首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
High and Low Activity strains of mice (displaying low and high anxiety-like behavior, respectively) with 7.8–20 fold differences in open-field activity were selected and subsequently inbred to use as a genetic model for studying anxiety-like behavior in mice (DeFries et al., 1978, Behavior Genetics, 8:3-13). These strains exhibited differences in other anxiety-related behaviors as assessed using the light–dark box, elevated plus-maze, mirror chamber, and elevated square-maze tests (Henderson et al., 2004, Behavior Genetics, 34: 267-293). The purpose of these experiments was three-fold. First, we repeated a 6-day behavioral battery using updated equipment and software to confirm the extreme differences in anxiety-like behaviors. Second, we tested novel object exploration, a measure of anxiety-like behavior that does not rely heavily on locomotion. Third, we conducted a home cage wheel running experiment to determine whether these strains differ in locomotor activity in a familiar, home cage environment. Our behavioral test battery confirmed extreme differences in multiple measures of anxiety-like behaviors. Furthermore, the novel object test demonstrated that the High Activity mice exhibited decreased anxiety-like behaviors (increased nose pokes) compared to Low Activity mice. Finally, male Low Activity mice ran nearly twice as far each day on running wheels compared to High Activity mice, while female High and Low Activity mice did not differ in wheel running. These results support the idea that the behavioral differences between High and Low Activity mice are likely to be due to anxiety-related factors and not simply generalized differences in locomotor activity.  相似文献   

2.
Gropman AL 《Mitochondrion》2004,4(5-6):503-520
Mitochondrial disorders are caused by mutations of nuclear or mitochondrial DNA encoded genes involved in oxidative phosphorylation (OXPHOS). Mutations in these critical genes are associated with specific clinical syndromes with diverse presentations (DiMauro and Schon, 2003. NEJM 348, 2656; Hart et al., 2002. Mitochondrial Disorders in Neurology). Since mitochondria are present in many of our organs and play a key role in energy metabolism, mitochondrial encephalomyopathies often present as multisystem disorders which may manifest with neurologic, cardiac, endocrine, gastrointestinal, hepatic, renal and/or hematologic involvement (DiMauro and Bonilla, 1997. The Molecular and Genetic Basis of Neurological Disease; Vu et al., 2002. Neurol. Clin. N. Am. 20, 809). This chapter will address adult and childhood onset mitochondrial DNA encephalomyopathies, characteristic clinical presentations, as well as their molecular characterization.  相似文献   

3.
Recent advances in proteomics and computational biology have lead to a flood of protein interaction data and resulting interaction networks (e.g. (Gavin et al., 2002)). Here I first analyse the status and quality of parts lists (genes and proteins), then comparatively assess large-scale protein interaction data (von Mering et al., 2002) and finally try to identify biological meaningful units (e.g. pathways, cellular processes) within interaction networks that are derived from the conservation of gene neighborhood (Snel et al., 2002). Possible extensions of gene neighborhood analysis to eukaryotes (von Mering and Bork, 2002) will be discussed.  相似文献   

4.
Prostate cancer is one of the most common malignancies.The development and progression of prostate cancer are driven by a series of genetic and epigenetic events including gene amplification that activates oncogenes and chromosomal deletion that inactivates tumor suppressor genes.Whereas gene amplification occurs in human prostate cancer,gene deletion is more common,and a large number of chromosomal regions have been identified to have frequent deletion in prostate cancer,suggesting that tumor suppressor inactivation is more common than oncogene activation in prostatic carcinogenesis (Knuutila et al.,1998,1999;Dong,2001).Among the most frequently deleted chromosomal regions in prostate cancer,target genes such as NKX3-1 from 8p21,PTENfrom 10q23 andATBF1 from 16q22 have been identified by different approaches (He et al.,1997;Li et al.,1997;Sun et al.,2005),and deletion of these genes in mouse prostates has been demonstrated to induce and/or promote prostatic carcinogenesis.For example,knockout of Nkx3-1 in mice induces hyperplasia and dysplasia (Bhatia-Gaur et al.,1999;Abdulkadir et al.,2002) and promotes prostatic tumorigenesis (Abate-Shen et al.,2003),while knockout of Pten alone causes prostatic neoplasia (Wang et al.,2003).Therefore,gene deletion plays a causal role in prostatic carcinogenesis (Dong,2001).  相似文献   

5.
6.
We review the current status of the role and function of the mitochondrial DNA (mtDNA) in the etiology of autism spectrum disorders (ASD) and the interaction of nuclear and mitochondrial genes. High lactate levels reported in about one in five children with ASD may indicate involvement of the mitochondria in energy metabolism and brain development. Mitochondrial disturbances include depletion, decreased quantity or mutations of mtDNA producing defects in biochemical reactions within the mitochondria. A subset of individuals with ASD manifests copy number variation or small DNA deletions/duplications, but fewer than 20 percent are diagnosed with a single gene condition such as fragile X syndrome. The remaining individuals with ASD have chromosomal abnormalities (e.g., 15q11-q13 duplications), other genetic or multigenic causes or epigenetic defects. Next generation DNA sequencing techniques will enable better characterization of genetic and molecular anomalies in ASD, including defects in the mitochondrial genome particularly in younger children.  相似文献   

7.
8.
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715–1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.  相似文献   

9.
Freyer C  Larsson NG 《Cell》2007,131(3):448-450
In this issue, Pospisilik et al. (2007) demonstrate that a reduction in mitochondrial oxidative phosphorylation protects mice against obesity and diabetes. This finding suggests that the moderate deficiency in oxidative phosphorylation that is observed in peripheral tissues of insulin-resistant humans is not a causative factor in diabetes but may instead be a compensatory response.  相似文献   

10.
11.
Structure of a mouse histone-encoding gene cluster   总被引:5,自引:0,他引:5  
  相似文献   

12.
Gene expression studies using postmortem human brain tissue are a common tool for studying the etiology of psychiatric disorders. Quantitative real-time PCR (qPCR) is an accurate and sensitive technique used for gene expression analysis in which the expression level is quantified by normalization to one or more reference genes. Therefore, accurate data normalization is critical for validating results obtained by qPCR. This study aimed to identify genes that may serve as reference in postmortem dorsolateral-prefrontal cortices (Brodmann’s area 46) of schizophrenics, bipolar disorder (BPD) patients, and control subjects. In the exploratory stage of the analysis, samples of four BPD patients, two schizophrenics, and two controls were quantified using the TaqMan Low Density Array endogenous control panel, containing assays for 16 commonly used reference genes. In the next stage, six of these genes (TFRC, RPLP0, ACTB, POLR2a, B2M, and GAPDH) were quantified by qPCR in 12 samples of each clinical group. Expressional stability of the genes was determined by GeNorm and NormFinder. TFRC and RPLP0 were the most stably expressed genes, whereas the commonly used 18S, POLR2a, and GAPDH were the least stable. This report stresses the importance of examining expressional stability of candidate reference genes in the specific sample collection to be analyzed.  相似文献   

13.
The S6 kinase signaling pathway in the control of development and growth   总被引:15,自引:0,他引:15  
  相似文献   

14.
The nucleotide sequence of the genes encoding methyltransferase TaqI (M.TaqI) and restriction endonuclease TaqI (R.TaqI) with the recognition sequence, TCGA, were analyzed in clones isolated from independent libraries. The genes, originally reported as 363 and 236 codons long [Slatko et al., Nucleic Acids Res. 15 (1987) 9781-9796] were redetermined as 421 and 263 codons long, respectively. The C terminus of the taqIM gene overlaps the N terminus of the taqIR gene by 13 codons, as observed with the isoschizomeric TthHB8I restriction-modification system [Barany et al., Gene 112 (1992) 13-20]. Removal of the overlapping codons did not interfere with in vivo M.TaqI activity. We postulate the overlap plays a role in regulating taqIR expression.  相似文献   

15.
Abnormalities in monoamine metabolism, including serotonin metabolism, have been implicated in the pathophysiology of affective disorders, schizophrenia, suicide, and other psychiatric disorders. Serotonin transporter protein (SERT) allows neurons to retrieve serotonin that has been released into a synapse. SERT is a site of action for several drugs with CMS effects, including both therapeutic agents (e.g., antidepressants) and drugs of abuse (e.g., cocaine). This gene had previously been physically mapped to chromosome 17. We used a PCR product corresponding to the 3 untranslated region of the gene as a probe to identify restriction fragment length polymorphism (RFLP), which we then used to establish that the SLC6A4, genetic locus for SERT, is near 17q12 and probably flanked by D17S58 and D17S73 (a location consistent with observed crossovers). These data should be useful for linkage studies of neuropsychiatric disorders. (Joyce et al. 1993). Neurotransmitter reuptake sites (including also the norepinephrine transporter protein and the dopamine transporter protein) are logical candidate genes for susceptibility to psychiatric illness. We have previously (Gelernter et al. 1993) mapped the norepinephrine transporter protein to chromosome 16q21. We describe here linkage mapping of the serotonin transporter protein gene (gene symbol SLC6A4, for solute carrier family 6 (neurotransporter, serotonin), member 4), which was cloned in 1991 (Blakely et al. 1991; Hoffman et al. 1991) and previously assigned to chromosome 17, most likely to band 17q11.2, by in situ hybridization (Ramamoorthy et al. 1993). Our linkage results confirm the initial mapping of SLC6A4 and place it in the linkage map of proximal 17q.  相似文献   

16.
Few, if any, studies have examined the effect of vitamin E deficiency on brain mitochondrial oxidative phosphorylation. The latter was studied using brain mitochondria isolated from control and vitamin E-deficient rats (13 months of deficiency) after exposure to iron, an inducer of oxidative stress. Mitochondria were treated with iron (2 to 50 microM) added as ferrous ammonium sulfate. Rates of state 3 and state 4 respiration, respiratory control ratios, and ADP/O ratios were not affected by vitamin E deficiency alone. However, iron uncoupled oxidative phosphorylation in vitamin E-deficient mitochondria, but not in controls. In vitamin E-deficient mitochondria, iron decreased ADP/O ratios and markedly stimulated state 4 respiration; iron had only a modest effect on these parameters in control mitochondria. Thus, vitamin E may have an important role in sustaining oxidative phosphorylation. Low concentrations of iron (2 to 5 microM) oxidized mitochondrial tocopherol that exists in two pools. The release of iron in brain may impair oxidative phosphorylation, which would be exacerbated by vitamin E deficiency. The results are important for understanding the pathogenesis of human brain disorders known to be associated with abnormalities in mitochondrial function as well as iron homeostasis (e.g., Parkinson's disease).  相似文献   

17.
The rapid advances associated with the Human Genome Project combined with the development of proteomics technology set the bases to face the challenge of human gene therapy. Different strategies must be evaluated based on the genetic defect to be corrected. Therefore, the re-expression of the normal counterpart should be sufficient to reverse phenotype in single-gene inherited disorders. A growing number of candidate diseases are being evaluated since the ADA deficiency was selected for the first approved human gene therapy trial (Blaese et al., 1995). To cite some of them: sickle cell anemia, hemophilia, inherited immune deficiencies, hyper-cholesterolemia and cystic fibrosis. The approach does not seem to be so straightforward when a polygenic disorder is going to be treated. Many human traits like diabetes, hypertension, inflammatory diseases and cancer, appear to be due to the combined action of several genes and environment. For instance, several wizard gene therapy strategies have recently been proposed for cancer treatment, including the stimulation of the immune system of the patient (Xue et al., 2005), the targeting of particular signalling pathways to selectively kill cancer cells (Westphal and Melchner, 2002) and the modulation of the interactions with the stroma and the vasculature (Liotta, 2001; Liotta and Kohn, 2001).  相似文献   

18.
19.
Age-related macular degeneration (AMD) is a common condition among the elderly population that leads to the progressive central vision loss and serious compromise of quality of life for its sufferers. It is also one of the few disorders for whom the investigation of its genetics has yielded rich insights into its diversity and causality and holds the promise of enabling clinicians to provide better risk assessments for individuals as well as to develop and selectively deploy new therapeutics to either prevent or slow the development of disease and lessen the threat of vision loss. The genetics of AMD began initially with the appreciation of familial aggregation and increase risk and expanded with the initial association of APOE variants with the disease. The first major breakthroughs came with family-based linkage studies of affected (and discordant) sibs, which identified a number of genetic loci and led to the targeted search of the 1q31 and 10q26 loci for associated variants. Three of the initial four reports for the CFH variant, Y402H, were based on regional candidate searches, as were the two initial reports of the ARMS2/HTRA1 locus variants. Case-control association studies initially also played a role in discovering the major genetic variants for AMD, and the success of those early studies have been used to fuel enthusiasm for the methodology for a number of diseases. Until 2010, all of the subsequent genetic variants associated with AMD came from candidate gene testing based on the complement factor pathway. In 2010, several large-scale genome-wide association studies (GWAS) identified genes that had not been previously identified. Much of this historical information is available in a number of recent reviews (Chen et al., 2010b; Deangelis et al., 2011; Fafowora and Gorin, 2012b; Francis and Klein, 2011; Kokotas et al., 2011). Large meta analysis of AMD GWAS has added new loci and variants to this collection (Chen et al., 2010a; Kopplin et al., 2010; Yu et al., 2011). This paper will focus on the ongoing controversies that are confronting AMD genetics at this time, rather than attempting to summarize this field, which has exploded in the past 5 years.  相似文献   

20.
《The New phytologist》1999,142(3):589-591
In the November 1998 issue of New Phytologist , we published the Tansley review 'Gibberellins: regulating genes and germination' by Sian Ritchie and Simon Gilroy ( New Phytol. (1998) 140 , 363–383). Since its publication, it has come to our attention that text associated with Fig. 4 was omitted during production. The correct figure is reprinted here in full.
We apologise to the author and to our readers for this mistake.
Figure 4. Promoter sequences of various genes expressed in the cereal aleurone and shown to be regulated by GA. The position of each sequence is indicated relative to the start codon. Regions identified as being involved in regulation of the genes are highlighted, as are similar regions in other genes. Sites at which protein has been shown to bind are also indicated. ( a ) Barley Amy 32b (Sutcliff et al ., 1993; Whittier et al ., 1987); wheat Amy 2/54 (Huttley et al ., 1992; Rushton et al ., 1992; Rushton et al ., 1995); barley Amy 46 (Khursheed & Rogers, 1988); barley Amy 2/p155 (Knox et al ., 1987); barley aleurain (Whittier et al ., 1987); barley β-glucanase II (Wolf, 1992); wheat cathepsin B-like (Cejudo et al ., 1992); rice ubiquitin-conjugating enzyme (Chen et al ., 1995). ( b ). Wheat Amy 1/18 (Rushton et al ., 1992); barley Amy pHV 19 (Jacobsen & Close, 1991; Gubler & Jacobsen, 1992)/ Amy 1 / 6-4 (Khursheed & Rogers, 1988; Rogers, Lanahan & Rogers 1994); rice OSamy-a / Amy 3c (Ou-Lee et al ., 1988; Sutcliff et al ., 1991; Yu et al ., 1992; Goldman et al ., 1994); rice Amy 3B (Sutcliffe et al ., 1991); rice OSamy-c (Kim et al ., 1992; Kim & Wu, 1992; Tanida et al ., 1994); rice Amy 1A (Huang et al ., 1990; Itoh et al ., 1995).
Figure 4 ( b ). For legend see facing page.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号