首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein transport via the endoplasmic reticulum Golgi apparatus-cell surface export route was blocked when slices (6-15 cells thick) of livers of 10-day-old rats were incubated with 1 microM monensin. Production of secretory vesicles by Golgi apparatus was reduced or eliminated and, in their place, swollen cisternae accumulated in the cytoplasm at the trans Golgi apparatus face. The swelling response was restricted to the six external cell layers of the liver slices, and the number of cells showing the response was little increased by either a greater concentration of monensin or by longer times of incubation. When monensin was added post-chase to the slices, flux of radioactive proteins to the cell surface was inhibited by about 80% as determined from standard pulse-chase analyses with isolated cell fractions. Radioactive proteins accumulated in both endoplasmic reticulum and Golgi apparatus and in a fraction that may contain monensin-blocked Golgi apparatus cisternae released from the stack. The latter fraction was characterized by galactosyltransferase/thiamine pyrophosphatase ratios similar to those of Golgi apparatus from control slices. The use of monensin with the tissue slice system may provide an opportunity for the cells to accumulate monensin-blocked Golgi apparatus cisternae in sufficient quantities to permit their isolation and purification by conventional cell fractionation methods.  相似文献   

2.
We have studied in rat liver the subcellular sites and topography of xylosylation and galactosylation reactions occurring in the biosynthesis of the D-glucuronic acid-galactose-galactose-D-xylose linkage region of proteoglycans and of glucuronosylation reactions involved in both glycosaminoglycan biosynthesis and bile acid and bilirubin conjugation. The specific translocation rate of UDP-xylose into sealed, "right-side-out" vesicles from the Golgi apparatus was 2-5-fold higher than into sealed right-side-out vesicles from the rough endoplasmic reticulum (RER). Using the above vesicle preparations, we only detected endogenous acceptors for xylosylation in the Golgi apparatus-rich fraction. The specific activity of xylosyltransferase (using silk fibroin as exogenous acceptor) was 50-100-fold higher in Golgi apparatus membranes than in those from the RER. Previous studies had shown that UDP-galactose is translocated solely into vesicles from the Golgi apparatus. In these studies, we found the specific activity of galactosyltransferase I to be 40-140-fold higher in membranes from the Golgi apparatus than in those from the RER. The specific translocation rate of UDP-D-glucuronic acid into vesicles from the Golgi apparatus was 10-fold higher than into those from the RER, whereas the specific activity of glucuronosyltransferase (using chondroitin nonasaccharide as exogenous acceptor) was 12-30-fold higher in Golgi apparatus membranes than in those from the RER. Together, the above results strongly suggest that, in rat liver, the biosynthesis of the above-described proteoglycan linkage region occurs in the Golgi apparatus. The specific activity of glucuronosyltransferase, using bile acids and bilirubin as exogenous acceptor, was 10-25-fold higher in RER membranes than those from the Golgi apparatus. This suggests that transport of UDP-D-glucuronic acid into the RER lumen is not required for such reactions.  相似文献   

3.
Summary Detailed histochemical studies have been conducted on the morphology of the Golgi apparatus by applying the thiamine pyrophosphatase technique (Novikoff and Goldfisher, 1961) to the neurons of supraoptic and paraventricular nuclei of normal and dehydrated rabbits. The neurons in both nuclei were classified into five categories on the basis of the morphology of the Golgi apparatus. The number of cells in individual categories were counted to evaluate the percentage of each category in the whole nucleus.Neurons have many vesicles which show the tendency to form clusters. Such clusters are present also in the basal bodies. The Golgi apparatus is localized near one side of the nucleus in many neurons. The neurons indicate phasic activity of resting, anabolic and catabolic stages under normal conditions.During dehydration, the Golgi apparatus went through the three stages of network formation, the increase of the budding-off process and later on disintegration. The supraoptic nucleus reacted to the TPPase test more severely than the paraventricular nucleus, whereas the former went through the stages more slowly than the latter. The paraventricular nucleus also revealed sensitivity to osmotic stress.  相似文献   

4.
Recent studies indicate that regulation of the actin cytoskeleton is important for protein trafficking, but its precise role is unclear. We have characterized the ARF1-dependent assembly of actin on the Golgi apparatus. Actin recruitment involves Cdc42/Rac and requires the activation of the Arp2/3 complex. Although the actin-binding proteins mAbp1 (SH3p7) and drebrin share sequence homology, they are differentially segregated into two distinct ARF-dependent actin complexes. The binding of Cdc42 and mAbp1, which localize to the Golgi apparatus, but not drebrin, is blocked by occupation of the p23 cargo-protein-binding site on coatomer. Exogenously expressed mAbp1 is mislocalized and inhibits Golgi transport in whole cells. The ability of ARF, vesicle-coat proteins, and cargo to direct the assembly of cytoskeletal structures helps explain how only a handful of vesicle types can mediate the numerous trafficking steps in the cell.  相似文献   

5.
In yeast, particular emphasis has been given to endoplasmic reticulum (ER)-derived, cisternal maturation models of Golgi assembly while in mammalian cells more emphasis has been given to golgins as a potentially stable assembly framework. In the case of de novo Golgi formation from the ER after brefeldin A/H89 washout in HeLa cells, we found that scattered, golgin-enriched, structures formed early and contained golgins including giantin, ranging across the entire cis to trans spectrum of the Golgi apparatus. These structures were incompetent in VSV-G cargo transport. Second, we compared Golgi competence in cargo transport to the kinetics of addition of various glycosyltransferases and glycosidases into nascent, golgin-enriched structures after drug washout. Enzyme accumulation was sequential with trans and then medial glycosyltransferases/glycosidases found in the scattered, nascent Golgi. Involvement in cargo transport preceded full accumulation of enzymes or GPP130 into nascent Golgi. Third, during mitosis, we found that the formation of a golgin-positive acceptor compartment in early telophase preceded the accumulation of a Golgi glycosyltransferase in nascent Golgi structures. We conclude that during mammalian Golgi assembly components fit into a dynamic, first-formed, multigolgin-enriched framework that is initially cargo transport incompetent. Resumption of cargo transport precedes full Golgi assembly.  相似文献   

6.
The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.  相似文献   

7.
Phosphatidylcholine is the most abundant phospholipid in the membranes of Plasmodium falciparum, the agent of severe human malaria. The synthesis of this phospholipid occurs via two routes, the CDP-choline pathway, which uses host choline as a precursor, and the plant-like serine decarboxylase-phosphoethanolamine methyltransferase (SDPM) pathway, which uses host serine as a precursor. Although various components of these pathways have been identified, their cellular locations remain unknown. We have previously reported the identification and characterization of the phosphoethanolamine methyltransferase, Pfpmt, of P. falciparum and shown that it plays a critical role in the synthesis of phosphatidylcholine via the SDPM pathway. Here we provide the first evidence that the transmethylation step of the SDPM pathway occurs in the parasite Golgi apparatus. We show that the level of Pfpmt protein in the infected erythrocyte is regulated in a stage-specific fashion, with high levels detected during the trophozoite stage at the peak of parasite membrane biogenesis. Confocal microscopy revealed that Pfpmt is not cytoplasmic. Immunoelectron microscopy revealed that Pfpmt localizes to membrane structures that extend from the nuclear membrane but that it only partially co-localizes with the endoplasmic reticulum marker BiP. Using transgenic parasites expressing green fluorescent protein targeted to different cellular compartments, a complete co-localization was detected with Rab6, a marker of the Golgi apparatus. Together these studies provide the first evidence that the transmethylation step of the SDPM pathway of P. falciparum occurs in the Golgi apparatus and indicate an important role for this organelle in parasite membrane biogenesis.  相似文献   

8.
We used immunoelectron microscopy to localize glucosidase II in pig hepatocytes. The enzyme trims the two inner alpha 1,3-linked glucoses from N-linked oligosaccharide precursor chains of glycoproteins. Immunoreactive enzyme was concentrated in rough (RER) and smooth (SER) endoplasmic reticulum but not detectable in Golgi apparatus cisternae. Transitional elements of RER and smooth membraned structures close to Golgi apparatus cisternae contained labeling for glucosidase II. Specific labeling was also found in autophagosomes. These results indicate strongly that glucosidase II acts on glycoproteins before their transport to, and processing in Golgi apparatus cisternae, and suggest that an important transitional region for glucosidase II exists between RER and Golgi apparatus cisternae. Degradation in autophagolysosomes could form a normal catabolic pathway for glucosidase II.  相似文献   

9.
Over the last century, the Golgi apparatus has attracted the attention of researchers world-wide. This highly variable and polymorphic organelle plays a central role in intracellular membrane traffic. Not only does it receive all the secretory material and membrane synthesized by the endoplasmic reticulum and modifies these products by glycosylation, but also packages them and sends them in vesicular carriers to their correct destinations. It is also capable of the synthesis of complex polysaccharides used for building cell walls, a feature unique for higher plants. Yet, the current models of Golgi function are based on those established for yeast and mammalian cells and may not be completely relevant to plants. This review is an attempt to summarize the current knowledge of the plant Golgi apparatus and, where possible, to discuss the applicability of the current models of Golgi function to the plant cell.  相似文献   

10.
Summary The cerebral caudodorsal cells (CDC) of the pulmonate snail Lymnaea stagnalis are involved in the control of egg laying and associated behaviour by releasing various peptides. One of these is the ovulation hormone (CDCH). The cellular dynamics of this peptide have been studied using an antiserum raised to a synthetic portion of CDCH comprising the 20–36 amino acid sequence. With the secondary antibody-immunogold technique, specific immunoreactivity was found in all CDC. Rough endoplasmic reticulum and Golgi apparatus showed very little reactivity as did secretory granules that were in the process of being budded off from the Golgi apparatus. However, secretory granules that were being discharged from the Golgi apparatus, were strongly reactive. Secretory granules within lysosomal structures revealed various degrees of immunoreactivity, indicating their graded breakdown. Large electrondense granules, formed by the Golgi apparatus and thought to be involved in intracellular degradation of secretory material, were only slightly reactive. In the axon terminals secretory granules released their contents into the haemolymph by the process of exocytosis. The exteriorized contents were in most cases clearly immunopositive.The possibility has been discussed that CDCH is cleaved from its polypeptide precursor within secretory granules during granule discharge from the Golgi apparatus; subsequently, the mature secretory granules would be transported towards the neurohaemal axon terminals where they release CDCH into the haemolymph. Superfluous secretory material would be degraded by the lysosomal system including the large electron-dense granules.  相似文献   

11.
Previous studies have shown that yeast glycosylphosphatidylinositol‐anchored proteins (GPI‐APs) and other secretory proteins are preferentially incorporated into distinct coat protein II (COPII) vesicle populations for their transport from the endoplasmic reticulum (ER) to the Golgi apparatus, and that incorporation of yeast GPI‐APs into COPII vesicles requires specific lipid interactions. We compared the ER exit mechanism and segregation of GPI‐APs from other secretory proteins in mammalian and yeast cells. We find that, unlike yeast, ER‐to‐Golgi transport of GPI‐APs in mammalian cells does not depend on sphingolipid synthesis. Whereas ER exit of GPI‐APs is tightly dependent on Sar1 in mammalian cells, it is much less so in yeast. Furthermore, in mammalian cells, GPI‐APs and other secretory proteins are not segregated upon COPII vesicle formation, in contrast to the remarkable segregation seen in yeast. These findings suggest that GPI‐APs use different mechanisms to concentrate in COPII vesicles in the two organisms, and the difference might explain their propensity to segregate from other secretory proteins upon ER exit.  相似文献   

12.
T cells of the immune system target infected and tumor cells in crowded tissues with high precision by coming into direct contact with the intended target and orienting the intracellular Golgi apparatus and the associated organelles to the area of the cell-cell contact. The mechanism of this orientation remains largely unknown. To further elucidate it we used three-dimensional microscopy of living T cells presented with an artificial substrate mimicking the target cell surface. The data indicate that long, finger-like processes emanate from the T cell surface next to the intracellular Golgi apparatus. These processes come in contact with the substrate and retract. The retraction accompanies the reorientation of the T cell body which brings the Golgi apparatus closer to the stimulatory substrate. Numerical modeling indicates that considering the forces involved the retraction of a process attached with one end to the cell body near the Golgi apparatus and with the other end to the substrate can bring the Golgi apparatus to the substrate by moving the entire cell body. The dynamic scenarios that are predicted by the quantitative model explain features of the reorientation movements that we measured but could not explain previously. We propose that retraction of the surface processes is a force-generating mechanism contributing to the functional orientation of T lymphocytes.  相似文献   

13.
Saccharomyces cerevisiae contains several abundant phosphoinositol-containing sphingolipids, namely inositolphosphoceramides (IPCs), mannosyl-inositolphosphoceramide (MIPC), which is substituted on the headgroup with an additional mannose, and M(IP)2C, a ceramide substituted with one mannose and two phosphoinositol groups. Using well-defined temperature-sensitive secretion mutants we demonstrate that the biosynthesis of MIPC, M(IP)2C, and a subclass if IPCs is dependent on genes that are required for the vesicular transport of proteins from the ER to the Golgi. Synthesis of these lipids in intact cells is dependent on metabolic energy. A likely but tentative interpretation of the data is that the biosynthesis of these sphingolipids is restricted to the Golgi apparatus, and that one or more substrates for the biosynthesis of these sphingolipids (phosphatidylinositol, IPCs, or MIPC) are delivered to the Golgi apparatus by an obligatory vesicular transport step. Alternative models to explain the data are also discussed.  相似文献   

14.
Summary The cytochemical distribution of thiamine pyrophosphatase (TPPase) activity in Meckel's cartilage cells of the mouse embryo has been studied during the endochondral ossification. All the cartilage cells contain reaction product within the Golgi apparatus. In immature chondrocytes, at the reserve cell zone, TPPase activity is restricted to several inner cisternae of independent Golgi apparatus. In mature cells at the proliferative cell zone, several Golgi complexes form a Golgi network connecting with each other by the TPPase positive tubular stalks. Golgi cisternae, condensing vacuoles and vesicles also contain reaction product. In the hypertrophic chondrocytes located in the calcifying zone, their disorganized Golgi apparatus still retain reaction product. Some chondrocytes, even those located within calcified or opened lacunae, exhibit intact structures and normal cytochemical enzyme distribution. These data indicate the possibility that some chondrocytes may survive and contribute the formation of mandible.  相似文献   

15.
T Akisaka 《Histochemistry》1982,76(4):539-546
The cytochemical distribution of thiamine pyrophosphatase (TPPase) activity in Meckel's cartilage cells of the mouse embryo has been studied during the endochondral ossification. All the cartilage cells contain reaction product within the Golgi apparatus. In immature chondrocytes, at the reserve cell zone, TPPase activity is restricted to several inner cisternae of independent Golgi apparatus. In mature cells at the proliferative cell zone, several Golgi complexes form a Golgi network connecting with each other by the TPPase positive tubular stalks. Golgi cisternae, condensing vacuoles and vesicles also contain reaction product. In the hypertrophic chondrocytes located in the calcifying zone, their disorganized Golgi apparatus still retain reaction product. Some chondrocytes, even those located within calcified or opened lacunae, exhibit intact structures and normal cytochemical enzyme distribution. These data indicate the possibility that some chondrocytes may survive and contribute the formation of mandible.  相似文献   

16.
Cholera toxin (CT) follows a glycolipid-dependent entry pathway from the plasma membrane through the trans-Golgi network (TGN) to the endoplasmic reticulum (ER) where it is retro-translocated into the cytosol to induce toxicity. Whether access to the Golgi apparatus is necessary for transport to the ER is not known. Exo2 is a small chemical that rapidly blocks anterograde traffic from the ER to the Golgi and selectively disrupts the Golgi apparatus but not the TGN. Here we use Exo2 to determine the role of the Golgi apparatus in CT trafficking. We find that under the condition of complete Golgi ablation by Exo2, CT reaches the TGN and moves efficiently into the ER without loss in toxicity. We propose that even in the absence of Exo2 the glycolipid pathway that carries the toxin from plasma membrane into the ER bypasses the Golgi apparatus entirely.  相似文献   

17.
The conserved oligomeric Golgi (COG) complex is essential for establishing and/or maintaining the structure and function of the Golgi apparatus. The Golgi apparatus, in turn, has a central role in protein sorting and glycosylation within the eukaryotic secretory pathway. As a consequence, COG mutations can give rise to human genetic diseases known as congenital disorders of glycosylation. We review recent results from studies of yeast, worm, fly and mammalian COG that provide evidence that COG might function in retrograde vesicular trafficking within the Golgi apparatus. This hypothesis explains the impact of COG mutations by postulating that they impair the retrograde flow of resident Golgi proteins needed to maintain normal Golgi structure and function.  相似文献   

18.
ISOLATION OF THE GOLGI APPARATUS FROM PLANT CELLS   总被引:14,自引:7,他引:7       下载免费PDF全文
A method for the isolation of the Golgi apparatus from stem tissues of onion is described. Preparations that consisted mainly of morphologically identifiable Golgi apparatus have been obtained. The best preparations were obtained from tissue homogenized under conditions of minimum shear, and in the presence of sucrose and certain additives which aid in preservation of the integrity of the Golgi membranes. Those additives, which had a pronounced stabilizing effect on the isolated apparatus, included both monovalent and divalent ions (sodium and calcium) and dextran. A large portion of the Golgi apparatus did not appear to change microscopic appearance upon isolation, but were observed to fuse into large aggregate structures not unlike those occurring naturally in certain animal or insect cells (12). Fusion occurred both at the edges of the cisternae and in register, but the integrity of the individual cisternae was not destroyed. The major contaminants of the Golgi apparatus fraction were numerous small and large spherical vesicles. At least some of these vesicles appeared to have been derived from the Golgi apparatus; others may have been fragments of the cell membrane, the endoplasmic reticulum, or other cell debris. By utilizing this procedure, it has been possible to obtain fractions of Golgi apparatus from plant tissues other than onion stem. However, at the present time it is only with onion that the Golgi apparatus has been isolated in a form that would warrant further purification for biochemical analysis.  相似文献   

19.
Microtubules, actin filaments, and Golgi apparatus are connected both directly and indirectly, but it is manifested differently depending on the cell organization and specialization, and these connections are considered in many original studies and reviews. In this review we would like to discuss what underlies differences in the structural organization of the Golgi apparatus in animal and plant cells: specific features of the microtubule cytoskeleton organization, the use of different cytoskeleton components for Golgi apparatus movement and maintenance of its integrity, or specific features of synthetic and secretory processes. We suppose that a dispersed state of the Golgi apparatus in higher plant cells cannot be explained only by specific features of the microtubule system organization and by the absence of centrosome as an active center of their organization because the Golgi apparatus is organized similarly in the cells of other organisms that possess the centrosome and centrosomal microtubules. One of the key factors determining the Golgi apparatus state in plant cells is the functional uniformity or functional specialization of stacks. The functional specialization does not suggest the joining of the stacks to form a ribbon; therefore, the disperse state of the Golgi apparatus needs to be supported, but it also can exist “by default”. We believe that the dispersed state of the Golgi apparatus in plants is supported, on one hand, by dynamic connections of the Golgi apparatus stacks with the actin filament system and, on the other hand, with the endoplasmic reticulum exit sites distributed throughout the endoplasmic reticulum.  相似文献   

20.
We have studied the reconstitution of the Golgi apparatus in vivo using an heterologous membrane transplant system. Endogenous glycopeptides of rat hepatic Golgi fragments were radiolabeled in vitro with [3H]sialic acid using detergent-free conditions. The Golgi fragments consisting of dispersed vesicles and tubules with intraluminal lipoprotein-like particles were then microinjected into Xenopus oocytes and their fate studied by light (LM) and electron microscope (EM) radioautography. 3 h after microinjection, radiolabel was observed by LM radioautography over yolk platelet-free cytoplasmic regions near the injection site. EM radioautography revealed label over Golgi stacked saccules containing the hepatic marker of intraluminal lipoprotein-like particles. At 14 h after injection, LM radioautographs revealed label in the superficial cortex of the oocytes between the yolk platelets and at the oocyte surface. EM radioautography identified the labeled structures as the stacked saccules of the Golgi apparatus, the oocyte cortical granules, and the plasmalemma, indicating that a proportion of microinjected material was transferred to the surface via the secretion pathway of the oocyte. The efficiency of transport was low, however, as biochemical studies failed to show extensive secretion of radiolabel into the extracellular medium by 14 h with approximately half the microinjected radiolabeled constituents degraded. Vinblastine (50 microM) administered to oocytes led to the formation of tubulin paracrystals. Although microinjected Golgi fragments were able to effect the formation of stacked saccules in vinblastine-treated oocytes, negligible transfer of heterologous material to the oocyte surface could be detected by radioautography. The data demonstrate that dispersed fragments of the rat liver Golgi complex (i.e., unstacked vesicles and tubules) reconstitute into stacked saccules when microinjected into Xenopus cytoplasm. After the formation of stacked saccules, reconstituted Golgi fragments transport constituents into a portion of the exocytic pathway of the host cell by a microtubule-regulated process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号