首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bulk of experiments that study stressor effects on ecosystem functioning consider only individual functions one at a time, and such narrow focus may well bias our understanding of the overall impact on ecosystem functioning. We used data from six published experiments in which marine illuminated sediment systems were exposed to nutrient enrichment, toxicants, sedimentation and warming, either alone or in combination. Measured functions were primary production, community respiration, inorganic nitrogen and phosphorus fluxes, and autotrophic biomass. We calculated two indices of multifunctionality that simultaneously considered all six functions: (i) a weighted average level of the functions and (ii) the number of functions that simultaneously exceed a critical threshold level. Stressors affected individual functions both positively and negatively, but multifunctionality was generally unaffected by both single and joint stressors. The filtering capacity of coastal illuminated sediment systems thus appears resilient to exposure to moderate levels of multiple stressors, most probably due to the robustness of the benthic microalgal community. We recommend using a multifunctionality approach in future studies on cumulative stressor effects on ecosystem functioning, particularly when considering functions related to ecosystem services.  相似文献   

2.
《植物生态学报》2016,40(8):735
Aims Over the past twenty years, most biodiversity and ecosystem functioning (BEF) research has focused on the effects of species diversity on single or just a few ecosystem functions. However, ecosystems are primarily valued for their ability to maintain multiple functions and services simultaneously (i.e. multifunctionality here- after). This paper first introduced the constantly perfected concept of “multifunctionality”, and then tried to make some modifications to the current mainstream quantitative method in order to evaluate the multifunctionality of grassland communities with the management of clipping, enclosure and grazing in Inner Mongolia, investigating the relationship between the multifunctionality and species diversity. Methods In free grazing grassland, four sites were set and each site was divided into two parts to conduct enclosure and clipping management respectively. After seven years, 15 quadrats (1 m × 1 m) were established for each type of management in each site (total 60 quadrats for each type) using the regular arrangement method; as a control, we also established 20 quadrats (two sites) in grazing grassland. For each quadrat, we carried out plants census and collected soil mixture sample, measuring 16 soil variables, and then calculated the biodiversity indices and multifunctionality index (M-index) by means of factor analysis. Important findings The results showed that M-indexes by the two evaluation methods were strongly correlated at both quadrat and site scale, suggesting that our modified method was reliable. Over-grazed communities had the lowest biodiversity indices and their most soil indicators were also low, showing obvious degradation features. Enclosure and clipping communities (seven years) had higher biodiversity and better soil indicators. The rank of M-indexes was clipping community (0.2178) > enclosure community (0.0704) > grazing community (-0.8031). The vegetation was distributed mainly along the gradients of water and fertility. Among the biodiversity indices, evenness (Pielou) index and richness (Margelf) index were most strongly correlated with multifunctionality, and their explanatory power (R2) for M-index were higher at site scale (R2 = 0.5921, p = 0.0093; R2 = 0.7499, p = 0.0007) than at quadrat scale (R2 = 0.1871, p < 0.0001; R2 = 0.1601, p < 0.0001), indicating study scale played an important role in the determinants of multifunctionality. At both quadrat and site scales, M-indexes is a linear positive function with species evenness and a hump-shaped function of species richness. Therefore, in contrast to enclosure, clipping was more conducive to maintain the ecosystem multifunctionality in this region, and the ecosystem with moderate specie richness, where these species are evenly distributed might have better multifunctionality.  相似文献   

3.
随着全球变化对生物多样性的影响不断加剧, 生物多样性与生态系统功能之间相互关系(BEF)的研究显得极为重要。过去的20多年, BEF的研究大多集中在对物种多样性与单一或少数生态系统功能之间关系的探讨, 但生态系统最为重要的价值是同时维持多种服务和功能的能力, 基于此, 该文首次在国内引入近年来不断完善的生态系统多功能性(multifunctionality)的概念, 并对目前主流的评价方法进行了改进, 从而对内蒙古三种利用方式(刈割、围封、放牧)下的草地群落进行了多功能性评价, 并探讨了多功能性与物种多样性之间的关系。结果显示本研究改进的方法和目前主流方法评价得出的多功能性指数在样方和样地尺度上都有很高的相关性(R2 = 0.6956, p < 0.0001; R2 = 0.9231, p < 0.0001), 表明该文作者改进后的方法是可靠的。重度放牧的草地群落物种多样性水平最低, 绝大多数土壤功能指标较差, 表现出退化特征; 7年的围封和刈割群落均有较高的物种多样性水平和改善的土壤功能指标; 三者的多功能性指数为刈割(0.2178) >围封(0.0704) >放牧(-0.8031)。植被样方主要沿水肥梯度分布; 多样性指数中, 均匀度指数(Pielou index)和丰富度指数(Margelf index)对多功能性的影响作用最大, 均为样方尺度(R2 = 0.1871, p < 0.0001; R2 = 0.1601, p < 0.0001)小于样地尺度(R2 = 0.5921, p = 0.0093; R2 = 0.7499, p = 0.0007), 有尺度依赖性; 多功能性在样方和样地尺度上均与物种均匀度呈线性正相关关系, 而与物种丰富度呈单峰曲线关系。该文研究结果表明, 相对于重度放牧和围封, 刈割更有利于维持该地区生态系统的多功能性; 物种丰富度适中且物种分布均匀的生态系统可能有更好的多功能性。  相似文献   

4.
《Ecology letters》2018,21(1):31-42
Humans require multiple services from ecosystems, but it is largely unknown whether trade‐offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade‐offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for ‘win‐win’ forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8‐49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.  相似文献   

5.
羌塘高寒草地物种多样性与生态系统多功能关系格局   总被引:2,自引:0,他引:2  
传统的生物多样性-生态系统功能研究大多侧重于单一生态系统功能与物种多样性的关系,忽略了生态系统的重要价值在于其能够同时提供多种功能或服务,即生态系统的多功能性。基于藏北羌塘高寒草地样带调查数据,选取植被地上生物量、地下生物量、土壤全氮、硝态氮及铵态氮含量、土壤全磷含量、土壤有机碳储量等7个与植物生长、养分循环、土壤有机碳蓄积相关的参数来表征生态系统多功能性。采用上述参数转换为Z分数后的平均值计算多功能性指数(M)。分析了不同生物多样性指数与生态系统多功能指数的关系以及年降水量和年均温度对物种多样性和生态系统多功能性指数的影响。结果表明,物种丰富度指数与生态系统多功能性之间呈极显著的正相关关系,Shannon-wiener和Simpson物种多样性指数也与多功能性指数间呈显著的正相关,但多功能性指数与Pielou均匀度指数没有表现出明显的相关关系。物种丰富度与表征植物生长、养分循环以及土壤有机碳蓄积的生态系统功能指数间也均呈极显著的正相关关系。降水格局显著影响羌塘高原物种丰富度和生态系统多功能指数,二者均随年降雨量的增加而显著增加,但物种多样性指数并未与年降水量呈现显著相关关系。研究强调了群落物种丰富度即群落物种数量对维持生态系统多功能性的重要意义,这意味着由于人类活动导致的物种丧失可能会给藏北高寒草地生态系统多功能和生态服务带来更为严重的后果。就退化草地恢复或草地可持续管理而言,在藏北羌塘地区,本地植物种的物种丰富度恢复和维持应作为重要目标之一。  相似文献   

6.
Biodiversity is declining at a rapid pace and, with it, the ecosystem functions that support ecosystem services. To counter this, ecosystem restoration is necessary. While the relationship between biodiversity and ecosystem functioning has been studied in depth, the relationship between ecosystem restoration and ecosystem functioning is studied less. We performed an observational study in grasslands undergoing restoration management toward Nardus grassland. Eight ecosystem functions, representing flows of energy, matter or information between functional compartments, were measured across five successive restoration phases along the restoration gradient. The levels of functioning were then compared along the gradient for both the individual functions and a multifunctionality index. We hypothesized that plant richness increases when grasslands are more restored and this increase in biodiversity is paralleled by an increase in ecosystem functioning. In our study, the degraded grasslands, generally occurring on more nutrient-rich soils, were dominated by competitive fast-growing species, resulting in higher process rates and thus in higher, faster functioning. Likewise, more restored grasslands exhibited slower process rates and, thus, lower functioning. When studying ecosystem functioning, value judgments are easily made. Especially in a restoration context, high functioning does not necessarily equals well functioning, as this depends on the stakeholder perspective. We need to ask ourselves if a high functioning ecosystem is most desirable, especially in a restoration or conservation context. Policy frameworks will need to balance these goals.  相似文献   

7.
海草场生态系统及其修复研究进展   总被引:1,自引:0,他引:1  
海草场能够提供重要的生态系统服务。自20世纪末以来,由于人类活动和自然灾害的影响,全球范围内的海草场出现了急剧衰退,由此也促进了海草场生态系统的研究以及海草场人工修复技术的发展。近年来,针对海草场生境流失的现状,中国也开始开展海草场修复工作。从以下方面进行论述:(1)海草的种类、分布,海草场生态系统功能及其生态系统服务:与陆地系统相比,全球海草物种多样性较低,了解海草的分布特征有助于通过了解海草如何适应当地环境压力,以揭示海草适应环境的能力;海草场提供重要而广泛的自然生态系统服务,特别是在维护近岸生态系统健康和满足人类需求过程中起到重要的作用;(2)海草场的衰退及其原因:认识并缓解人类压力对海草场的危害是促进海草场生态系统可持续发展的重要一环;(3)国内外海草场修复现状:以此阐明海草场修复原理,为海草场修复提供科学的方法;(4)总结与讨论:基于科学研究背景,为中国海草场生态系统保护和修复提出建议。海草场的修复和保护应当相辅相成,并与我国海岸长远规划相结合,以此推动我国海草场生态系统服务的可持续发展。  相似文献   

8.
Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest challenges in multifunctionality assessment is balancing analytical simplicity with ecosystem complexity. As an alternative to index‐based approaches, we introduce a multivariate network analysis that uses network theory to assess multifunctionality in terms of the relationships between species'' functional traits, environmental characteristics, and functions. We tested our approach in a complex and heterogeneous ecosystem, marine intertidal sandflats. We considered eight ecosystem function, five macrofaunal functional trait groups derived from 36 species, and four environmental characteristics. The indicators of ecosystem functions included the standing stock of primary producers, oxygen production, benthic oxygen consumption, DIN (ammonium and NOx efflux) and phosphate release from the sediments, denitrification, and organic matter degradation at the sediment surface. Trait clusters included functional groups of species that shared combinations of biological traits that affect ecosystem function: small mobile top 2 cm dwellers, suspension feeders, deep‐dwelling worms, hard‐bodied surface dwellers, and tube‐forming worms. Environmental characteristics included sediment organic matter, %mud, %shell hash, and %sediment water content. Our results visualize and quantify how multiple ecosystem elements are connected and contribute to the provision of functions. Small mobile top 2 cm dwellers (among trait clusters) and %mud (among environmental characteristics) were the best predictor for multiple functions. Detailed knowledge of multifunctionality relationships can significantly increase our understanding of the real‐world complexity of natural ecosystems. Multivariate network analysis, as a standalone method or applied alongside already existing single index multifunctionality methods, provides means to advance our understanding of how environmental change and biodiversity loss can influence ecosystem performance across multiple dimensions of functionality. Embedding such a detailed yet holistic multifunctionality assessment in environmental decision‐making will support the assessment of multiple ecosystem services and social‐ecological values.  相似文献   

9.
Megaherbivores perform vital ecosystem engineering roles, and have their last remaining stronghold in Africa. Of Africa's remaining megaherbivores, the common hippopotamus (Hippopotamus amphibius) has received the least scientific and conservation attention, despite how influential their ecosystem engineering activities appear to be. Given the potentially crucial ecosystem engineering influence of hippos, as well as mounting conservation concerns threatening their long-term persistence, a review of the evidence for hippos being ecosystem engineers, and the effects of their engineering, is both timely and necessary. In this review, we assess, (i) aspects of hippo biology that underlie their unique ecosystem engineering potential; (ii) evaluate hippo ecological impacts in terrestrial and aquatic environments; (iii) compare the ecosystem engineering influence of hippos to other extant African megaherbivores; (iv) evaluate factors most critical to hippo conservation and ecosystem engineering; and (v) highlight future research directions and challenges that may yield new insights into the ecological role of hippos, and of megaherbivores more broadly. We find that a variety of key life-history traits determine the hippo's unique influence, including their semi-aquatic lifestyle, large body size, specialised gut anatomy, muzzle structure, small and partially webbed feet, and highly gregarious nature. On land, hippos create grazing lawns that contain distinct plant communities and alter fire spatial extent, which shapes woody plant demographics and might assist in maintaining fire-sensitive riverine vegetation. In water, hippos deposit nutrient-rich dung, stimulating aquatic food chains and altering water chemistry and quality, impacting a host of different organisms. Hippo trampling and wallowing alters geomorphological processes, widening riverbanks, creating new river channels, and forming gullies along well-utilised hippo paths. Taken together, we propose that these myriad impacts combine to make hippos Africa's most influential megaherbivore, specifically because of the high diversity and intensity of their ecological impacts compared with other megaherbivores, and because of their unique capacity to transfer nutrients across ecosystem boundaries, enriching both terrestrial and aquatic ecosystems. Nonetheless, water pollution and extraction for agriculture and industry, erratic rainfall patterns and human–hippo conflict, threaten hippo ecosystem engineering and persistence. Therefore, we encourage greater consideration of the unique role of hippos as ecosystem engineers when considering the functional importance of megafauna in African ecosystems, and increased attention to declining hippo habitat and populations, which if unchecked could change the way in which many African ecosystems function.  相似文献   

10.
生物多样性与生态系统多功能性: 进展与展望   总被引:4,自引:0,他引:4  
全球变化和人类活动引起的生物多样性丧失将会对生态系统功能产生诸多不利影响, 如生产力下降、养分循环失衡等。因此, 始于20世纪90年代的生物多样性与生态系统功能(biodiversity and ecosystem functioning, BEF)研究一直是生态学界关注的热点。然而, 随着研究的深入, 人们逐步认识到生态系统并非仅仅提供单个生态系统功能, 而是能同时提供多个功能, 这一特性被称之为“生态系统多功能性” (ecosystem multifunctionality, EMF)。尽管有此认识, 但直到2007年, 研究者才开始定量描述生物多样性与生态系统多功能性(biodiversity and ecosystem multifunctionality, BEMF)的关系。目前, BEMF研究已成为生态学研究的一个重要议题, 但仍存在很多问题和争议, 如缺少公认的多功能性测度标准、生态系统不同功能之间的权衡问题等。本文概述了BEMF研究的发展历程、常用的量化方法、EMF的维持机制和不同研究视角下BEMF的关系。针对现有研究中的不足, 本文还总结了需要进一步深入研究的地方, 特别强调了优化EMF测度方法和研究不同维度生物多样性与EMF间关系的重要性, 以期对未来的BEMF研究有所帮助。  相似文献   

11.
A growing body of evidence highlights the importance of biodiversity for ecosystem stability and the maintenance of optimal ecosystem functionality. Conservation measures are thus essential to safeguard the ecosystem services that biodiversity provides and human society needs. Current anthropogenic threats may lead to detrimental (and perhaps irreversible) ecosystem degradation, providing strong motivation to evaluate the response of ecological communities to various anthropogenic pressures. In particular, ecosystem functions that sustain key ecosystem services should be identified and prioritized for conservation action. Traditional diversity measures (e.g. ‘species richness’) may not adequately capture the aspects of biodiversity most relevant to ecosystem stability and functionality, but several new concepts may be more appropriate. These include ‘response diversity’, describing the variation of responses to environmental change among species of a particular community. Response diversity may also be a key determinant of ecosystem resilience in the face of anthropogenic pressures and environmental uncertainty. However, current understanding of response diversity is poor, and we see an urgent need to disentangle the conceptual strands that pervade studies of the relationship between biodiversity and ecosystem functioning. Our review clarifies the links between response diversity and the maintenance of ecosystem functionality by focusing on the insurance hypothesis of biodiversity and the concept of functional redundancy. We provide a conceptual model to describe how loss of response diversity may cause ecosystem degradation through decreased ecosystem resilience. We explicitly explain how response diversity contributes to functional compensation and to spatio‐temporal complementarity among species, leading to long‐term maintenance of ecosystem multifunctionality. Recent quantitative studies suggest that traditional diversity measures may often be uncoupled from measures (such as response diversity) that may be more effective proxies for ecosystem stability and resilience. Certain conclusions and recommendations of earlier studies using these traditional measures as indicators of ecosystem resilience thus may be suspect. We believe that functional ecology perspectives incorporating the effects and responses of diversity are essential for development of management strategies to safeguard (and restore) optimal ecosystem functionality (especially multifunctionality). Our review highlights these issues and we envision our work generating debate around the relationship between biodiversity and ecosystem functionality, and leading to improved conservation priorities and biodiversity management practices that maximize ecosystem resilience in the face of uncertain environmental change.  相似文献   

12.
Biodiversity and food chain length each can strongly influence ecosystem functioning, yet their interactions rarely have been tested. We manipulated grazer diversity in seagrass mesocosms with and without a generalist predator and monitored community development. Changing food chain length altered biodiversity effects: higher grazer diversity enhanced secondary production, epiphyte grazing, and seagrass biomass only with predators present. Conversely, changing diversity altered top‐down control: predator impacts on grazer and seagrass biomass were weaker in mixed‐grazer assemblages. These interactions resulted in part from among‐species trade‐offs between predation resistance and competitive ability. Despite weak impact on grazer abundance at high diversity, predators nevertheless enhanced algal biomass through a behaviourally mediated trophic cascade. Moreover, predators influenced every measured variable except total plant biomass, suggesting that the latter is an insensitive metric of ecosystem functioning. Thus, biodiversity and trophic structure interactively influence ecosystem functioning, and neither factor's impact is predictable in isolation.  相似文献   

13.
Global change affects ecosystem functioning both directly by modifications in physicochemical processes, and indirectly, via changes in biotic metabolism and interactions. Unclear, however, is how multiple anthropogenic drivers affect different components of community structure and the performance of multiple ecosystem functions (ecosystem multifunctionality). We manipulated small natural freshwater ecosystems to investigate how warming and top predator loss affect seven ecosystem functions representing two major dimensions of ecosystem functioning, productivity and metabolism. We investigated their direct and indirect effects on community diversity and standing stock of multitrophic macro and microorganisms. Warming directly increased multifunctional ecosystem productivity and metabolism. In contrast, top predator loss indirectly affected multifunctional ecosystem productivity via changes in the diversity of detritivorous macroinvertebrates, but did not affect ecosystem metabolism. In addition to demonstrating how multiple anthropogenic drivers have different impacts, via different pathways, on ecosystem multifunctionality components, our work should further spur advances in predicting responses of ecosystems to multiple simultaneous environmental changes.  相似文献   

14.
内蒙古草原是我国北方的重要生态屏障和绿色畜牧业基地, 放牧是草原生态系统的主要利用和管理方式, 在放牧管理中充分发挥生态系统某一项或几项服务和功能最大利用价值时, 往往会与其他服务(功能)发生冲突, 需要权衡多项生态系统服务和功能, 制定合理的放牧管理制度。该研究以内蒙古锡林郭勒典型草原为例, 通过设置不放牧、轻度放牧、中度放牧以及重度放牧的放牧梯度, 从多项生态系统服务和功能权衡的角度比较了最适放牧管理强度。结果显示, 在放牧管理的草地生态系统服务和功能的权衡中, 权衡、协同、不相关关系同时存在, 如土壤呼吸速率与植物群落净生长量、生物多样性与植物群落净光合速率表现为权衡关系, 植物群落净生长量分别与土壤含水量、植物群落净光合速率及草地蒸散速率存在协同关系, 土壤有机碳含量与其他服务或功能间呈不相关关系; 放牧能不同程度地削弱多项生态系统服务及功能间的权衡关系(冲突对立关系); 中度放牧条件下的多项生态系统服务及功能的协同性最佳。  相似文献   

15.
植物功能性状、功能多样性与生态系统功能: 进展与展望   总被引:1,自引:0,他引:1  
植物功能性状与生态系统功能是生态学研究的一个重要领域和热点问题。开展植物功能性状与生态系统功能的研究不仅有助于人类更好地应对全球变化情景下生物多样性丧失的生态学后果,而且能为生态恢复实践提供理论基础。近二十年来,该领域的研究迅速发展,并取得了一系列的重要研究成果,增强了人们对植物功能性状-生态系统功能关系的认识和理解。本文首先明确了植物功能性状的概念, 评述了近年来植物功能性状-生态系统功能关系领域的重要研究结果, 尤其是植物功能性状多样性-生态系统功能关系研究现状; 提出了未来植物功能性状与生态系统功能关系研究中应加强植物地上和地下性状之间关系及其与生态系统功能、植物功能性状与生态系统多功能性、不同时空尺度上植物功能性状与生态系统功能, 以及全球变化和消费者的影响等方面。  相似文献   

16.
Biodiversity and ecosystem functioning in naturally assembled communities   总被引:1,自引:0,他引:1  
Approximately 25 years ago, ecologists became increasingly interested in the question of whether ongoing biodiversity loss matters for the functioning of ecosystems. As such, a new ecological subfield on Biodiversity and Ecosystem Functioning (BEF) was born. This subfield was initially dominated by theoretical studies and by experiments in which biodiversity was manipulated, and responses of ecosystem functions such as biomass production, decomposition rates, carbon sequestration, trophic interactions and pollination were assessed. More recently, an increasing number of studies have investigated BEF relationships in non‐manipulated ecosystems, but reviews synthesizing our knowledge on the importance of real‐world biodiversity are still largely missing. I performed a systematic review in order to assess how biodiversity drives ecosystem functioning in both terrestrial and aquatic, naturally assembled communities, and on how important biodiversity is compared to other factors, including other aspects of community composition and abiotic conditions. The outcomes of 258 published studies, which reported 726 BEF relationships, revealed that in many cases, biodiversity promotes average biomass production and its temporal stability, and pollination success. For decomposition rates and ecosystem multifunctionality, positive effects of biodiversity outnumbered negative effects, but neutral relationships were even more common. Similarly, negative effects of prey biodiversity on pathogen and herbivore damage outnumbered positive effects, but were less common than neutral relationships. Finally, there was no evidence that biodiversity is related to soil carbon storage. Most BEF studies focused on the effects of taxonomic diversity, however, metrics of functional diversity were generally stronger predictors of ecosystem functioning. Furthermore, in most studies, abiotic factors and functional composition (e.g. the presence of a certain functional group) were stronger drivers of ecosystem functioning than biodiversity per se. While experiments suggest that positive biodiversity effects become stronger at larger spatial scales, in naturally assembled communities this idea is too poorly studied to draw general conclusions. In summary, a high biodiversity in naturally assembled communities positively drives various ecosystem functions. At the same time, the strength and direction of these effects vary highly among studies, and factors other than biodiversity can be even more important in driving ecosystem functioning. Thus, to promote those ecosystem functions that underpin human well‐being, conservation should not only promote biodiversity per se, but also the abiotic conditions favouring species with suitable trait combinations.  相似文献   

17.
Ecosystems face multiple anthropogenic threats globally, and the effects of these environmental stressors range from individual‐level organismal responses to altered system functioning. Understanding the combined effects of stressors on process rates mediated by individuals in ecosystems would greatly improve our ability to predict organismal multifunctionality (e.g. multiple consumer‐mediated functions). We conducted a laboratory experiment to test direct and indirect, as well as immediate and delayed effects of a heat wave (pulsed stress) and micropollutants (MPs) (prolonged stress) on individual consumers (the great pond snail Lymnaea stagnalis) and their multifunctionality (i.e. consumption of basal resources, growth, reproduction, nutrient excretion and organic‐matter cycling). We found that stressful conditions increased the process rates of multiple functions mediated by individual consumers. Specifically, the artificial heat wave increased process rates in the majority of the quantified functions (either directly or indirectly), whereas exposure to MPs increased consumption of basal resources which led to increases in the release of nutrients and fine particulate organic matter. Moreover, snails exposed to a heat wave showed decreased reproduction and nutrient excretion after the heat‐wave, indicating the potential for ecologically relevant delayed effects. Our study indicates that the immediate and delayed effects of stressors on individual organisms may directly and indirectly impact multiple ecosystem functions. In particular, delayed effects of environmental stress on individual consumers may cumulatively impede recovery due to decreased functioning following a perturbation. Reconciling these results with studies incorporating responses at higher levels of biological complexity will enhance our ability to forecast how individual responses upscale to ecosystem multifunctionality.  相似文献   

18.
Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive‐based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment.  相似文献   

19.
Here, we evaluate the ecosystem functioning and the ecosystems services supply of different vegetation types (grasslands, shrublands and woodlands) under contrasting management regimes by comparing a protected area with the surrounding landscape, which has been subjected to human disturbance in the Eastern Hills of Uruguay. We propose, based on functional attributes and vegetation physiognomy, a State and Transition Model for the dynamics of the grassland–woodland mosaic. We used remote sensing techniques to: (i) develop a land‐cover map of the study area based on supervised Landsat imagery classification, and (ii) compare attributes of the ecosystem functioning (productivity and seasonality) and service supply derived from the Normalized Difference Vegetation Index (NDVI) images provided by the moderate resolution imaging spectroradiometer (MODIS) sensor. The land‐cover map showed that grasslands and shrublands were the most extensive land covers in the study area. These vegetation types presented higher productivity, seasonality and ecosystem service supply, outside the protected area than inside it. On the other hand, woodlands showed higher productivity, ecosystem service supply and lower seasonality inside the protected area than outside of it. Two axes represented the grassland–woodland mosaic dynamic: (i) the mean annual and (ii) the intra‐annual coefficient of variation of the NDVI. Our results highlight that conservation of grasslands, shrublands and woodlands require different management strategies based on particular disturbance regimes like moderate grazing and controlled burns. Moderate disturbances may help to preserve ecosystem services provisioning in grasslands and shrublands. On the contrary, woodland conservation requires a more rigorous regime of protection against disturbances.  相似文献   

20.
African savannahs are among the few places on earth where diverse communities of mega- and meso-sized ungulate grazers dominate ecosystem functioning. Less conspicuous, but even more diverse, are the communities of herbivorous insects such as grasshoppers, which share the same food. Various studies investigated the community assembly of these groups separately, but it is poorly known how ungulate communities shape grasshopper communities. Here, we investigated how ungulate species of different body size alter grasshopper communities in a South African savannah. White rhino is the most abundant vertebrate herbivore in our study site. Other common mesoherbivores include buffalo, zebra and impala. We hypothesized that white rhinos would have greater impact than mesoherbivores on grasshopper communities. Using 10-year-old exclosures, at eight sites we compared the effects of ungulates on grasshopper communities in three nested treatments: (i) unfenced plots (‘control plots’) with all vertebrate herbivores present, (ii) plots with a low cable fence, excluding white rhino (‘megaherbivore exclosures’), and (iii) plots with tall fences, excluding all herbivores larger than rodents (‘complete ungulate exclosures’). In each plot, we collected data of vegetation structure, grass and grasshopper community composition. Complete ungulate exclosures contained 30 % taller vegetation than megaherbivore exclosures and they were dominated by different grass and grasshopper species. Grasshoppers in complete ungulate exclosures were on average 3.5 mm longer than grasshoppers in megaherbivore exclosures, possibly due to changes in plant communities or vegetation structure. We conclude that surprisingly, in this megaherbivore hotspot, mesoherbivores, instead of megaherbivores, most strongly affect grasshopper communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号