首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Migrations of diverse wildlife species often converge in space and time, with their journeys shaped by similar forces (i.e. geographic barriers and seasonal resources and conditions); we term this ‘co-migration’. Recent studies have illuminated multi-speciesmigrations by land and sea including the simultaneous movements of numerous insects, birds, bats and of fish invertebrates marine predators. Beyond their significance as natural wonders, species with overlapping migrations may interact ecologically, with potential effects on population and community dynamics. Direct and indirect ecological interactions (including predation and competition) between migrant species remain poorly understood, in part because migration is the least-studied phase of animals’ annual cycles. To address this gap, we conducted a literature review to examine whether animal migration studies incorporate multiple species and to what extent they investigate interspecific interactions between co-migrants. Following a key word search, we read all migration research papers in 23 relevant peer-reviewed journals during 2008–2017. Thirty percent of animal migration papers reported two or more species with coinciding migrations, suggesting that co-migrations are common, although few studies investigated or discussed these mixed-species migrations further. Synthesizing these, we present examples and describe five types of ecological interactions between migrating species, including predator–prey, host–parasite and commensal relationships. Considering migratory animals as interacting with migrant communities will enhance understanding of the drivers of migration and could improve predictions about wildlife responses to global change. Further research focused on multi-species migrations could also inform conservation efforts for migratory animal populations, many of which are declining or shifting, with unexplored consequences for other co-migratory species.  相似文献   

2.
Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one‐third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population‐level plant‐plant, plant‐herbivore, and predator‐prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant‐plant), (2) herbivory, neutralism, or mutualism (plant‐herbivore), or (3) neutralism and predation (predator‐prey), as water availability crosses physiological, behavioural, or population‐density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top‐down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts of our findings. Overall, we hope to stimulate and guide future research that links changes in water availability to patterns of species interactions and the dynamics of populations and communities in dryland ecosystems.  相似文献   

3.
When parasites have different interests in regard to how their host should behave this can result in a conflict over host manipulation, i.e. parasite induced changes in host behaviour that enhance parasite fitness. Such a conflict can result in the alteration, or even complete suppression, of one parasite's host manipulation. Many parasites, and probably also symbionts and commensals, have the ability to manipulate the behaviour of their host. Non‐manipulating parasites should also have an interest in host behaviour. Given the frequency of multiple parasite infections in nature, potential conflicts of interest over host behaviour and manipulation may be common. This review summarizes the evidence on how parasites can alter other parasite's host manipulation. Host manipulation can have important ecological and medical consequences. I speculate on how a conflict over host manipulation could alter these consequences and potentially offer a new avenue of research to ameliorate harmful consequences of host manipulation.  相似文献   

4.
Ecology Letters (2011) 14: 841-851 ABSTRACT: Ecological specialisation concerns all species and underlies many major ecological and evolutionary patterns. Yet its status as a unifying concept is not always appreciated because of its similarity to concepts of the niche, the many levels of biological phenomena to which it applies, and the complexity of the mechanisms influencing it. The evolution of specialisation requires the coupling of constraints on adaptive evolution with covariation of genotype and environmental performance. This covariation itself depends upon organismal properties such as dispersal behaviour and life history and complexity in the environment stemming from factors such as species interactions and spatio-temporal heterogeneity in resources. Here, we develop a view on specialisation that integrates across the range of biological phenomena with the goal of developing a more predictive conceptual framework that specifically accounts for the importance of biotic complexity and coevolutionary events.  相似文献   

5.
The southern African subspecies of Jacobin Cuckoo Clamator jacobinus serratus is a brood parasite of a range of host species. While Jacobin Cuckoos do not evict host young, previous research has found that host young rarely survive the nestling period. Here we provide the first records of Jacobin Cuckoo parasitism of a new host species, the Southern Pied Babbler Turdoides bicolor. We investigate rates of brood parasitism and the survival of host young. The Southern Pied Babbler is one of the largest recorded hosts for Jacobin Cuckoos and, unusually, we find that host young tend to survive the nestling period and maintain similar body mass to host young in unparasitized broods. However, host young were less likely to survive to independence than young raised in unparasitized nests, suggesting a post‐fledging reproductive cost to hosts.  相似文献   

6.
Climate and land use change can alter the incidence and strength of biotic interactions, with important effects on the distribution, abundance and function of species. To assess the importance of these effects and their dynamics, studies quantifying how biotic interactions change in space and time are needed. We studied interactions between nettle-feeding butterflies and their shared natural enemies (parasitoids) locally and across 500 km latitudinal gradient in Sweden. We also examined the potential impact of the range-expansion of the butterfly Araschnia levana on resident butterflies via shared parasitoids, by studying how parasitism in resident butterflies covaries with the presence or absence of the newly-established species. We collected 6777 larvae of four nettle-feeding butterfly species (Aglais urticae, Aglais io, Ar. levana and Vanessa atalanta), over two years, at 19 sites distributed along the gradient. We documented the parasitoid complex for each butterfly species and measured their overlap, and analysed how parasitism rates were affected by butterfly species assemblage, variations in abundance, time, and the arrival of Ar. levana. Parasitoids caused high mortality, with substantial overlap in the complex of parasitoids associated with the four host butterflies. Levels of parasitism differed significantly among butterflies and were influenced by the local butterfly species assemblage. Our results also suggest that parasitism in resident butterflies is elevated at sites where Ar. levana has been established for a longer period. In our study system, variations in butterfly species assemblages were associated in a predictable way with substantial variations in rates of parasitism. This relationship is likely to affect the dynamics of the butterfly host species, and potentially cascade to the larger number of species with which they interact. These results highlight the importance of indirect interactions and their potential to reorganise ecological communities, especially in the context of shifts in species distributions in a warmer world.  相似文献   

7.
8.
9.
Climate change is altering the phenology of many species and the timing of their interactions with other species, but the impacts of these phenological shifts on species interactions remain unclear. Classical approaches to the study of phenology have typically documented changes in the timing of single life-history events, while phenological shifts affect many interactions over entire life histories. In this study, we suggest an approach that integrates the phenology and ontogeny of species interactions with a fitness landscape to provide a common mechanistic framework for investigating phenological shifts. We suggest that this ontogeny–phenology landscape provides a flexible method to document changes in the relative phenologies of interacting species, examine the causes of these phenological shifts, and estimate their consequences for interacting species.
Ecology Letters (2010) 13: 1–10  相似文献   

10.
11.
Recent community genetics studies have shown that specific genotypes of a host plant support distinct arthropod communities. Building upon these findings, we examined the hypothesis that a trophic community consisting of cottonwood trees, a galling herbivore and avian predators could also be related to the genetics of the host tree. We found genetic correlations among phytochemistry of individual tree genotypes, the density of a galling herbivore, and the intensity of avian predation on these herbivores. We detected significant broad-sense heritability of these interactions that range from H      = 0.70 to 0.83. The genetic basis of these interactions tended to increase across trophic levels suggesting that small genetic changes in the cottonwood phenotype could have major consequences at higher trophic levels affecting species interactions and energy flow. These findings show a heritable basis to trophic-level interactions indicating that there is a significant genetic basis to community composition and energy flow that is predictable by plant genotype. Our data clearly link plant genetics to patterns of avian foraging and show that species interactions are important components of community heritability and ecosystem processes. Overall, these data support the hypothesis that evolution of plant traits can alter trophic-level interactions and community composition.  相似文献   

12.
Many current theories of community function are based on the assumption that disturbances such as herbivory act to reduce the importance of neighbor interactions among plants. In this study, we examined the effects of herbivory (primarily by nutria, Myocastor coypus) on neighbor interactions between three dominant grasses in three coastal marsh communities, fresh, oligohaline, and mesohaline. The grasses studied were Panicum virgatum, Spartina patens, and Spartina alterniflora, which are dominant species in the fresh, oligohaline, and mesohaline marshes, respectively. Additive mixtures and monocultures of transplants were used in conjunction with exclosure fences to determine the impact of herbivory on neighbor interactions in the different marsh types. Herbivory had a strong effect on all three species and was important in all three marshes. In the absence of herbivores, the impact of neighbors was significant for two of the species (Panicum virgatum and Spartina patens) and varied considerably between environments, with competition intensifying for Panicum virgatum and decreasing for Spartina patens with increasing salinity. Indications of positive neighbor effects (mutualisms) were observed for both of these species, though in contrasting habitats and to differing degrees. In the presence of herbivores, however, competitive and positive effects were eliminated. Overall, then, it was observed that in this case, intense herbivory was able to override other biotic interactions such as competition and mutualism, which were not detectable in the presence of herbivores.  相似文献   

13.
1. Damselflies and dragonflies are widely parasitised insects and numerous studies have tried to understand this host–parasite relationship. However, most of these studies have concentrated on a single host species, neglecting the larger pattern within the Odonata order. 2. The aim of this paper was to examine different damselfly and dragonfly species for common endo‐ and ectoparasites and whether a general infection pattern can be found. Additionally, the goal was to investigate whether the phylogeny of the host species could explain these possible infection patterns. To this end, a dataset from the existing literature was compiled and the prevalence of endoparasitic gregarines and ectoparasitic water mites was analysed for 46 different odonate species. 3. Three distinct patterns were found: (i) most of the odonate host species had both gregarines and water mites, rather than only either one or neither; (ii) there appears to be a positive association between gregarine and water mite prevalences across host species; (iii) a weak phylogenetic signal was detected in gregarine prevalence and a strong one in water mite prevalence. 4. It is hypothesised that, due to the infection and transmission mechanisms by which water mites and gregarines infect different odonate host species, parasitism is aggregated to common, high‐density species. However, much research is needed in order to fully understand this relationship between odonates and their parasites, especially within the same host populations and host species assemblages.  相似文献   

14.
15.
1. Increasing temperature and invading species may interact in their effects on communities. In this study, we investigated how rising temperatures alter larval interactions between a naturally range‐expanding dragonfly, Crocothemis erythraea, and a native northern European species, Leucorrhinia dubia. Initial studies revealed that C. erythraea grow up to 3.5 times faster than L. dubia at temperatures above 16 °C. As a result, we hypothesised that divergent temperature responses would lead to rapid size differences between coexisting larvae and, consequently, to asymmetric intraguild predation at higher ambient temperatures. 2. Mortality and growth rates were measured in interaction treatments (with both species present) and non‐interaction controls (one species present) at four different temperature regimes: at an ambient temperature representative of central Germany, where both species overlap in distribution, and at temperatures increased by 2, 4 and 6 °C. 3. The mortality of C. erythraea did not differ between treatment and control. In contrast, mortality of L. dubia remained similar over all temperatures in the controls, but increased with temperature in the presence of the other species and was significantly higher there than in the controls. We concluded that L. dubia suffered asymmetric intraguild predation, particularly at increased temperature. Reduced growth rate of L. dubia in the interaction treatment at higher temperatures also suggested asymmetric competition for prey in the first phase of the experiment. 4. The results imply that the range expansion of C. erythraea may cause reduction in population size of syntopic L. dubia when temperature rises by more than 2 °C. The consequences for future range patterns, as well as other factors that may influence the interaction in nature, are discussed.  相似文献   

16.
Predicted climate change in the Andes will require plant species to migrate upslope to avoid extinction. Central to predictions of species responses to climate change is an understanding of species distributions along environmental gradients. Environmental gradients are frequently modelled as abiotic, but biotic interactions can play important roles in setting species distributions, abundances, and life history traits. Biotic interactions also have the potential to influence species responses to climate change, yet they remain mostly unquantified. An important interaction long studied in tropical forests is postdispersal seed predation which has been shown to affect the population dynamics, community structure, and diversity of plant species in time and space. This paper presents a comparative seed predation study of 24 species of tropical trees across a 2.5 km elevation gradient in the Peruvian Andes and quantifies seed predation variation across the elevational gradient. We then use demographic modelling to assess effects of the observed variation in seed predation on population growth rates in response to observed increasing temperatures in the area. We found marked variation among species in total seed predation depending on the major seed predator of the species and consistent changes in seed predation across the gradient. There was a significant increase in seed survival with increasing elevation, a trend that appears to be driven by regulation of seed predators via top–down forces in the lowlands giving way to bottom–up (productivity) regulation at mid‐ to high elevations, resulting in a ninefold increase in effective fecundity for trees at high elevations. This potential increase in seed crop size strongly affects modelled plant population growth and seed dispersal distances, increasing population migration potential in the face of climate change. These results also indicate that species interactions can have effects on par with climate in species responses to global change.  相似文献   

17.
Research in avian blood parasites has seen a remarkable increase since the introduction of polymerase chain reaction-based methods for parasite identification. New data are revealing complex multihost-multiparasite systems which are difficult to understand without good knowledge of the host range and geographical distribution of the parasite lineages. However, such information is currently difficult to obtain from the literature, or from general repositories such as GenBank, mainly because (i) different research groups use different parasite lineage names, (ii) GenBank entries frequently refer only to the first host and locality at which each parasite was sampled, and (iii) different researchers use different gene fragments to identify parasite lineages. We propose a unified database of avian blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon identified by a partial region of their cytochrome b sequences. The database uses a standardized nomenclature to remove synonymy, and concentrates all available information about each parasite in a public reference site, thereby facilitating access to all researchers. Initial data include a list of host species and localities, as well as genetic markers that can be used for phylogenetical analyses. The database is free to download and will be regularly updated by the authors. Prior to publication of new lineages, we encourage researchers to assign names to match the existing database. We anticipate that the value of the database as a source for determining host range and geographical distribution of the parasites will grow with its size and substantially enhance the understanding of this remarkably diverse group of parasites.  相似文献   

18.
Naufraga balearica is a caespitose member of the Umbelliferae and is endemic to Majorca. We conducted a 12-year study in which permanent plots were monitored (each plot was divided into 100 cells) to assess (1) the natural population dynamics, (2) goat herbivory (1998–2003) and (3) plant competition. Using photographs and a G-test of independence, we analysed the frequency of cells in which a species was present and, for each annual transition, the frequency of cells where the species was stable, decreased or increased for each species and treatment (plots open to herbivores vs. closed plots). The natural dynamics of this threatened species showed a clear decline at the study site. Dactylis glomerata and Erodium reichardii were the species that appeared to have the greatest effect on the presence of N. balearica, especially in the closed plots. The competition effect of neighbouring species was not homogeneous throughout the 11 annual transitions analysed, suggesting that other factors affect the dynamics of the threatened species. Some herbivory pressure is beneficial to N. balearica because the species fluctuates more in the opened plots and the behaviour of the goats helps to control competing species, permitting the establishment of N. balearica.  相似文献   

19.
20.
  1. Increasing rates of invasions in ecosystems worldwide necessitate experiments to determine the role of biotic interactions in the success and impact of multiple alien species. Here, we examined competitive and facilitative interactions among various combinations of three widespread and often co-occurring invaders: the zebra mussel Dreissena polymorpha, and the macrophytes Elodea canadensis and Elodea nuttallii.
  2. Using a mesocosm-based, factorial experimental design, we assessed the effect of interspecific competition on macrophyte growth rates in the absence and presence at varying biomass of D. polymorpha.
  3. Growth rates (wet g/day) of E. canadensis and E. nuttallii were similar when grown in isolation. When grown together, in the absence of D. polymorpha, E. canadensis growth was not significantly reduced in the presence of E. nuttallii and vice versa. In the presence of D. polymorpha (26.0 ± 1 mm), monocultural growth of E. canadensis was largely unaffected, while E. nuttallii growth was strongly enhanced. Low (2.64 g) and medium (3.96 g) mussel biomass led to negative interspecific effects between E. canadensis and E. nuttallii; at high (5.28 g) mussel biomass, the effect of interspecific competition was negated.
  4. Overall, D. polymorpha alleviated competitive interactions between the two invasive macrophytes when all three species co-occurred, and substantially enhanced growth of E. nuttallii with increasing mussel biomass, thereby suggesting a possible influence on the relative dominance of these macrophytes in the field.
  5. Our study demonstrates how facilitations can cause shifts in dominance among closely related invaders. The consequences of such facilitations for the structure and function of communities remain to be explored generally.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号