinoline. 2-Hydroxyquinoline, 2,8-dihydroxyquinoline, 8-hydroxycoumarin and 2,3-dihydroxyphenylpropionic acid have been isolated as the transformation products of quinoline by this bacterium. Quinoline, 2-hydroxyquinoline, and 8-hydroxycoumarin were rapidly oxidised by quinoline-adapted cells; 2,3-dihydroxyphenylpropionic acid oxidation was also demonstrated by Warburg respirometry but 2,8-dihydroxyquinoline was not oxidised. A pathway for quinoline catabolism by P. stutzeri and the probable mechanisms for formation of 8-hydroxycoumarin are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号