首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serine hydroxymethyltransferase purified from rabbit liver cytosol has at least two Asn residues (Asn(5) and Asn(220)) that are 67 and 30% deamidated, respectively. Asn(5) is deamidated equally to Asp and isoAsp, while Asn(220) is deamidated only to isoAsp. To determine the effect of these Asn deamidations on enzyme activity and stability a recombinant rabbit liver cytosolic serine hydroxymethyltransferase was expressed in Escherichia coli over a 5-h period. About 90% of the recombinant enzyme could be isolated with the two Asn residues in a nondeamidated form. Compared with the enzyme isolated from liver the recombinant enzyme had a 35% increase in catalytic activity but exhibited no significant changes in either affinity for substrates or stability. Introduction of Asp residues for either Asn(5) or Asn(220) did not significantly alter activity or stability of the mutant forms. In vitro incubation of the recombinant enzyme at 37 degrees C and pH 7.3 resulted in the rapid deamidation of Asn(5) to both Asp and isoAsp with a t(1/2) of 50-70 h, which is comparable to the rate found with small flexible peptides containing the same sequence. The t(1/2) for deamidation of Asn(220) was at least 200 h. This residue may become deamidated only after some unfolding of the enzyme. The rates for deamidation of Asn(5) and Asn(220) are consistent with the structural environment of the two Asn residues in the native enzyme. There are also at least two additional deamidation events that occur during prolonged incubation of the recombinant enzyme.  相似文献   

2.
Crystal structures of human and rabbit cytosolic serine hydroxymethyltransferase have shown that Tyr65 is likely to be a key residue in the mechanism of the enzyme. In the ternary complex of Escherichia coli serine hydroxymethyltransferase with glycine and 5-formyltetrahydrofolate, the hydroxyl of Tyr65 is one of four enzyme side chains within hydrogen-bonding distance of the carboxylate group of the substrate glycine. To probe the role of Tyr65 it was changed by site-directed mutagenesis to Phe65. The three-dimensional structure of the Y65F site mutant was determined and shown to be isomorphous with the wild-type enzyme except for the missing Tyr hydroxyl group. The kinetic properties of this mutant enzyme in catalyzing reactions with serine, glycine, allothreonine, D- and L-alanine, and 5,10-methenyltetrahydrofolate substrates were determined. The properties of the enzyme with D- and L-alanine, glycine in the absence of tetrahydrofolate, and 5, 10-methenyltetrahydrofolate were not significantly changed. However, catalytic activity was greatly decreased for serine and allothreonine cleavage and for the solvent alpha-proton exchange of glycine in the presence of tetrahydrofolate. The decreased catalytic activity for these reactions could be explained by a greater than 2 orders of magnitude increase in affinity of Y65F mutant serine hydroxymethyltransferase for these amino acids bound as the external aldimine. These data are consistent with a role for the Tyr65 hydroxyl group in the conversion of a closed active site to an open structure.  相似文献   

3.
Chemical modification of amino acid residues with phenylglyoxal, N-ethylmaleimide and diethyl pyrocarbonate indicated that at least one residue each of arginine, cysteine and histidine were essential for the activity of sheep liver serine hydroxymethyltransferase. The second-order rate constants for inactivation were calculated to be 0.016 mM-1 X min-1 for phenylglyoxal, 0.52 mM-1 X min-1 for N-ethylmaleimide and 0.06 mM-1 X min-1 for diethyl pyrocarbonate. Different rates of modification of these residues in the presence and in the absence of substrates and the cofactor pyridoxal 5'-phosphate as well as the spectra of the modified protein suggested that these residues might occur at the active site of the enzyme.  相似文献   

4.
Significant derepression of serine hydroxymethyltransferase is observed when metE or metF mutants of Escherichia coli K-12 are grown on D-methionine sulfoxide instead of L-methionine. The derepression is not prevented by addition of glycine, adenosine, guanosine, guanosine, and thymidine to the growth medium of methionine-limited metF cells showing that the effect is not due to a secondary deficiency of these nutrients. On the other hand, methionine-limited growth of a metA mutant leads to derepression of met regulon enzymes, but only a marginal increase in serine hydroxymethyltransferase activity. A prototrophic metJ strain grown on minimal medium has about the same serine hydroxymethyltransferase as the wild type. The enzyme activity of the metJ strain is not influenced by methionine, but it is partially repressed by glycine, adenosine, and thymidine. metK strains have about twice as much serine hydroxymethyltransferase activity as wild-type cells when grown on minimal medium; but when both types of cells are grown on medium supplemented with glycine, adenosine, guanosine, and thymidine, their enzyme activities are about the same. The results show that methionine limitation can lead to depression of serine hydroxymethyltransferase, but that the regulatory system is different from the one which controls the methionine regulon.  相似文献   

5.
Serine hydroxymethyltransferase (SHMT), a pyridoxal-5'-phosphate (PLP)-dependent enzyme catalyzes the tetrahydrofolate (H(4)-folate)-dependent retro-aldol cleavage of serine to form 5,10-methylene H(4)-folate and glycine. The structure-function relationship of SHMT was studied in our laboratory initially by mutation of residues that are conserved in all SHMTs and later by structure-based mutagenesis of residues located in the active site. The analysis of mutants showed that K71, Y72, R80, D89, W110, S202, C203, H304, H306 and H356 residues are involved in maintenance of the oligomeric structure. The mutation of D227, a residue involved in charge relay system, led to the formation of inactive dimers, indicating that this residue has a role in maintaining the tetrameric structure and catalysis. E74, a residue appropriately positioned in the structure of the enzyme to carry out proton abstraction, was shown by characterization of E74Q and E74K mutants to be involved in conversion of the enzyme from an 'open' to 'closed' conformation rather than proton abstraction from the hydroxyl group of serine. K256, the residue involved in the formation of Schiffs base with PLP, also plays a crucial role in the maintenance of the tetrameric structure. Mutation of R262 residue established the importance of distal interactions in facilitating catalysis and Y82 is not involved in the formaldehyde transfer via the postulated hemiacetal intermediate but plays a role in stabilizing the quinonoid intermediate. The mutational analysis of scSHMT along with the structure of recombinant Bacillus stearothermophilus SHMT and its substrate(s) complexes was used to provide evidence for a direct transfer mechanism rather than retro-aldol cleavage for the reaction catalyzed by SHMT.  相似文献   

6.
Chemical modification of amino acid residues with phenylglyoxal, diethylpyrocarbonate, and N-bromosuccinimide indicated that at least one residue each of arginine, histidine, and tryptophan were necessary for the activity of human liver serine hydroxymethyltransferase. Protection by substrates suggested that these residues might occur at the active site of the enzyme.  相似文献   

7.
Serine hydroxymethyltransferase (SHMT) from Bacillus stearothermophilus (bsSHMT) is a pyridoxal 5'-phosphate-dependent enzyme that catalyses the conversion of L-serine and tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. In addition, the enzyme catalyses the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids and transamination. In this article, we have examined the mechanism of the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids by SHMT. The three-dimensional structure and biochemical properties of Y51F and Y61A bsSHMTs and their complexes with substrates, especially L-allo-Thr, show that the cleavage of 3-hydroxy amino acids could proceed via Calpha proton abstraction rather than hydroxyl proton removal. Both mutations result in a complete loss of tetrahydrofolate-dependent and tetrahydrofolate-independent activities. The mutation of Y51 to F strongly affects the binding of pyridoxal 5'-phosphate, possibly as a consequence of a change in the orientation of the phenyl ring in Y51F bsSHMT. The mutant enzyme could be completely reconstituted with pyridoxal 5'-phosphate. However, there was an alteration in the lambda max value of the internal aldimine (396 nm), a decrease in the rate of reduction with NaCNBH3 and a loss of the intermediate in the interaction with methoxyamine (MA). The mutation of Y61 to A results in the loss of interaction with Calpha and Cbeta of the substrates. X-Ray structure and visible CD studies show that the mutant is capable of forming an external aldimine. However, the formation of the quinonoid intermediate is hindered. It is suggested that Y61 is involved in the abstraction of the Calpha proton from 3-hydroxy amino acids. A new mechanism for the cleavage of 3-hydroxy amino acids via Calpha proton abstraction by SHMT is proposed.  相似文献   

8.
The pyridoxal-5'-phosphate-binding domain (PLPbd) of bsSHMT (Bacillus subtilis serine hydroxymethyltransferase) was cloned and over-expressed in Escherichia coli. The recombinant protein was solublized, refolded and purified from inclusion bodies by rapid mixing followed by ion exchange chromatography. Structural and functional studies suggested the native form of the domain, which obtained as a monomer and had similar secondary and tertiary structural properties as when present in the bsSHMT. The domain also binds to the PLP however with slightly lesser affinity than the native enzyme. GdmCl (guanidium chloride)-induced equilibrium unfolding of the recombinant PLP-binding domain showed a single monophasic transition which corresponds with the second phase transition of the GdmCl-induced unfolding of bsSHMT. The results indicate that PLPbd of bsSHMT is an independent domain, which attains its tertiary structure before the dimerization of partially folded monomer and behaves as a single cooperative unfolding unit under equilibrium conditions.  相似文献   

9.
Mammalian myoglobins contain two tryptophanyl residues at the invariant positions 7 (A-5) and 14 (A-12) in the N-terminal region (A helix) of the protein molecule. The simultaneous substitution of both tryptophanyl residues causes an incorrect folding with subsequent loss of heme binding. The introduction of a indolic residue in different molecular regions, i.e. G, E, and C helix resulted in a not correctly folded protein, suggesting that the tryptophanyl residues are strong structural determinants.  相似文献   

10.
A binding assay for serine hydroxymethyltransferase   总被引:2,自引:0,他引:2  
A sensitive assay for measuring serine hydroxymethyltransferase activity has been developed, based on the binding of N5,N10-[14C]methylene tetrahydrofolate (THF) to DEAE-cellulose paper. The complete assay requires THF, pyridoxal 5'-phosphate, [14C]serine, and enzyme. The reaction is stopped by streaking an aliquot of the reaction mixture onto a square of DEAE-cellulose paper, washing the paper with water to remove unreacted serine, drying the paper, and counting the bound N5,N10-[14C]methylene-THF. To determine that the labeled product was N5,N10-methylene-THF, unlabeled formaldehyde, which exchanges with the labeled methylene carbon, was added after the product had accumulated; 2 min after the addition of formaldehyde the amount of labeled product was reduced by 50%, and by 85% after 10 min. In addition, glycine, which reverses the reaction, and hydroxylamine, which reacts with the methylene carbon, reduced the number of counts bound to the paper. Binding of product to the filter is proportional to both enzyme concentration and assay time. No counts were retained on phosphocellulose filters. This assay represents a new and simple method for measuring serine hydroxymethyltransferase activity, which can be used to measure enzyme activity in tissue homogenates and for screening large numbers of samples.  相似文献   

11.
To understand the molecular basis of the thermostability of a thermophilic serine protease aqualysin I from Thermus aquaticus YT-1, we introduced mutations at Pro5, Pro7, Pro240 and Pro268, which are located on the surface loops of aqualysin I, by changing these amino acid residues into those found at the corresponding locations in VPR, a psychrophilic serine protease from Vibrio sp. PA-44. All mutants were expressed stably and exhibited essentially the same specific activity as wild-type aqualysin I at 40 degrees C. The P240N mutant protein had similar thermostability to wild-type aqualysin I, but P5N and P268T showed lower thermostability, with a half-life at 90 degrees C of 15 and 30 min, respectively, as compared to 45 min for the wild-type enzyme. The thermostability of P7I was decreased even more markedly, and the mutant protein was rapidly inactivated at 80 degrees C and even at 70 degrees C, with half-lives of 10 and 60 min, respectively. Differential scanning calorimetry analysis showed that the transition temperatures of wild-type enzyme, P5N, P7I, P240N and P268T were 93.99 degrees C, 83.45 degrees C, 75.66 degrees C, 91.78 degrees C and 86.49 degrees C, respectively. These results underscore the importance of the proline residues in the N- and C-terminal regions of aqualysin I in maintaining the integrity of the overall protein structure at elevated temperatures.  相似文献   

12.
Substitution of trans-proline at three positions in ubiquitin (residues 19, 37 and 38) produces significant context-dependent effects on protein stability (both stabilizing and destabilizing) that reflect changes to a combination of parameters including backbone flexibility, hydrophobic interactions, solvent accessibility to polar groups and intrinsic backbone conformational preferences. Kinetic analysis of the wild-type yeast protein reveals a predominant fast-folding phase which conforms to an apparent two-state folding model. Temperature-dependent studies of the refolding rate reveal thermodynamic details of the nature of the transition state for folding consistent with hydrophobic collapse providing the overall driving force. Br?nsted analysis of the refolding and unfolding rates of a family of mutants with a variety of side chain substitutions for P37 and P38 reveals that the two prolines, which are located in a surface loop adjacent to the C terminus of the main alpha-helix (residues 24-33), are not significantly structured in the transition state for folding and appear to be consolidated into the native structure only late in the folding process. We draw a similar conclusion regarding position 19 in the loop connecting the N-terminal beta-hairpin to the main alpha-helix. The proline residues of ubiquitin are passive spectators in the folding process, but influence protein stability in a variety of ways.  相似文献   

13.
Cytosolic serine hydroxymethyltransferase has been shown previously to exhibit both broad substrate and reaction specificity. In addition to cleaving many different 3-hydroxyamino acids to glycine and an aldehyde, the enzyme also catalyzes with several amino acid substrate analogs decarboxylation, transamination, and racemization reactions. To elucidate the relationship of the structure of the substrate to reaction specificity, the interaction of both amino acid and folate substrates and substrate analogs with the enzyme has been studied by three different methods. These methods include investigating the effects of substrates and substrate analogs on the thermal denaturation properties of the enzyme by differential scanning calorimetry, determining the rate of peptide hydrogen exchange with solvent protons, and measuring the optical activity of the active site pyridoxal phosphate. All three methods suggest that the enzyme exists as an equilibrium between "open" and "closed" forms. Amino acid substrates enter and leave the active site in the open form, but catalysis occurs in the closed form. The data suggest that the amino acid analogs that undergo alternate reactions, such as racemization and transamination, bind only to the open form of the enzyme and that the alternate reactions occur in the open form. Therefore, one role for forming the closed form of the enzyme is to block side reactions and confer reaction specificity.  相似文献   

14.
Plasmodium lophurae serine hydroxymethyltransferase (EC 2.1.2.1) was partially purified and characterized by (NH4)2SO4 fractionation and chromatography on Sephadex G-100. The enzyme, precipitated by 3.0.3.3 M (NH4)2SO4, had a molecular weight of 68,300 as estimated by exclusion chromatography on G-100. The pH optimum of the enzyme was 6.8-7.6 in sodium phosphate-citrate buffer. Citrate stabilized the enzyme during storage in phosphate buffer at 4 C. The Km was 4.3 X 10(-3) M for L-serine and 2.5 X 10(-4) M for tetrahydrofolate.  相似文献   

15.
Folate-dependent one-carbon metabolism is critical for the synthesis of numerous cellular constituents required for cell growth, and serine hydroxymethyltransferase (SHMT) is central to this process. Our studies reveal that the gene for cytosolic SHMT (cSHMT) maps to the critical interval for Smith-Magenis syndrome (SMS) on chromosome 17p11.2. The basic organization of the cSHMT locus on chromosome 17 was determined and was found to be deleted in all 26 SMS patients examined by PCR, FISH, and/or Southern analysis. Furthermore, with respect to haploinsufficiency, cSHMT enzyme activity in patient lymphoblasts was determined to be approximately 50% that of unaffected parent lymphoblasts. Serine, glycine, and folate levels were also assessed in three SMS patients and were found to be within normal ranges. The possible effects of cSHMT hemizygosity on the SMS phenotype are discussed.  相似文献   

16.
We have developed a novel HPLC-based fluorometric assay for serine hydroxymethyltransferase activity. In this assay, the 5,10-CH(2)-H(4)PteGlu formed by serine hydroxymethyltransferase activity is reduced to 5-CH(3)-H(4)PteGlu using NaBH(4). Then the fluorescent assay components are separated by reversed-phase chromatography under isocratic conditions and 5-CH(3)-H(4)PteGlu is quantified by comparison with standards. We show that this assay can be used to measure serine hydroxymethyltransferase activity at 10(-8) to 10(-3)M (6R,S)-H(4)PteGlu.  相似文献   

17.
Kamen DE  Woody RW 《Biochemistry》2002,41(14):4724-4732
The folding mechanism of pectate lyase C (pelC) involves two slow phases that have been attributed to proline isomerization. To have a more detailed and complete understanding of the folding mechanism, experiments have been carried out to identify the prolyl-peptide bonds responsible for the slow kinetics. Site-directed mutagenesis has been used to mutate each of the prolines in pelC to alanine or valine. It has been determined that isomerization of the Leu219-Pro220 peptide bond is responsible for the slowest folding phase observed. The mutant P220A shows kinetic behavior that is identical to the wild-type protein except that the 46-s phase is eliminated. The Leu219-Pro220 peptide bond is cis in the native enzyme. An analysis of the free energy of unfolding of this mutant indicates that the mutation destabilizes the protein by about 4 kcal/mol. However, it appears that the major refolding pathways are unaltered. Further mutations were carried out in order to assign the peptide bond responsible for the 21-s folding phase in pelC. Mutation of the remaining 11 prolines, which are trans in the native enzyme, resulted in no significant changes in the kinetic folding behavior. The conclusion from these experiments is that the 21-s phase involves isomerization of more than one prolyl-peptide bond with similar activation energies.  相似文献   

18.
19.
E G Platzer 《Life sciences》1977,20(8):1417-1424
Subcellular fractions of the bird malaria, Plasmodium lophurae were prepared by differential centrifugation. Cytochrome oxidase activity was located in the mitochondrial fraction. A major portion of glutamate dehydrogenase activity was found in the mitochondrial fraction with the remainder in the ribosomal and cytosolic fractions. Malate dehydrogenase and serine hydroxymethyltransferase activities were located primarily in the cytosolic fraction.  相似文献   

20.
All the members of pyridoxal-5'-phosphate-dependent enzymes are involved in the metabolism of amino acids. The sequence homology studies further divide this family into three distinct groups. A fine scrutiny of the reactions catalyzed by these enzymes shows their regio specificity; they have been considered as the largest group of enzymes having tendency to affect the valency of the same carbon atom that carries the amino group forming an amine linkage with the coenzyme. Thus, this group was named 'alpha-class of enzymes'. Serine hydroxymethyltransferase (SHMT) is a member of this alpha-class; it reversibly catalyses the conversion of serine into glycine while the hydroxymethyl group is transferred to 5,6,7,8-tetrahydrofolate. The resultant compound is the sole precursor of purine biosynthesis. Henceforth, this enzyme greatly affects nucleic acid biosynthesis in all the organisms. It is obvious that SHMT plays an indispensable role in nucleic acid biosynthesis; therefore, designing and developing a repressor/inhibitor of the SHMT gene/protein may resolve the problem of drug resistance to cancer chemotherapy. SHMT has been widely studied in many living systems (e.g. Escherichia coli, humans, sheep, rabbits, Trypanosoma, Arabidopsis, peas, tobacco) in terms of its structure, cloning, expression, purification and folding patterns. Such studies have enabled one to assess the pattern of overall kinetic and activity behaviour of the enzyme, which may further help in developing a suitable cancer therapeutic molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号