共查询到20条相似文献,搜索用时 31 毫秒
1.
Shigeki Furuya Miho Sera Rie Tohno-oka Kazuyuki Sugahara Koichiro Shiokawa Yoshio Hirabayashi 《Development, growth & differentiation》1995,37(3):337-346
The expression of heparan sulfate glycosaminoglycan (HS-GAG) was examined in Xenopus embryos during the developmental stages. Chemical analysis showed the existence of HS-GAG in the 35 S-labeled embryos. By western blot analysis using a specific anti-HS monoclonal antibody, HS-GAG related epitope was found after the neurulation on two protein bands, whose molecular weights were approximately 90 kDa and 100 kDa, respectively. Immunohistochemistry revealed that HS-GAG occurred exclusively in the animal hemisphere in early gastrulae, and then appeared predominantly on the sheath of the neural tube, the notochord and epithelium. To address whether HS-GAG chains contribute to Xenopus embryonic development, we eliminated the embryonic HS-GAG by injecting purified Flavobacterium heparitinases (HSase) into their blastocoels. Most of the injected embryos were aberrant in mesodermal and neural formation, and became acephalic. Histological examination showed that these embryos were completely devoid of the central nervous system and the mesodermal tissues. Neither heat-inactivated heparitinase nor chondroitinase showed such abnormality. The HS-GAG-eliminated embryos showed decreased expression of both muscular and neural-specific markers. These results suggest that HS-GAG plays an indispensable role in establishing the fundamental body plan during early Xenopus development. 相似文献
2.
Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP,Wnt, and FGF signaling 下载免费PDF全文
Tomoko Watanabe Yuna Kanai Shinya Matsukawa Tatsuo Michiue 《Genesis (New York, N.Y. : 2000)》2015,53(10):652-659
The neural–epidermal boundary tissues include the neural crest and preplacodal ectoderm (PPE) as primordial constituents. The PPE region is essential for the development of various sensory and endocrine organs, such as the anterior lobe of the pituitary, olfactory epithelium, lens, trigeminal ganglion, and otic vesicles. During gastrulation, a neural region is induced in ectodermal cells that interacts with mesendodermal tissue and responds to several secreted factors. Among them, inhibition of bone morphogenetic protein (BMP) in the presumptive neuroectoderm is essential for the induction of neural regions, and formation of a Wnt and fibroblast growth factor (FGF) signaling gradient along the midline determines anterior–posterior patterning. In this study, we attempted to specifically induce PPE cells from undifferentiated Xenopus cells by regulating BMP, Wnt, and FGF signaling. We showed that the proper level of BMP inhibition with an injection of truncated BMP receptor or treatment with a chemical antagonist triggered the expression of PPE genes. In addition, by varying the amount of injected chordin, we optimized specific expression of the PPE genes. PPE gene expression is increased by adding an appropriate dose of an FGF receptor antagonist. Furthermore, co‐injection with either wnt8 or the Wnt inhibitor dkk‐1 altered the expression levels of several region‐specific genes according to the injected dose. We specifically induced PPE cell differentiation in animal cap cells from early‐stage Xenopus embryos by modulating BMP, Wnt, and FGF signaling. This is not the first research on placode induction, but our simple method could potentially be applied to mammalian stem cell systems. genesis 53:652–659, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
3.
Takashi Kobayashi Hiroko Habuchi Ken Nogami Satoko Ashikari‐Hada Koji Tamura Hiroyuki Ide Koji Kimata 《Development, growth & differentiation》2010,52(2):146-156
Heparan sulfate (HS) interacts with numerous growth factors, morphogens, receptors, and extracellular matrix proteins. Disruption of HS synthetic enzymes causes perturbation of growth factor signaling and malformation in vertebrate and invertebrate development. Our previous studies show that the O‐sulfation patterns of HS are essential for the specific binding of growth factors to HS chains, and that depletion of O‐sulfotransferases results in remarkable developmental defects in Drosophila, zebrafish, chick, and mouse. Here, we show that inhibition of chick HS‐6‐O‐sulfotransferases (HS6ST‐1 and HS6ST‐2) in the prospective limb region by RNA interference (RNAi) resulted in the truncation of limb buds and reduced Fgf‐8 and Fgf‐10 expressions in the apical ectodermal ridge and in the underlying mesenchyme, respectively. HS6ST‐2 RNAi resulted in a higher frequency of limb truncation and a more marked change in both Fgf‐8 and Fgf‐10 expressions than that achieved with HS6ST‐1 RNAi. HS6ST‐1 RNAi and HS6ST‐2 RNAi caused a significant but distinct reduction in the levels of different 6‐O‐sulfation in HS, possibly as a result of their different substrate specificities. Our data support a model where proper levels and patterns of 6‐O‐sulfation of HS play essential roles in chick limb bud development. 相似文献
4.
5.
M M French S E Smith K Akanbi T Sanford J Hecht M C Farach-Carson D D Carson 《The Journal of cell biology》1999,145(5):1103-1115
Expression of the basement membrane heparan sulfate proteoglycan (HSPG), perlecan (Pln), mRNA, and protein has been examined during murine development. Both Pln mRNA and protein are highly expressed in cartilaginous regions of developing mouse embryos, but not in areas of membranous bone formation. Initially detected at low levels in precartilaginous areas of d 12.5 embryos, Pln protein accumulates in these regions through d 15.5 at which time high levels are detected in the cartilage primordia. Laminin and collagen type IV, other basal lamina proteins commonly found colocalized with Pln, are absent from the cartilage primordia. Accumulation of Pln mRNA, detected by in situ hybridization, was increased in d 14.5 embryos. Cartilage primordia expression decreased to levels similar to that of the surrounding tissue at d 15.5. Pln accumulation in developing cartilage is preceded by that of collagen type II. To gain insight into Pln function in chondrogenesis, an assay was developed to assess the potential inductive activity of Pln using multipotential 10T1/2 murine embryonic fibroblast cells. Culture on Pln, but not on a variety of other matrices, stimulated extensive formation of dense nodules reminiscent of embryonic cartilaginous condensations. These nodules stained intensely with Alcian blue and collagen type II antibodies. mRNA encoding chondrocyte markers including collagen type II, aggrecan, and Pln was elevated in 10T1/2 cells cultured on Pln. Human chondrocytes that otherwise rapidly dedifferentiate during in vitro culture also formed nodules and expressed high levels of chondrocytic marker proteins when cultured on Pln. Collectively, these studies demonstrate that Pln is not only a marker of chondrogenesis, but also strongly potentiates chondrogenic differentiation in vitro. 相似文献
6.
The recycling heparan sulfate (HS)-containing proteoglycan glypican-1 (Gpc-1) is processed by nitric oxide (NO)-catalyzed deaminative cleavage of its HS chains at N-unsubstituted glucosamines. This generates anhydromannose (anMan)-containing HS degradation products that can be detected by a specific antibody. Here we have attempted to identify the intracellular compartments where these products are formed. The anMan-positive degradation products generated constitutively in human bladder carcinoma cell line (T24) or fibroblasts appeared neither in caveolin-1-associated vesicles nor in lysosomes. In Niemann-Pick C-1 (NPC-1) fibroblasts, where deaminative degradation is abrogated, formation of anMan-positive products can be restored by ascorbate. These products colocalized with Rab7, a marker for late endosomes. When NO-catalyzed degradation of HS was depressed in mouse neuroblastoma cell line (N2a) by using 3-beta[2(diethylamino) ethoxy]androst-5-en-17-one (U18666A), both ascorbate and dehydroascorbic acid restored formation of anMan-positive products that colocalized with Rab7. In T24 cells, constitutively generated anMan-positive products colocalized with both Rab7 and Rab9, whereas Gpc-1 colocalized with Rab9, a marker for transporting endosomes. Inhibition of endosomal acidification, which blocks transfer from early (Rab5) to late (Rab7) endosomes, abrogated deaminative degradation of HS. This could also be overcome by the addition of ascorbate, which induced formation of anMan-positive degradation products that colocalized with Rab7. After (35)S-sulfate labeling, similar degradation products were recovered in Rab7-positive vesicles. We conclude that NO-catalyzed degradation of HS may begin in early endosomes but is mainly taking place in late endosomes. 相似文献
7.
Abstract The Jun N-terminal kinase kinase kinase MLK2 is required for the formation of the pronephros during early Xenopus development. Here, we have used a yeast 2-hybrid screen to identify proteins that interact with and regulate xMLK2. Using an N-terminal polypeptide encompassing the SH3 and kinase domains of xMLK2 as bait, five independent cDNAs were identified, all of which encoded a Xenopus ubiquitin conjugating enzyme, ube2d3.2. Ube2d3.2 is a functional E2 enzyme expressed maternally and in a tissue-restricted fashion during development. Ectopic expression of ube2d3.2 inhibits formation of the pronephric tubules, resulting in a phenotype very similar to the loss of xMLK2 function. Because ube2d3.2 is also shown to limit accumulation of xMLK2, it is likely that this effect is direct, although other explanations are possible. Ube2d3.2 is thus probably an endogenous regulator of xMLK2, and hence of JNK activity. 相似文献
8.
Exit of recycling cholesterol from late endosomes is defective in Niemann-Pick C1 (NPC1) and Niemann-Pick C2 (NPC2) diseases. The traffic route of the recycling proteoglycan glypican-1 (Gpc-1) may also involve late endosomes and could thus be affected in these diseases. During recycling through intracellular compartments, the heparan sulfate (HS) side chains of Gpc-1 are deaminatively degraded by nitric oxide (NO) derived from preformed S-nitroso groups in the core protein. We have now investigated whether this NO-dependent Gpc-1 autoprocessing is active in fibroblasts from NPC1 disease. The results showed that Gpc-1 autoprocessing was defective in these cells and, furthermore, greatly depressed in normal fibroblasts treated with U18666A (3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one), a compound widely used to induce cholesterol accumulation. In both cases, autoprocessing was partially restored by treatment with ascorbate which induced NO release, resulting in deaminative cleavage of HS. However, when NO-dependent Gpc-1 autoprocessing is depressed and heparanase-catalyzed degradation of HS remains active, a truncated Gpc-1 with shorter HS chains would prevail, resulting in fewer NO-sensitive sites/proteoglycan. Therefore, addition of ascorbate to cells with depressed autoprocessing resulted in nitration of tyrosines. Nitration was diminished when heparanase was inhibited with suramin or when Gpc-1 expression was silenced by RNAi. Gpc-1 misprocessing in NPC1 cells could thus contribute to neurodegeneration mediated by reactive nitrogen species. 相似文献
9.
10.
Yamamoto Y Grubisic K Oelgeschläger M 《Differentiation; research in biological diversity》2007,75(3):235-245
The tetraspanin family of four-pass transmembrane proteins has been implicated in fundamental biological processes, including cell adhesion, migration, and proliferation. Tetraspanins interact with various transmembrane proteins, establishing a network of large multimolecular complexes that allows specific lateral secondary interactions. Here we report the identification and functional characterization of Xenopus Tetraspanin-1 (xTspan-1). At gastrula and neurula, xTspan-1 is expressed in the dorsal ectoderm and neural plate, respectively, and in the hatching gland, cement gland, and posterior neural tube at tailbud stages. The expression of xTspan-1 in the early embryo is negatively regulated by bone morphogenetic protein (BMP) and stimulated by Notch signals. Microinjection of xTspan-1 mRNA interfered with gastrulation movements and reduced ectodermal cell adhesion in a cadherin-dependent manner. Morpholino knock-down of endogenous xTspan-1 protein revealed a requirement of xTspan-1 for gastrulation movements and primary neurogenesis. Our data suggest that xTspan-1 could act as a molecular link between BMP signalling and the regulation of cellular interactions that are required for gastrulation movements and neural differentiation in the early Xenopus embryo. 相似文献
11.
12.
Mitsutaka Nishida Takeru Kozakai Keitaro Nagami Yoshihiro Kanamaru 《Bioscience, biotechnology, and biochemistry》2013,77(5):770-779
Heparan sulfate (HS) is a randomly sulfated polysaccharide that is present on the cell surface and in the extracellular matrix. The sulfated structures of HS were synthesized by multiple HS sulfotransferases, thereby regulating various activities such as growth factor signaling, cell differentiation, and tumor metastasis. Therefore, if the sulfated structures of HS could be artificially controlled, those manipulations would help to understand the various functions depending on HS. However, little knowledge is currently available to realize the mechanisms controlling the expression of such enzymes. In this study, we found that the ratio of 6-O-sulfated disaccharides increased at 3?h after adrenaline stimulation in mouse fibroblast cells. Furthermore, adrenaline-induced up-regulation of HS 6-O-sulfotransferase-1 (6-OST-1) was controlled by Src-ERK1/2 signaling pathway. Finally, inhibiting the signaling pathways for 6-OST-1 intentionally suppressed the adrenaline-induced structural alteration of HS. These observations provide fundamental insights into the understanding of structural alterations in HS by extracellular cues. 相似文献
13.
Mice deficient in heparan sulfate 3-O-sulfotransferase-1: normal hemostasis with unexpected perinatal phenotypes 总被引:2,自引:0,他引:2
Heparan sulfate that contains antithrombin binding sites is designated as anticoagulant heparan sulfate (HSact) since, in vitro, it dramatically enhances the neutralization of coagulation proteases by antithrombin. Endothelial cell production of HSact is controlled by the Hs3st1 gene, which encodes the rate limiting enzyme—heparan sulfate 3-O-sulfotransferase-1 (Hs3st1). It has long been proposed that levels of endothelial HSact may tightly regulate hemostatic tone. This potential in vivo role of HSact was assessed by generating Hs3st1
–/– knockout mice. Hs3st1
–/– and Hs3st1
+/+ mice were evaluated with a variety of methods, capable of detecting altered hemostatic tone. However, both genotypes were indistinguishable. Instead, Hs3st1
–/– mice exhibited lethality on a specific genetic background and also showed intrauterine growth retardation. Neither phenotypes result from a gross coagulopathy. So although this enzyme produces the majority of tissue HSact, Hs3st1
–/– mice do not show an obvious procoagulant phenotype. These results suggest that the bulk of HSact is not essential for normal hemostasis and that hemostatic tone is not tightly regulated by total levels of HSact. Moreover, the unanticipated non-thrombotic phenotypes suggest structure(s) derived from this enzyme might serve additional/alternative biologic roles. Published in 2003. 相似文献
14.
15.
16.
17.
Kohji Ikenishi Tetsuya S. Tanaka Tohru Komiya 《Development, growth & differentiation》1996,38(5):527-535
In order to know when the protein of Xenopus vasa homolog ( Xenopus vasa -like gene 1, XVLG1 ) first appears in germ line cells and whether the protein is also present in somatic cells as is vasa protein in Drosophila , the spatio-temporal distribution of the protein in Xenopus embryos was carefully investigated by fluorescent microscopy. Part of the observation was performed by whole-mount immunocytochemistry and immunoblotting. A distinct fluorescence of XVLG1 protein was first recognized in a juxta-nuclear location of germ line cells or presumptive primordial germ cells (pPGC) at stage 12 (late gastrula) and remained associated with the pPGC or primordial germ cells (PGC) throughout the following stages until stage 46 (feeding tadpole). In contrast, weak fluorescence was seen in the animal hemisphere rather than in the vegetal hemisphere of cleaving embryos and in the perinuclear region of somatic cells at stages 10–42 (early gastrula to young tadpole), respectively. Nearly the same pattern as revealed by fluorescence was seen by whole-mount immunocytochemistry, except that a small amount of XVLG1 protein seemed to be present in the germ plasm and pPGC of embryos earlier than stage 12. The presence of the protein in the somatic cells and the PGC was also shown by immunoblotting. 相似文献
18.
Joel Gatlin David J. Unett Michael R. Lerner J. Victor Garcia 《Pigment cell & melanoma research》2001,14(4):275-282
Xenopus laevis dermal melanophores provide an excellent model system for the investigation of complex cellular processes. Specifically, the expression of exogenous genes in Xenopus melanophores is the basis of recombinant bioassays for the study of receptor–ligand interactions. However, due to their slow rate of cell division and to the relatively low efficiency of current transfection protocols, long‐term expression of exogenous genes and the generation of stable melanophore cell lines remains problematic. In this report we demonstrate the efficient, long‐term expression of two exogenous proteins, the enhanced green fluorescent protein (EGFP) and the human CD4 (hCD4) cell surface receptor, following stable introduction into Xenopus melanophores via an HIV‐1 based vector. Transduction of melanophores with the EGFP expression vector resulted in up to 80% EGFP+ cells. After 1 year in continuous culture in the absence of antibiotic selection, more than 60% of the cells remained EGFP+. Furthermore, we demonstrate the expression of hCD4 in melanophores for over 9 months in continuous culture in the absence of antibiotic selection. Our results indicate that lentivirus vectors provide an efficient means of introducing genetic information into Xenopus melanophores, resulting in sustained levels of gene expression. The significance of this gene transfer system for the study of cellular signal transduction pathways is discussed. 相似文献
19.
Hayley M. Bennett Kristin Lees Kate M. Harper Andrew K. Jones David B. Sattelle Susan Wonnacott Adrian J. Wolstenholme 《Journal of neurochemistry》2012,123(6):911-918
RIC‐3 enhances the functional expression of certain nicotinic acetylcholine receptors (nAChRs) in vertebrates and invertebrates and increases the availability of functional receptors in cultured cells and Xenopus laevis oocytes. Maximal activity of RIC‐3 may be cell‐type dependent, so neither mammalian nor invertebrate proteins is optimal in amphibian oocytes. We cloned the X. laevis ric‐3 cDNA and tested the frog protein in oocyte expression studies. X. laevis RIC‐3 shares 52% amino acid identity with human RIC‐3 and only 17% with that of Caenorhabditis elegans. We used the C. elegans nicotinic receptor, ACR‐16, to compare the ability of RIC‐3 from three species to enhance receptor expression. In the absence of RIC‐3, the proportion of oocytes expressing detectable nAChRs was greatly reduced. Varying the ratio of acr‐16 to X. laevis ric‐3 cRNAs injected into oocytes had little impact on the total cell current. When X. laevis, human or C. elegans ric‐3 cRNAs were co‐injected with acr‐16 cRNA (1 : 1 ratio), 100 μM acetylcholine induced larger currents in oocytes expressing X. laevis RIC‐3 compared with its orthologues. This provides further evidence for a species‐specific component of RIC‐3 activity, and suggests that X. laevis RIC‐3 is useful for enhancing the expression of invertebrate nAChRs in X. laevis oocytes. 相似文献
20.
Involvement of the protein of Xenopus vasa homolog (Xenopus vasa-like gene 1, XVLG1) in the differentiation of primordial germ cells 总被引:1,自引:0,他引:1
In order to understand the role of the protein of Xenopus vasa homolog ( Xenopus vasa -like gene 1, XVLG1 ) in germ line cells, an attempt was made to perturb the function of the protein with the anti-vasa antibody 2L-13. The 2L-13 or the control antibody was microinjected with a lineage tracer (FITC-dextran-lysine, FDL) into single vegetal blastomeres containing the germ plasm of Xenopus 32-cell embryos, the descendants of which were destined to differentiate into a small number of primordial germ cells (PGC) and a large number of somatic cells, mostly of endodermal tissues at the tadpole stage. No significant effect of the injection of the antibodies on FDL-labeled, presumptive PGC (pPGC) was observed in embryos until stage 37/38. However, FDL-labeled PGC were not observed in almost all the 2L-13 antibody-injected tadpoles, although a similar number of labeled somatic cells were always present. As 2L-13 antibody specifically reacts with XVLG1 protein in the embryos by immunoblotting, the present results suggest that the antibody perturbed the function of XVLG1 protein in the pPGC, resulting in failure of PGC differentiation at the tadpole stage. 相似文献