首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agrin, an extracellular matrix-associated protein extracted from synapse-rich tissues, induces the accumulation of acetylcholine receptors (AChRs) and other synaptic components into discrete patches on cultured myotubes. The appearance of agrin-like molecules at neuromuscular junctions suggests that it may direct synaptic organization in vivo. In the present study we examined the role of extracellular matrix components in agrin-induced differentiation. We used immunohistochemical techniques to visualize the spatial and temporal distribution of laminin, a heparan sulfate proteoglycan (HSPG), fibronectin, and type IV collagen on cultured chick myotubes during agrin-induced aggregation of AChRs. Myotubes displayed significant amounts of laminin and HSPG, lesser amounts of type IV collagen, and little, if any, fibronectin. Agrin treatment caused cell surface laminin and HSPG to patch, while collagen and fibronectin distributions were generally unaffected. Many of the agrin-induced laminin and HSPG patches colocalized with AChR patches, raising the possibility of a causal relationship between matrix patching and AChR accumulations. However, patching of AChRs (complete within a few hours) preceded that of laminin or HSPG (not complete until 15-20 h), making it unlikely that matrix accumulations initiate AChR patching at agrin-induced sites. Conversely, when AChR patching was blocked by treatment with anti-AChR antibody mAb 35, agrin was still able to effect patching of laminin and HSPG. Taken together, these findings suggest that agrin-induced accumulations of AChR and laminin/HSPG are not mechanistically linked.  相似文献   

2.
We investigated the ability of extracellular matrix (ECM) proteins to modulate the response of endothelial cells to both promoters and inhibitors of angiogenesis. Using human dermal microvascular endothelial cells (HDMEC), we found that cells demonstrated different adhesive properties and proliferative responses to the growth factor VEGF depending upon which ECM protein with which they were in contact, with fibronectin having the most impact on VEGF-induced HDMEC proliferation and survival. More importantly, we observed that ECM could modulate the ability of the angiogenic inhibitor endostatin to prevent endothelial cell proliferation, survival and migration. We observed that growth on vitronectin or fibronectin impaired the ability of endostatin to inhibit VEGF-induced HDMEC proliferation to the greatest extent as determined by BrdU incorporation. We found that, following growth on collagen I or collagen IV, endostatin only inhibited VEGF-induced HDMEC proliferation at the highest dose tested (2500 ng/ml). In a similar manner, we observed that growth on ECM proteins modulated the ability of endostatin to induce endothelial cell apoptosis, with growth on collagen I, fibronectin and collagen IV impairing endostatin-induced apoptosis. Interestingly, endostatin inhibited VEGF-induced HDMEC migration following culture on collagen I, collagen IV and laminin, while migration was not inhibited by endostatin following HDMEC culture on other matrices including vitronectin, fibronectin and tenascin-C. These results suggest that different matrix proteins may affect different mechanisms of endostatin inhibition of angiogenesis. Taken together, our results suggest that the ECM may have a profound impact on the ability of angiostatic molecules such as endostatin to inhibit angiogenesis and thus may have impact on the clinical efficacy of such inhibitors.  相似文献   

3.
Changes in epithelial substrate have been related to the cellular capacity for proliferation and to changes in cellular behavior. The effect of TGF beta 1 on the expression of the basement membrane genes, fibronectin, laminin B1, and collagen alpha 1 (IV), was examined. Northern analysis revealed that treatment of normal human epidermal keratinocytes with 100 pM TGF beta 1 increased the expression of each extracellular matrix (ECM) gene within 4 h of treatment. Maximal induction was reached within 24 h after treatment. The induction of ECM mRNA expression was dose dependent and was observed at doses as low as 1-3 pM TGF beta 1. Incremental doses of TGF beta 1 also increased cellular levels of fibronectin protein in undifferentiated keratinocytes and resulted in increased secretion of fibronectin. Squamous-differentiated cultures of keratinocytes expressed lower levels of the extracellular matrix RNAs than did undifferentiated cells. Treatment of these differentiated cells with TGF beta 1 induced the expression of fibronectin mRNA to levels seen in TGF beta-treated, undifferentiated keratinocytes but only marginally increased the expression of collagen alpha 1 (IV) and laminin B1 mRNA. The increased fibronectin mRNA expression in the differentiated keratinocytes was also reflected by increased accumulation of cellular and secreted fibronectin protein. The inclusion of cycloheximide in the protocol indicated that TGF beta induction of collagen alpha 1 (IV) mRNA was signaled by proteins already present in the cells but that TGF beta required the synthesis of a protein(s) to fully induce expression of fibronectin and laminin B1 mRNA. The differential regulation of these genes in differentiated cells may be important to TGF beta action in regulating reepithelialization.  相似文献   

4.
The basal lamina components laminin, heparan sulfate proteoglycan (HSPG), and type IV collagen were synthesized and codeposited in the extracellular matrix (ECM) by a cultured human cell line from gestational choriocarcinoma (JAR). Laminin and HSPG formed a noncovalent complex detected by the coimmunoprecipitation of HSPG with laminin from cell lysates and culture media. The complex was stable in the cell lysis buffer that contained detergents (1% Triton X-100, 0.5% deoxycholate, and 0.1% sodium dodecyl sulfate) and sodium chloride (from 0.15 to 1.0 M), but was dissociated by adding 8 M urea to the detergent lysates. Even though JAR cells produced roughly equal amounts of HSPG and chondroitin sulfate proteoglycan, only HSPG complexed with laminin, suggesting a specific interaction between these basal lamina components. The laminin-HSPG complex was deposited and retained in the ECM. This was shown biochemically by isolating an enriched fraction of ECM from JAR cells cultured on native type I collagen gels. At steady state, more than half (52%) of the laminin-HSPG in the culture was recovered in the ECM fraction, in contrast to 16% of the total laminin and 29% of the total type IV collagen, which were secreted to a greater extent than laminin-HSPG into the culture medium. The retention of the laminin-HSPG complex in the ECM suggests that it may participate in the assembly of the basal lamina-like extracellular matrix deposited by JAR cultures. Omission of ascorbate from the culture medium abolished the ECM deposition of type IV collagen but had little effect on the deposition of laminin or laminin-HSPG. This demonstrates that the stable deposition of laminin-HSPG and laminin in the collagen-based choriocarcinoma cultures is not dependent on an assembled network of type IV collagen.  相似文献   

5.
We examined the synthesis and deposition of extracellular matrix (ECM) components in cultures of Sertoli cells and testicular peritubular cells maintained alone or in contact with each other. Levels of soluble ECM components produced by populations of isolated Sertoli cells and testicular peritubular cells were determined quantitatively by competitive enzyme-linked immunoabsorbent assays, using antibodies shown to react specifically with Type I collagen, Type IV collagen, laminin, or fibronectin. Peritubular cells in monoculture released into the medium fibronectin (432 to 560 ng/microgram cell DNA per 48 h), Type I collagen (223 to 276 ng/microgram cell DNA per 48 h), and Type IV collagen (350 to 436 ng/microgram cell DNA per 48 h) during the initial six days of culture in serum-free medium. In contrast, Sertoli cells in monoculture released into the medium Type IV collagen (322 to 419 ng/microgram cell DNA per 48 h) but did not form detectable amounts of Type I collagen or fibronectin during the initial six days of culture. Neither cell type produced detectable quantities of soluble laminin. Immunocytochemical localization investigations demonstrated that peritubular cells in monoculture were positive for fibronectin, Type I collagen, and Type IV collagen but negative for laminin. In all monocultures most of the ECM components were intracellular, with scant deposition as extracellular fibrils. Sertoli cells were positive immunocytochemically for Type IV collagen and laminin but negative for fibronectin and Type I collagen. Co-cultures of peritubular cells and Sertoli cells resulted in interactions that quantitatively altered levels of soluble ECM components present in the medium. This was correlated with an increased deposition of ECM components in extracellular fibrils. The data correlated with an increased deposition of ECM components in extracellular fibrils. The data presented here we interpret to indicate that the two cell types in co-culture act cooperatively in the formation and deposition of ECM components. Results are discussed with respect to the nature of interactions between mesenchymal peritubular cell precursors and adjacent epithelial Sertoli cell precursors in the formation of the basal lamina of the seminiferous tubule.  相似文献   

6.
The heart-forming regions of the early embryo are composed of splanchnic mesoderm, endoderm, and the associated ECM. The ECM of the heart-forming regions in stage 7-9 chicken embryos was examined using immunofluorescence. Affinity purified antibodies to chicken collagens type I and IV, chicken fibronectin, and mouse laminin were used as probes. We report that (1) the basement membrane of the endoderm contains immunoreactive laminin and collagen IV; (2) the nascent basement membrane of the heart splanchnic mesoderm contains immunoreactive laminin, but not type IV collagen, and (3) the prominent ECM between the splanchnic mesoderm and the endoderm (the primitive-heart ECM) contains collagen IV, collagen I, fibronectin, but not laminin. In addition, we describe microscopic observations on the spatial relationship of cardiogenic cells to the primitive-heart ECM and the endodermal basement membrane.  相似文献   

7.
The primary mesenchyme cells (PMCs) were separated from the mesenchyme blastulae of Pseudocentrotus depressus using differential adhesiveness of these cells to plastic Petri dishes. These cells were incubated in various artificial extracellular matrices (ECMs) including horse serum plasma fibronectin, mouse EHS sarcoma laminin, mouse EHS sarcoma type IV collagen, and porcine skin dermatan sulfate. The cell behavior was monitored by a time-lapse videomicrograph and analysed with a microcomputer. The ultrastructure of the artificial ECM was examined by transmission electron microscopy (TEM), while the ultrastructure of the PMCs was examined by scanning electron microscopy (SEM). The PMCs did not migrate in type IV collagen gel, laminin or dermatan sulfate matrix either with or without collagen gel, whereas PMCs in the matrix which was composed of fibronectin and collagen gel migrated considerably. However, the most active and extensive PMC migration was seen in the matrix which contained dermatan sulfate in addition to fibronectin and collagen gel. This PMC migration involved an increase not only of migration speed but also of proportion of migration-promoted cells. These results support the hypothesis that the mechanism of PMC migration involves fibronectin, collagen and sulfated proteoglycans which contain dermatan sulfate.  相似文献   

8.
We have studied presynaptic and postsynaptic differentiation at neuromuscular junctions in vitro by examining the localization of synapse-specific proteins. In nerve–muscle co-cultures, the synaptic vesicle protein synaptotagmin (p65) accumulated in the nerve terminal overlying myotubes in association with postsynaptic cluster of acetylcholine receptors (AChRs), heparan sulfate proteoglycan (HSPG), laminin, and agrin. Inhibition of collagen synthesis with cis-hydroxyproline decreased the nerve-induced clustering of AChRs in muscle cells as well as that caused by exogenous agrin in muscle-only cultures. Moreover, accumulation of HSPG at contacts was also inhibited in cis-hydroxyproline–treated cultures. However, accumulation of p65 in nerve fibers at sites of muscle contact, a sign of presynaptic differentiation, was unaffected by cis-hydroxyproline treatment. In addition, even in cis-hydroxyproline–inhibited cultures, agrin was evident at more than 90% of contacts showing accumulation of p65 in the nerve terminal. Therefore, a mechanism exists to maintain agrin concentrations at nerve–muscle contacts, even when at least some extracellular matrix (ECM) proteins are disrupted. Our results suggest that HSPG is not required for the induction of nerve terminal differentiation but are consistent with the idea that HSPG or other ECM proteins are important in both nerve-and agrin-induced AChR clustering. In particular, agrin accumulation at sites of nerve–muscle contact is not sufficient to induce AChR clusters when the ECM at these contacts is disrupted. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Summary The influence of the extracellular matrix (ECM) glycoproteins collagen, IV laminin (LN), and fibronectin (FN) on the in vitro migration of epithelial cells was studied using the ECM migration track method (4) with preparations immunostained for LN and FN. The locomotion of rat liver epithelial cells stimulated to migrate in serum-free medium by epidermal growth factor (EGF) in the presence of the protein per cm2. Neither LN nor collagen IV decreased the number of migrating cells, indicating that the inhibition is a specific effect of fibronectin. The data also indicate that the FN-mediated inhibition of migration is an additional and not alternative mechanism to the well-established contact inhibition of locomotion (1) which also occurs in liver epithelial cell cultures. The system is being used for a further analysis of the factors that influence migration of normal and neoplastic epithelial cells and the biochemical mechanisms underlying the migration reaction. Editor’s Statement This paper describes new and heretofore neglected aspects of EGF and fibronectin action on the migratory behavior of cultured cells. Gordon H. Sato  相似文献   

10.
Regulation by the extracellular matrix (ECM) of migration, motility, and adhesion of olfactory neurons and their precursors was studied in vitro. Neuronal cells of the embryonic olfactory epithelium (OE), which undergo extensive migration in the central nervous system during normal development, were shown to be highly migratory in culture as well. Migration of OE neuronal cells was strongly dependent on substratum- bound ECM molecules, being specifically stimulated and guided by laminin (or the laminin-related molecule merosin) in preference to fibronectin, type I collagen, or type IV collagen. Motility of OE neuronal cells, examined by time-lapse video microscopy, was high on laminin-containing substrata, but negligible on fibronectin substrata. Quantitative assays of adhesion of OE neuronal cells to substrata treated with different ECM molecules demonstrated no correlation, either positive or negative, between the migratory preferences of cells and the strength of cell-substratum adhesion. Moreover, measurements of cell adhesion to substrata containing combinations of ECM proteins revealed that laminin and merosin are anti-adhesive for OE neuronal cells, i.e., cause these cells to adhere poorly to substrata that would otherwise be strongly adhesive. The evidence suggests that the anti- adhesive effect of laminin is not the result of interactions between laminin and other ECM molecules, but rather an effect of laminin on cells, which alters the way in which cells adhere. Consistent with this view, laminin was found to interfere strongly with the formation of focal contacts by OE neuronal cells.  相似文献   

11.
Type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin were localized in the basement membrane (BM) of chick retinal pigment epithelium (RPE) during various stages of eye development. At different times over a 4-17 day period after fertilization, chick embryo eyes were dissected, fixed in periodate-lysine-paraformaldehyde, and 6 micron frozen sections through the central regions of the eye were prepared. Sections were postfixed in -20 degrees C methanol and stained immediately by indirect immunofluorescence using sheep anti-mouse laminin, sheep antimouse type IV collagen, rabbit anti-mouse heparan sulfate proteoglycan, and mouse monoclonal anti-porcine plasma fibronectin. Fluorescein-labeled F(ab')2 fragments of the appropriate immunoglobulins (IgGs) were used as secondary antibodies. Laminin could be readily demonstrated in the BM of the RPE during all stages of development. The staining for type IV collagen, fibronectin, and heparan sulfate proteoglycan HSPG) was less intense than that for laminin, but was also localized in the BM along the basal side of the RPE. In addition to staining the BM, antiserum to HSPG, gave a diffuse labeling from day 9 onward, above the RPE extending into the region of the photoreceptors. Whereas the intensity of staining generally increased between day 4 and day 17 of development, the distribution of the different BM components did not change. Hence the presence of type IV collagen, laminin, fibronectin, and HSPG in the BM of RPE in vivo during all the stages of development investigated supports the concept that these macromolecules are important basic components of this, and other, BMs. Furthermore, these results indicate that the composition of the BM of RPE cells in vivo is similar to the BM material deposited by RPE cells in vitro (Turksen K, Aubin JE, Sodek JE, Kalnins VI: Collagen Rel Res, 4:413-426, 1984) and that the in vitro cultures can therefore serve as a useful model for studying BM formation.  相似文献   

12.
Airway remodeling, which includes increases in the extracellular matrix (ECM), is a characteristic feature of asthma and is correlated to disease severity. Rhinovirus (RV) infections are associated with increased risk of asthma development in young children and are the most common cause of asthma exacerbations. We examined whether viral infections can increase ECM deposition and whether this increased ECM modulates cell proliferation and migration. RV infection of nonasthmatic airway smooth muscle (ASM) cells significantly increased the deposition of fibronectin (40% increase, n = 12) and perlecan (80% increase, n = 14), while infection of asthmatic ASM cells significantly increased fibronectin (75% increase, n = 9) and collagen IV (15% increase, n = 9). We then treated the ASM cells with the Toll-like receptor (TLR) agonists polyinosinic:polycytidylic acid, imiquimod, and pure RV RNA and were able to show that the mechanism through which RV induced ECM deposition was via the activation of TLR3 and TLR7/8. Finally, we assessed whether the virus-induced ECM was bioactive by measuring the amount of migration and proliferation of virus-naive cells that seeded onto the ECM. Basically, ECM from asthmatic ASM cells induced twofold greater migration of virus-naive ASM cells than ECM from nonasthmatic ASM cells, and these rates of migration were further increased on RV-modulated ECM. Increased migration on the RV-modulated ECM was not due to increased cell proliferation, as RV-modulated ECM decreased the proliferation of virus-naive cells. Our results suggest that viruses may contribute to airway remodeling through increased ECM deposition, which in turn may contribute to increased ASM mass via increased cell migration.  相似文献   

13.
Production and maintenance of extracellular matrix (ECM) is an essential aspect of endothelial cell (EC) function. ECM surfaces composed of collagen type IV and laminin support an atheroprotective endothelium, while fibronectin may encourage an atheroprone endothelium through inflammation or wound repair signaling. ECs maintain this underlying structure through regulation of protein production and degradation, yet the role of cytoskeletal alignment on this regulation is unknown. To examine the regulation and production of ECM by ECs with an atheroprotective phenotype, ECs were micropatterned onto lanes, which created an elongated EC morphology similar to that seen with unidirectional fluid shear stress application. Collagen IV and fibronectin protein production were measured as were gene expression of collagen IV, fibronectin, laminin, MMP2, MMP9, TIMP1, TIMP2, and TGF-β1. ECs were also treated with TNF to simulate an injury model. Micropattern-induced elongation led to significant increases in collagen IV and fibronectin protein production, and collagen IV, laminin, and TGF-β1 gene expression, but no significant changes in the MMP or TIMP genes. TNF treatment significantly increased collagen IV gene and protein production. These results suggest that the increase in ECM synthesis in micropattern-elongated ECs is likely regulated with TGF-β1, and this increase in ECM could be relevant to the atheroprotection needed for maintenance of a healthy endothelium in vivo.  相似文献   

14.
The expression of laminin, a major constituent of endometrial cell basement membranes, is increased during differentiation of human endometrial stromal cells (decidualization). To determine whether laminin plays a role in decidualization, we studied the effects of laminin substrate on the synthesis and release of prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP-1), two major secretory proteins of decidualized stromal cells. Endometrial stromal cells were plated on laminin as well as several other extracellular matrix (ECM) proteins (types 1 and IV collagen or fibronectin) and on plastic, and cultured in media containing medroxyprogesterone acetate (MPA) and estradiol. Cells cultured on plastic or ECM proteins displayed similar morphological changes indicative of decidualization. However, the release of PRL and IGFBP-1 from cells cultured on plastic and ECM proteins (types 1 and IV collagen and fibronection) was approximately 2.1-fold and 2.8-fold greater respectively, than from cells cultured on laminin. The decrease in PRL and IGFBP-1 expression in cells cultured on laminin was not due to differences in initial cell attachment efficiency or final DNA content. In addition, laminin had no effect on the content of laminin protein or fibronectin mRNA levels, indicating that the effects of laminin on PRL and IGFBP-1 were specific. PGE2 stimulated the release of PRL and IGFBP-1 from cells cultured on laminin to levels comparable to those from cells cultured on plastic or other ECM proteins. This indicates that the decrease in PRL and IGFBP-1 release by laminin was not due to a generalized unresponsiveness. In contrast to the effects of laminin during decidualization, PRL expression was not altered by laminin in terminally differentiated decidual cells isolated at term. Our results support a role for laminin in selectively regulating PRL and IGFBP-1 gene expression during in vitro decidualization of human endometrial stromal cells. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Transduction of signals initiating motility by extracellular matrix (ECM) molecules differed depending on the type of matrix molecule and whether the ligand was in solution or bound to a substratum. Laminin, fibronectin, and type IV collagen stimulated both chemotaxis and haptotaxis of the A2058 human melanoma cell line. Peak chemotactic responses were reached at 50-200 nM for laminin, 50-100 nM for fibronectin, and 200-370 nM for type IV collagen. Checkerboard analysis of each attractant in solution demonstrated a predominantly directional (chemotactic) response, with a minor chemokinetic component. The cells also migrated in a concentration-dependent manner to insoluble step gradients of substratum-bound attractant (haptotaxis). The haptotactic responses reached maximal levels at coating concentrations of 20 nM for laminin and type IV collagen, and from 30 to 45 nM for fibronectin. Pretreatment of cells with the protein synthesis inhibitor, cycloheximide (5 micrograms/ml), resulted in a 5-30% inhibition of both chemotactic and haptotactic responses to each matrix protein, indicating that de novo protein synthesis was not required for a significant motility response. Pretreatment of cells with 50-500 micrograms/ml of synthetic peptides containing the fibronectin cell-recognition sequence GRGDS resulted in a concentration-dependent inhibition of fibronectin-mediated chemotaxis and haptotaxis (70-80% inhibition compared to control motility); negative control peptide GRGES had only a minimal effect. Neither GRGDS nor GRGES significantly inhibited motility to laminin or type IV collagen. Therefore, these results support a role for the RGD-directed integrin receptor in both types of motility response to fibronectin. After pretreatment with pertussis toxin (PT), chemotactic responses to laminin, fibronectin, and type IV collagen were distinctly different. Chemotaxis to laminin was intermediate in sensitivity; chemotaxis to fibronectin was completely insensitive; and chemotaxis to type IV collagen was profoundly inhibited by PT. In marked contrast to the inhibition of chemotaxis, the hepatotactic responses to all three ligands were unaffected by any of the tested concentrations of PT. High concentrations of cholera toxin (CT; 10 micrograms/ml) or the cAMP analogue, 8-Br-cAMP (0.5 mM), did not significantly affect chemotactic or haptotactic motility to any of the attractant proteins, ruling out the involvement of cAMP in the biochemical pathway initiating motility in these cells. The sensitivity of chemotaxis induced by laminin and type IV collagen, but not fibronectin, to PT indicates the involvement of a PT-sensitive G protein in transduction of the signals initiating motility to soluble laminin and type IV collagen.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The distribution of laminin, type IV collagen, heparan sulfate proteoglycan, and fibronectin was investigated in the rat testicular lamina propria by electron microscopic immunocytochemistry. Distinct patterns were observed for each antigen within the extracellular matrix (ECM) layers of the lamina propria. Laminin, type IV collagen, and heparan sulfate proteoglycan all localized to the seminiferous tubule basement membrane. Type IV collagen and heparan sulfate proteoglycan, but not laminin, localized to the seminiferous tubule side of the peritubular myoid cells. All four of the antigens were localized between the peritubular and lymphatic endothelial cells. Failure to localize fibronectin in the ECM layer between the Sertoli and peritubular myoid cells tends to support the concept that adult Sertoli cells do not produce this protein in vivo. Intracellular immunostaining was insufficient to allow unambiguous identification of the cellular source of any of the ECM molecules.  相似文献   

17.
Candida albicans yeasts adhered avidly to extracellular matrix (ECM) proteins, type IV collagen, laminin, and fibronectin immobilized on plastic. Type IV collagen showed an increase of adherence of 400% above control values; laminin, 300%; and fibronectin, 150%. In addition, all three (in quantities of 0.02-200 micrograms/well of a culture tray) bound yeasts in a dose-response fashion. Adherence was inhibited when the proteins were preincubated with specific antibody, except with type IV collagen. Soluble laminin or fibronectin inhibited yeast adherence to the same proteins by 36 and 94%, respectively. Soluble fibronectin bound to the yeast surface and in so doing inhibited subsequent yeast adherence to fibronectin by 66%. By comparison, Candida albicans yeasts adhered in smaller numbers to glycosaminoglycans (GAGs). Keratan sulfate, hyaluronic acid, chondroitin sulfate, Type B, and heparin actually decreased yeast adherence compared to control from 10% to 25%.  相似文献   

18.
Hepatocytes isolated by perfusion of adult rat liver and cultured on substrata consisting of one or more of the major components of the liver biomatrix (fibronectin, laminin, type IV collagen) have been examined for the synthesis of defined proteins. Under these conditions, tyrosine amino transferase, a marker of hepatocyte function, is maintained at similar levels in response to dexamethasone over 5 days in culture on each substratum, and total cellular protein synthesis remains constant. By contrast, there is a rapid decrease in synthesis and secretion of albumin and a 3-7-fold increase in synthesis and secretion of alpha-fetoprotein which are most marked on a laminin substratum, but least evident on type IV collagen, and an increased synthesis of fibronectin and type IV collagen. The newly synthesized matrix proteins are present in the cell layer as well as in cell secretions. The enhanced synthesis of fibronectin is less in cells seeded onto a fibronectin substratum than on laminin or type IV collagen substrata, and its synthesis by hepatocytes seeded onto a mixed substratum of laminin and fibronectin is down-regulated by fibronectin in a dose-related manner. Similarly, type IV collagen synthesis is less when the cells are seeded on the homologous matrix protein substratum than on heterologous substrata. These results indicate that hepatocytes cultured in serum-free medium on substrata composed of components of the liver biomatrix maintain certain functions of the differentiated state (tyrosine amino transferase), lose others (albumin secretion) and switch to increased synthesis of matrix components as well as fetal markers such as alpha-fetoprotein. The magnitude of these effects depends on the substratum on which the hepatocytes are cultured.  相似文献   

19.
To define the role of the extracellular matrix (ECM) in hepatogenesis, we examined the temporal and spatial deposition of fibronectin, laminin and collagen types I and IV in 12.5-21.5 day fetal and 1, 7 and 14 day postnatal rat livers. In early fetal liver, discontinuous deposits of the four ECM components studied were present in the perisinusoidal space, with laminin being the most prevalent. All basement membrane zones contained collagen type IV and laminin, including those of the capsule (mesothelial), portal vein radicles and bile ductules. Fibronectin had a distribution similar to that of collagen type IV early in gestation. However, at later gestational dates, fibronectin distribution in the portal triads approached that of collagen type I, being present in the interstitial connective tissues; whereas, collagen type IV and laminin were restricted to vascular and biliary basement membrane zones in those regions. The cytoplasm of some sinusoidal lining cells and hepatocytes reacted with antibodies to extracellular matrix components. By electron microscopy the immunoreactive material was localized in the endoplasmic reticulum, indicating the ability of these cells to synthesize these ECM proteins. Biliary ductular cells had prominent intracytoplasmic staining for laminin and collagen type IV from day 19.5 gestation until 7 days of postnatal life, but lacked demonstrable fibronectin or collagen type I. These results demonstrate that by 12.5 days of gestation the rat liver anlage has deposited a complex extracellular matrix in the perisinusoidal space. The prevalence of laminin in the developing hepatic lobules suggests a possible role for this glycoprotein in hepatic morphogenesis. In view of the intimate association of the hepatic lobular extracellular matrix with the developing vasculature, we hypothesize that laminin provides a scaffold of the developing liver, but once the ontogenesis is complete, intrahepatic perisinusoidal laminin expression is suppressed.  相似文献   

20.
The Ziwuling black goat is an indigenously in China, their offspring are frequently affected by congenital cryptorchidism. The extracellular matrix (ECM) contains cytokines and growth factors that regulate the development of the testis, and component changes often result in pathological changes. Cryptorchidism is closely related to structural changes in ECM. In this study, the histochemical staining, immunohistochemical, immunofluorescence and Western blot combined with semi-quantitative analysis was used to describe the distribution of the important ECM components Collagen type IV (Col IV), laminin (LN)and heparan sulfate proteoglycans (HSPG) in the normal and cryptorchid testes of Ziwuling black goats. Results showed that: The histochemical staining showed that the dysplasia of seminiferous tubules and decreased number of Sertoli cells in cryptorchidism, as well as sparse collagen fiber. Meanwhile, the distribution of reticular fibers is relatively rich. Furthermore, the PAS and AB staining in the interstitial vessels and lamina propria of seminiferous tubules is weak. The immunohistochemical and immunofluorescence revealed that Col IV, LN was strongly expressed in Leydig, Sertoli cells of normal testes and moderately positive in the spermatogonia and spermatids, but HSPG was not expressed in the spermatogonia. However, cryptorchidism, the expression of Col IV, LN and HPSG in Leydig, Sertoli cells significantly decreased, as well as the expression of Col IV and LN in capillary endothelial cells, but HSPG was moderately expressed in spermatogonia. Based on these data, the underdevelopment of spermatogenic epithelium, decreased synthesis function of collagen fibers and Leydig cells develop usually in the cryptorchidism were shown to be closely related to the abnormal metabolism of Col IV and LN. The positive expressed of HSPG in the spermatogonia of cryptorchid testes is related to the compensatory development of spermatogonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号