共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugiura T Taniguchi Y Tazaki A Ueno N Watanabe K Mochii M 《Development, growth & differentiation》2004,46(1):97-105
2.
Araki M 《Development, growth & differentiation》2007,49(2):109-120
Regeneration of eye tissue is one of the classic subjects in developmental biology and it is now being vigorously studied to reveal the cellular and molecular mechanisms involved. Although many experimental animal models have been studied, there may be a common basic mechanism that governs retinal regeneration. This can also control ocular development, suggesting the existence of a common principle between the development and regeneration of eye tissues. This notion is now becoming more widely accepted by recent studies on the genetic regulation of ocular development. Retinal regeneration can take place in a variety of vertebrates including fish, amphibians and birds. The newt, however, has been considered to be the sole animal that can regenerate the whole retina after the complete removal of the retina. We recently discovered that the anuran amphibian also retains a similar ability in the mature stage, suggesting the possibility that such a potential could be found in other animal species. In the present review article, retinal regeneration of amphibians (the newt and Xenopus laevis) and avian embryos are described, with a particular focus on transdifferentiation of retinal pigmented epithelium. One of the recent progresses in this field is the availability of tissue culture methods to analyze the initial process of transdifferentiation, and this enables us to compare the proliferation and neural differentiation of retinal pigmented epithelial cells from various animal species under the same conditions. It was revealed that tissue interactions between the retinal pigmented epithelium and underlying connective tissues (the choroid) play a substantial role in transdifferentiation and that this is mediated by a diffusible signal such as fibroblast growth factor 2. We propose that tissue interaction, particularly mesenchyme-neuroepithelial interaction, is considered to play a fundamental role both in retinal development and regeneration. 相似文献
3.
In the present study we have characterized the synthesis of members of the HSP30 family during Xenopus laevis development using a polyclonal antipeptide antibody derived from the carboxyl end of HSP30C. Two-dimensional PAGE/immunoblot analysis was unable to detect any heat-inducible small HSPs in cleavage, blastula, gastrula, or neurula stage embryos. However, heat-inducible accumulation of a single protein was first detectable in early tailbud embryos with an additional 5 HSPs at the late tailbud stage and a total of 13 small HSPs at the early tadpole stage. In the Xenopus A6 kidney epithelial cell line, a total of eight heat-inducible small HSPs were detected by this antibody. Comparison of the pattern of protein synthesis in embryos and somatic cells revealed a number of common and unique heat inducible proteins in Xenopus embryos and cultured kidney epithelial cells. To specifically identify the protein product of the HSP30C gene, we made a chimeric gene construct with the Xenopus HSP30C coding sequence under the control of a constitutive promoter. This construct was microinjected into fertilized eggs and resulted in the premature and constitutive synthesis of the HSP30C protein in gastrula stage embryos. Through a series of mixing experiments, we were able to specifically identify the protein encoded by the HSP30C gene in embryos and somatic cells and to conclude that HSP30C synthesis was first heat-inducible at the early tailbud stage of development. The differential pattern of heat-inducible accumulation of members of the HSP30 family during Xenopus development suggests that these proteins may have distinct functions at specific embryonic stages during a stress response. 相似文献
4.
Xenopus laevis larvae with an elevated expression of c-src were generated by mating a transgenic X. laevis male frog carrying proviral Rous sarcoma virus (RSV) long terminal repeat (LTR) and most of the pol gene sequences in its sperm DNA and a normal X. laevis female frog. Offspring (15–20%) with a higher dosage of c-Src, detected in disorganized myotomal musculature and in cerebral and spinal neuronal cells by immunohistochemical analysis, developed abnormally, with edemas (in most cases), head deformities, and eye and axial system defects. In the remaining embryos, a small increase in c-src expression seemed to be compatible with normal embryogenesis. The dosage of c-Src correlated with the dosage of RSV LTR integrated in frog DNA as revealed by Southern and polymerase chain reaction (PCR) analyses. Authenticity of the integrated RSV LTR including enhancer sequence was proved by sequencing. Probing of total RNA from aberrant larvae demonstrated several times higher dosage of c-src mRNA in their tissues than in control tadpoles. We hypothesize that the integrated RSV regulatory sequences can stimulate the expression of c-src proto-oncogene of X. laevis above a treshold that interferes with the early developmental program of frog embryos. Mol. Reprod. Dev. 50:410–419, 1998. © 1998 Wiley-Liss, Inc. 相似文献
5.
Urodele amphibians and some fish are capable of regenerating up to a quarter of their heart tissue after cardiac injury. While many anuran amphibians like Xenopus laevis are not capable of such feats, they are able to repair lesser levels of cardiac damage, such as that caused by oxidative stress, to a far greater degree than mammals. Using an optogenetic stress induction model that utilizes the protein KillerRed, we have investigated the extent to which mechanisms of cardiac regeneration are conserved during the restoration of normal heart morphology post oxidative stress in X. laevis tadpoles. We focused particularly on the processes of cardiomyocyte proliferation and dedifferentiation, as well as the pathways that facilitate the regulation of these processes. The cardiac response to KillerRed-induced injury in X. laevis tadpole hearts consists of a phase dominated by indicators of cardiac stress, followed by a repair-like phase with characteristics similar to mechanisms of cardiac regeneration in urodeles and fish. In the latter phase, we found markers associated with partial dedifferentiation and cardiomyocyte proliferation in the injured tadpole heart, which, unlike in regenerating hearts, are not dependent on Notch or retinoic acid signaling. Ultimately, the X. laevis cardiac response to KillerRed-induced oxidative stress shares characteristics with both mammalian and urodele/fish repair mechanisms, but is nonetheless a unique form of recovery, occupying an intermediate place on the spectrum of cardiac regenerative ability. An understanding of how Xenopus repairs cardiac damage can help bridge the gap between mammals and urodeles and contribute to new methods of treating heart disease. 相似文献
6.
The South African clawed frog (Xenopus laevis) can regenerate the anterior half of the telencephalon only during larval life, but such regeneration is no longer possible after metamorphosis. In order to gain a better understanding of differences between larvae and adults that are potentially related to regeneration, several experiments were conducted on larvae and froglets after the partial removal of the telencephalon. As a result, it was found that the cells in the brain proliferated actively, even in non-regenerating froglets, just as was observed in regenerating larvae after the partial removal of the telencephalon. Moreover, it was shown that although the structure was usually imperfect, even isolated single cells derived from the frog brain were able to reconstitute the lost portion when the cells were transplanted to the partially truncated telencephalon. It is therefore likely to be critical for massive organ regeneration that ependymal layer cells promptly cover the cerebral lateral ventricles at an initial stage of wound healing, as is the case observed in larvae. However, in froglets, these cells strongly adhere to one another, and they are therefore unable to move to seal off the exposed ventricle, which in turn is likely to render the froglet brain non-regenerative. 相似文献
7.
In the present study, we have examined the regulation of expression of a newly isolated member of the hsp 30 gene family, hsp 30C. Using RT-PCR, we found that this gene was first heat-inducible at the tailbud stage of development. We also examined the expression of two microinjected modified hsp 30C gene constructs in Xenopus embryos. One of the constructs had 404 bp of hsp 30C 5′-flanking region, whereas the other had 3.6 kb. Both gene constructs had 1 kb of 3′-flanking region. RT-PCR assays were employed to detect the expression of these microinjected genes. The presence of extensive 5′- and 3′-flanking regions of the hsp 30C gene did not confer proper developmental regulation, since heat-inducible expression of both of the microinjected constructs was detectable at the midblastula stage. The premature expression of the microinjected hsp 30 gene was not a result of high plasmid copy number or the presence of plasmid DNA sequences. These results suggest that the microinjected genes contain all the cis-acting DNA sequences required for correct heat-inducible regulation but do not contain the elements required for the proper regulation of hsp 30 gene expression during development. It is possible that regulatory elements controlling the developmental expression of the hsp30 genes may reside upstream or downstream of the entire cluster. © 1993Wiley-Liss, Inc. 相似文献
8.
Kei Kinoshita Tomoko Bessho Makoto Asashima 《Development, growth & differentiation》1995,37(3):303-309
Single animal hemisphere blastomeres isolated from the eight-cell stage Xenopus embryos differentiate into mesoderm when treated with activin A, whereas when cultured without activin they form atypical epidermis. The mesoderm tissue induced by activin is different between dorsal and ventral blastomeres. In the present study, the duration and timing of activin treatment was varied, in order to identify the critical stage when animal blastomeres acquire competence to respond to activin A. It was shown that the critical time was 45 min after blastomere isolation, which corresponds approximately to NF stage 6 (32-cell stage) of normal development. The competence gradually increased during the morula stages. 相似文献
9.
Recent developments in genomic resources and high‐throughput transgenesis techniques have allowed Xenopus to ‘metamorphose’ from a classic model for embryology to a leading‐edge experimental system for functional genomics. This process has incorporated the fast‐breeding diploid frog, Xenopus tropicalis, as a new model‐system for vertebrate genomics and genetics. Sequencing of the X. tropicalis genome is nearly complete, and its comparison with mammalian sequences offers a reliable guide for the genome‐wide prediction of cis‐regulatory elements. Unique cDNA sets have been generated for both X. tropicalis and X. laevis, which have facilitated non‐redundant, systematic gene expression screening and comprehensive gene expression analysis. A variety of transgenesis techniques are available for both X. laevis and X. tropicalis, and the appropriate procedure may be chosen depending on the purpose for which it is required. Effective use of these resources and techniques will help to reveal the overall picture of the complex wiring of gene regulatory networks that control vertebrate development. 相似文献
10.
11.
The kidney has been used as a model organ to analyze organogenesis. In in vitro experiments using Xenopus blastula ectoderm, the development of pronephric tubules (the prototype of the kidney) may be induced by treatment with activin A and retinoic acid (RA). The present study examined whether pronephric tubules induced in ectodermal explants exhibited similar characteristics to those of normal embryos at the molecular level. The experimental conditions required for high frequency induction (100%) of pronephric tubule formation from presumptive ectoderm without the development of muscle and notochord were determined. The developmental expression of the pronephros marker genes Xlim-1 and Xlcaax-1 was examined in induced pronephric tubules. After treatment with 10 ng/mL activin A and 10−4 mol/L RA, only pronephric tubules were induced at a high frequency. Induced pronephric tubules showed the same timing and patterns of expression for the marker genes Xlim-1 and Xlcaax-1 as normal embryos. These results suggest that the in vitro development of pronephric tubules induced in the presumptive ectoderm by activin A and RA parallels normal development at the molecular level. 相似文献
12.
Larvae of the South African clawed frog (Xenopus laevis) can regenerate the telencephalon, which consists of the olfactory bulb and the cerebrum, after it has been partially removed. Some authors have argued that the telencephalon, once removed, must be reconnected to the olfactory nerve in order to regenerate. However, considerable regeneration has been observed before reconnection. Therefore, we have conducted several experiments to learn whether or not reconnection is a prerequisite for regeneration. We found that the olfactory bulb did not regenerate without reconnection, while the cerebrum regenerated by itself. On the other hand, when the brain was reconnected by the olfactory nerve, both the cerebrum and the olfactory bulb regenerated. Morphological and histological investigation showed that the regenerated telencephalon was identical to the intact one in morphology, types and distributions of cells, and connections between neurons. Froglets with a regenerated telencephalon also recovered olfaction, the primary function of the frog telencephalon. These results suggest that the Xenopus larva requires reconnection of the regenerating brain to the olfactory nerve in order to regenerate the olfactory bulb, and thus the regenerated brain functions, in order to process olfactory information. 相似文献
13.
棉花粉蚧热休克蛋白基因的鉴定 总被引:2,自引:0,他引:2
热休克蛋白(heat shock proteins,Hsps)是生物体或细胞受到热胁迫后新合成的一类遗传上高度保守的蛋白,在昆虫应对外界环境因子胁迫时起着重要作用。为了系统研究棉花粉蚧Phenacoccus solenopsis Hsp基因家族,对棉花粉蚧转录组基因注释信息进行分析、获得目标序列,并应用NCBI上Blast X等软件进行比对、共鉴定出24条热激蛋白(Hsp)基因,包括3个Hsp90、8个Hsp70、2个Hsp60和11个s Hsp(small heat shock protein,s Hsp)基因。对棉花粉蚧与模式昆虫家蚕Bombyx mori、黑腹果蝇Drosophila melanogaster、赤拟谷盗Tribolium castaneum系统进化关系分析显示,昆虫的小分子量热休克蛋白s Hsp具有很强的种属特异性,Hsp70家族的保守性比s Hsp强。棉花粉蚧热激蛋白基因的鉴定为深入研究该虫Hsp与生长发育、抗逆境的相互关系奠定了基础。 相似文献
14.
15.
Hidetaka Kosako Yukiko Gotoh Eisuke Nishida 《Development, growth & differentiation》1996,38(6):577-582
Mitogen-activated protein kinase (MAPK) was originally identified as a serine/threonine protein kinase that is rapidly activated in response to various growth factors and tumor promoters in mammalian cultured cells. The kinase cascade including MAPK and its direct activator, MAPK kinase (MAPKK), is now believed to transmit various extracellular signals into their intracellular targets in eukaryotic cells. It has been reported that activation of MAPKK and MAPK occurs during the meiotic maturation of oocytes in several species, including Xenopus laevis . Studies with neutralizing antibodies against MAPKK, MAPK phosphatases and constitutively active MAPKK or MAPK have revealed a crucial role of the MAPKK/MAPK cascade in a number of developmental processes in Xenopus oocytes and embryos. 相似文献
16.
利用内毒素(LPS)血症小鼠模型,观察HSF1基因剔除对热休克反应(HSR)保护作用的影响.采用腹腔注射LPS建立内毒素血症小鼠模型,HSR采用肛温42℃维持15 min,室温恢复24 h,利用RT-PCR、苏木素-伊红(HE)染色、丙二醛测定以及死亡率,计算和分析重要脏器组织中炎症介质基因的表达、脏器损伤程度及小鼠存活率.注射LPS 15mg/kg 72 h后HSR LPS(HSF1 / )组存活率(7/15)显著高于LPS(HSF1 / )组(0/15)、LPS(HSF1-/-)组(0/14)和HSR LPS(HSF1-/-)组(0/14),而注射LPS 14 mg/kg 72 h后,LPS(HSF1 / )组存活率(5/15)显著高于LPS(HSF1-/-)组(0/13)和HSR LPS(HSF1-/-)组(0/13).在注射LPS 12 h后LPS(HSF1 / )组、LPS(HSF1-/-)组和HSR LPS(HSF1-/-)组的心、肺组织丙二醛含量显著升高,但HSR LPS(HSF1 / )组不升高.肺组织炎症介质基因IL-IB、IL-6、TNF-α、CCL-2、SOCS3、MCSF、GCSF、IL-15在LPS(HSF1-/-)组和LPS(HSF1 / )组表达上调,HSR LPS(HSF1-/-)组除IL-15较低外其他上调更甚,HSR LPS(HSF1 / )组除IL-1β和TNF-α较高外其他显著下调.注射LPS后LPS(HSF1 / )组和LPS(HSF1-/-)组的肺、肝、肾病理形态改变明显,HSR LPS(HSF1 / )组改变较轻,HSR LPS(HSF1-/-)组改变更加严重.HSF1基因剔除能显著消减HSR对内毒素血症小鼠的保护作用. 相似文献
17.
V. Habrov M. Tak
J. Navrtil J. Mcha N. ekov J. Jonk 《Molecular reproduction and development》1996,44(3):332-342
Mature Xenopus laevis spermatozoa are capable of binding plasmid pAPrC carrying the complete Rous sarcoma virus (RSV) DNA. Each sperm cell associates, on an average, with 70–160 molecules of the plasmid DNA in a DNase resistant form, if the spermatozoa were exposed to the DNA at a concentration of 1.0–1.4 μg/107 sperm cells. Fertilization with pAPrC-treated spermatozoa induced developmental malformations in 25–30% of embryos. Immunohistochemical analysis of tissue sections from defective animals revealed aberrations in myotomal structures, and increased expression of pp60src protein in myoblasts, neuronal tube, and epidermis. The presence of characteristic v-src and RSV-long terminal repeat (LTR) sequences in X. laevis DNA was detected by PCR analysis. Embryonic RNA hybridized with a src-specific and an RSV-LTR specific probes indicating expression of the viral DNA. Plasmid DNAs without the v-src gene (pATV9) or completely free of any RSV sequences (pBR322) did not induce any changes in embryonic development. Our results provide evidence that the pBR322-cloned DNA form of the RSV genome associates with frog sperm cells in a DNase-resistant manner suggesting internalization and may be subsequently carried into eggs during the process of artificial fertilization. Correlation between the defective morphogenesis of X. laevis and increased expression of the src gene as well as an interference of RSV DNA with the developmental programs of frog embryos are discussed. © 1996 Wiley-Liss, Inc. 相似文献
18.
19.
Now that transgenic strains of Xenopus laevis and X. tropicalis can be generated efficiently and with genomic sequence resources available for X. tropicalis, early amphibian development can be studied using integrated biochemical and genetic approaches. However, housing large numbers of animals generated during genetic screens or produced as novel transgenic lines presents a considerable challenge. We describe a method for cryopreserving Xenopus sperm that should facilitate low maintenance, long-term storage of male gametes. By optimising the cryoprotectant, the rates of cooling and thawing, and conditions for fertilisation, sperm from the equivalent of one-eighth of a X. laevis testis or of two X. tropicalis testes have been cryopreserved and used to fertilise eggs of both species after thawing. Sperm undergo a substantial loss of viability during a freeze-thaw cycle, but sufficient survive to fertilise eggs. Gametes of mutagenised frogs are being stored in connection with a screen for developmental mutations. 相似文献
20.