首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone microanatomy of multiple postcranial skeletal elements of several individuals of Hyperodapedon collected from India is reported. This reveals that fibrolamellar bone tissue is predominant in the mid‐ and inner cortices, whereas the peripheral region of the cortex is composed of either parallel‐fibred and/or lamellar bone. The pattern of primary osteons mostly ranges between laminar and subplexiform. Such predominance of fibrolamellar bone tissue in the cortex suggests an overall fast growth, which slowed down considerably later in ontogeny. Four distinct ontogenetic stages are identified based on the bone microstructure. During the juvenile stage, growth was fast and continuous, but it became punctuated during the early and late sub‐adult stages. In adult individuals, growth was slow and showed periodic interruption but did not stop completely, suggesting that Hyperodapedon had an indeterminate growth strategy. Interelemental histovariations affecting cortical thickness, organization of the vascular network, incidence of growth rings and extent of secondary reconstruction are noted. Throughout ontogeny, the femora show higher cortical thickness than humeri and tibiae, suggesting differential appositional growth rate between the skeletal elements. Differences in cortical thickness are noted in the ribs, which suggest differential functional constraints based on anatomical site‐specific occurrences. Although fibrolamellar bone tissue became progressively more dominant towards the archosaurs, there are considerable variations in the growth patterns of the archosauromorphs. This is exemplified by the bone microstructure of Hyperodapedon, which deviates from the generalized slow‐growth pattern proposed for all basal archosauromorphs, suggesting that rapid growth was already present in the archosauromorphs. The cortical thickness of various long bones of Hyperodapedon bears similarity with that of several extant terrestrial quadrupeds, suggesting that Hyperodapedon was essentially a terrestrial quadruped.  相似文献   

2.
The aquatic‐to‐terrestrial shift in the life cycle of most anurans suggests that the differences between the larval and adult morphology of the nose are required for sensory function in two media with different physical characteristics. However, a better controlled test of specialization to medium is to compare adult stages of terrestrial frogs with those that remain fully aquatic as adults. The Ceratophryidae is a monophyletic group of neotropical frogs whose diversification from a common terrestrial ancestor gave rise to both terrestrial (Ceratophrys, Chacophrys) and aquatic (Lepidobatrachus) adults. So, ceratophryids represent an excellent model to analyze the morphology and possible changes related to a secondary aquatic life. We describe the histomorphology of the nose during the ontogeny of the Ceratophryidae, paying particular attention to the condition in adult stages of the recessus olfactorius (a small area of olfactory epithelium that appears to be used for aquatic olfaction) and the eminentia olfactoria (a raised ridge on the floor of the principal cavity correlated with terrestrial olfaction). The species examined (Ceratophrys cranwelli, Chacophrys pierottii, Lepidobatrachus laevis, and L. llanensis) share a common larval olfactory organ composed by the principal cavity, the vomeronasal organ and the lateral appendix. At postmetamorphic stages, ceratophryids present a common morphology of the nose with the principal, middle, and inferior cavities with characteristics similar to other neobatrachians at the end of metamorphosis. However, in advanced adult stages, Lepidobatrachus laevis presents a recessus olfactorius with a heightened (peramorphic) development and a rudimentary (paedomorphic) eminentia olfactoria. Thus, the adult nose in Lepidobatrachus laevis arises from a common developmental ‘terrestrial’ pathway up to postmetamorphic stages, when its ontogeny leads to a distinctive morphology related to the evolutionarily derived, secondarily aquatic life of adults of this lineage.  相似文献   

3.
The dermal bone sculpture of early, basal tetrapods of the Permo-Carboniferous is unlike the bone surface of any living vertebrate, and its function has long been obscure. Drawing from physiological studies of extant tetrapods, where dermal bone or other calcified tissues aid in regulating acid-base balance relating to hypercapnia (excess blood carbon dioxide) and/or lactate acidosis, we propose a similar function for these sculptured dermal bones in early tetrapods. Unlike the condition in modern reptiles, which experience hypercapnia when submerged in water, these animals would have experienced hypercapnia on land, owing to likely inefficient means of eliminating carbon dioxide. The different patterns of dermal bone sculpture in these tetrapods largely correlates with levels of terrestriality: sculpture is reduced or lost in stem amniotes that likely had the more efficient lung ventilation mode of costal aspiration, and in small-sized stem amphibians that would have been able to use the skin for gas exchange.  相似文献   

4.
Abstract

Most small terrestrial vertebrate accumulations in archaeological and palaeontological sites result from predation but we are far from having an exhaustive knowledge of modern predators’ diet, ecological niches and bone modification patterns especially in North African sites. The few neotaphonomic referentials available result from taxon-specialized palaeontologists’ initiatives. A survey of the literature on North Africa predators shows that their prey diversity is high and not only include rodent and shrews but also amphibians, squamates, bats and insects. We performed here a pilot taphonomic study of a Moroccan Tyto alba nest pellets including the whole taxa consumed (birds, rodents, shrews, amphibians, insects). We analyzed bone representation, fragmentation and digestion for each taxa and then compared the results. We observe differences between the taxa but on the whole find higher modification levels for this assemblage compared to roost sites of barn owls from other sites. We used for the comparisons homologous bones like the femur and the humerus and also found differences between the taxa. For example, digestion was lower on amphibians and birds than on micromammals. We discuss here some methodological issues as well as archaeological and palaeoenviromental ones by comparison with the Pleisto-Holocene site of El Harhoura II (Morocco).  相似文献   

5.
The current study deduced the growth pattern and lifestyle habits of Chersina angulata based on bone histology and cross-sectional geometry of limb bones. Femora, humeri, and tibiae of seven different-sized individuals representing different ontogenetic stages were assessed to determine the interelement and intraskeletal histological variation within and among the tortoises. The bone histology of adult propodials consists of a highly vascularized, uninterrupted fibrolamellar bone tissue with a woven texture in the perimedullary and midcortical regions suggesting overall fast early growth. However, later in ontogeny, growth was slow and even ceased periodically as suggested by slowly formed parallel-fibered bone tissue and several growth marks in the pericortical region. In juvenile individuals, fibrolamellar bone tissue is restricted to the perimedullary regions of propodials as remnants of bone formed during the earliest stages of ontogeny. The epipodials are characterized by having parallel-fibered bone tissue present in their cortices; however, periodic arrests in growth are recorded at various times. Remnants of fibrolamellar bone tissue formed during early ontogeny occur in the epipodials of only a few individuals. Interelement variation is evident, in terms of variation in the orientation of vascular canals between individuals and within the same diaphyseal cross-sections. Different elements show varying cross-sectional geometry, which appear to be correlated with the fossorial behavior of the species. Our results show that of all the long bones, the tibia is least remodeled during ontogeny and it is therefore the best element for skeletochronology.  相似文献   

6.
Hypotheses suggest that structural integrity of vertebrate bones is maintained by controlling bone strain magnitude via adaptive modelling in response to mechanical stimuli. Increased tissue-level strain magnitude and rate have both been identified as potent stimuli leading to increased bone formation. Mechanotransduction models hypothesize that osteocytes sense bone deformation by detecting fluid flow-induced drag in the bone''s lacunar–canalicular porosity. This model suggests that the osteocyte''s intracellular response depends on fluid-flow rate, a product of bone strain rate and gradient, but does not provide a mechanism for detection of strain magnitude. Such a mechanism is necessary for bone modelling to adapt to loads, because strain magnitude is an important determinant of skeletal fracture. Using strain gauge data from the limb bones of amphibians, reptiles, birds and mammals, we identified strong correlations between strain rate and magnitude across clades employing diverse locomotor styles and degrees of rhythmicity. The breadth of our sample suggests that this pattern is likely to be a common feature of tetrapod bone loading. Moreover, finding that bone strain magnitude is encoded in strain rate at the tissue level is consistent with the hypothesis that it might be encoded in fluid-flow rate at the cellular level, facilitating bone adaptation via mechanotransduction.  相似文献   

7.
The lifestyle of extinct tetrapods is often difficult to assess when clear morphological adaptations such as swimming paddles are absent. According to the hypothesis of bone functional adaptation, the architecture of trabecular bone adapts sensitively to physiological loadings. Previous studies have already shown a clear relation between trabecular architecture and locomotor behavior, mainly in mammals and birds. However, a link between trabecular architecture and lifestyle has rarely been examined. Here, we analyzed trabecular architecture of different clades of reptiles characterized by a wide range of lifestyles (aquatic, amphibious, generalist terrestrial, fossorial, and climbing). Humeri of squamates, turtles, and crocodylians have been scanned with microcomputed tomography. We selected spherical volumes of interest centered in the proximal metaphyses and measured trabecular spacing, thickness and number, degree of anisotropy, average branch length, bone volume fraction, bone surface density, and connectivity density. Only bone volume fraction showed a significant phylogenetic signal and its significant difference between squamates and other reptiles could be linked to their physiologies. We found negative allometric relationships for trabecular thickness and spacing, positive allometries for connectivity density and trabecular number and no dependence with size for degree of anisotropy and bone volume fraction. The different lifestyles are well separated in the morphological space using linear discriminant analyses, but a cross-validation procedure indicated a limited predictive ability of the model. The trabecular bone anisotropy has shown a gradient in turtles and in squamates: higher values in amphibious than terrestrial taxa. These allometric scalings, previously emphasized in mammals and birds, seem to be valid for all amniotes. Discriminant analysis has offered, to some extent, a distinction of lifestyles, which however remains difficult to strictly discriminate. Trabecular architecture seems to be a promising tool to infer lifestyle of extinct tetrapods, especially those involved in the terrestrialization.  相似文献   

8.
Here, we describe the bone histology of juvenile specimens of the basal sauropodomorph Mussaurus patagonicus and interpret its significance in terms of the early growth dynamics of this taxon. Thin sections from three juvenile specimens (femur length, 111–120 mm) of Mussaurus were analysed. The sampled bones consist of multiple postcranial elements collected from the Late Triassic Laguna Colorada Formation (El Tranquilo Group, Patagonia). The cortical bone is composed of fibrolamellar bone tissue. Vascularisation is commonly laminar or plexiform in the long bones. Growth marks are absent in all the examined samples. The ‘epiphyses’ of long bones are all formed by well-developed hypertrophied calcified cartilage. The predominance of woven-fibred bone matrix in cortical bones indicates a fast growth rate in the individuals examined. Moreover, given the existence of growth marks in adult specimens of Mussaurus, as in other sauropodomorphs, and assuming that the first lines of arrested growth was formed during the first year of life, the absence of growth marks in all the bones suggest that the specimens died before reaching their first year of life. Compared with the African taxon Massospondylus carinatus (another basal sauropodomorph for which the bone histology has been previously studied), it appears that Mussaurus had a higher early growth rate than Massospondylus.  相似文献   

9.
We report the emission of underwater sounds in the tadpoles of a second member of the family Ceratophryidae, Ceratophrys cranwelli. These tadpoles produce a short metallic‐like sound, which consists of short trains of pulses at Gosner stages 25, 28, and 37. Experiment I was designed to record underwater sounds and their characteristics. Experiment II was designed to test: (i) if at higher densities (total number of tadpoles/L) but fixed predator–prey proportions C. cranwelli larvae are cannibalistic, (ii) if cannibalism increases at higher proportions of predators at a fixed density, and (iii) if tadpoles display a mechanism of intraspecific recognition that may diminish the frequency of cannibalism. Each treatment combines larvae of C. cranwelli (predator) with those of Rhinella arenarum (prey). The number of live and dead individuals was recorded during 72 h, and the following variables were calculated: time to eat the first and second prey, time without eating, time to eat a congener, and number of events of cannibalism. The results indicate that relative predator–prey availability affects the frequency of predation between conspecifics. We consider that an antipredator mechanism exists in C. cranwelli tadpoles and that the underwater sound is part of it.  相似文献   

10.
We know the capuchin (Cebus apella) is an omnivorous monkey; we have a considerable amount of information given by native hunters that it feeds on small-sized species of amphibians and reptiles, young birds and birds' eggs, as well as various kinds of fruit and insects. However, how the monkey discovers, captures, and eats such food has not yet been reported. Neither has it been reported that the capuchin feeds on certain species of them purposely, not accidentally. The capuchin observed by the author fed on a kind of frog (Hylidae), which inhabits Guadua (Bambusa guadua) and each individual used the same method to discover, capture, and eat the frog. It can be suggested that the behavior in such a series are adaptive ones which guarantee the capuchin a constant supply of frogs.  相似文献   

11.
As an introduction to the main theme of this conference an overview of the organization of the tetrapod forebrain is presented with emphasis on the telencephalic representation of sensory and motor functions. In all classes of tetrapods, olfactory, visual, octavolateral, somatosensory and gustatory information reaches the telencephalon. Major differences exist in the telencephalic targets of sensory information between amphibians and amniotes. In amphibians, three targets are found: the lateral pallium for olfactory input, the medial pallium for visual and multisensory input, and the lateral subpallium for visual, octavolateral and somatosensory information. The forebrains of reptiles and mammals are similar in that the dorsal surface of their cerebral hemisphere is formed by a pallium with three major segments: (a) an olfactory, lateral cortex; (b) a 'limbic' cortex that forms the dorsomedial wall of the hemisphere, and (c) an intermediate cortex that is composed entirely of isocortex in mammals, but in reptiles (and birds) consists of at least part of the dorsal cortex (in birds the Wulst) and a large intraventricular protrusion, i.e. the dorsal ventricular ridge. In birds, the entire lateral wall of the hemisphere is involved in this expansion. The intermediate pallial segment receives sensory projections from the thalamus and contains modality-specific sensory areas in reptiles, birds and mammals. The most important differences between the intermediate pallial segment of amniotes concern motor systems.  相似文献   

12.
To elucidate phylogenetic relationships among amniotes and the evolution of alpha globins, hemoglobins were analyzed from the Komodo dragon (Komodo monitor lizard) Varanus komodoensis, the world's largest extant lizard, inhabiting Komodo Islands, Indonesia. Four unique globin chains (alpha A, alpha D, beta B, and beta C) were isolated in an equal molar ratio by high performance liquid chromatography from the hemolysate. The amino acid sequences of two alpha chains were determined. The alpha D chain has a glutamine at E7 as does an alpha chain of a snake, Liophis miliaris, but the alpha A chain has a histidine at E7 like the majority of hemoglobins. Phylogenetic analyses of 19 globins including two alpha chains of Komodo dragon and ones from representative amniotes showed the following results: (1) The a chains of squamates (snakes and lizards), which have a glutamine at E7, are clustered with the embryonic alpha globin family, which typically includes the alpha D chain from birds; (2) birds form a sister group with other reptiles but not with mammals; (3) the genes for embryonic and adult types of alpha globins were possibly produced by duplication of the ancestral alpha gene before ancestral amniotes diverged, indicating that each of the present amniotes might carry descendants of the two types of alpha globin genes; (4) squamates first split off from the ancestor of other reptiles and birds.   相似文献   

13.
The germ cell development strategy during spermatogenesis was investigated in the black swamp snake (Seminatrix pygaea). Testicular tissues were collected, embedded in plastic, sectioned by ultramicrotome, and stained with methylene blue and basic fuchsin. Black swamp snakes have a postnuptial pattern of development, where spermatogenesis occurs from May to July and spermiation is completed by October. Though spatial relationships are seen between germ cells within the seminiferous epithelium during specific months, accumulation of spermatogonia and spermatocytes early in spermatogenesis and the depletion of spermatocytes and accumulation of spermatids late in spermatogenesis prevent consistent cellular associations. This temporal germ cell development within an amniotic testis is consistent with that seen in other recently studied temperate reptiles (slider turtle and wall lizard). These reptiles’ temporal development is more similar to the developmental strategy found in anamniotes than the spatial germ cell development that characterizes birds and mammals. Our findings also imply that a third germ cell development strategy may exist in temperate breeding reptiles. Because of the phylogenetic position of reptiles between anamniotes and other terrestrial amniotes, this common germ cell development strategy shared by temperate reptiles representing different orders may have significant implications as far as the evolution of sperm development within vertebrates.  相似文献   

14.
Abstract: Patterns of bone deposition are reported and deduced from mid‐shaft sections of 21 limb bones of the dicynodont Placerias hesternus from the Placerias Quarry (Upper Triassic), Arizona, USA. All sampled elements of P. hesternus have a large medullary cavity completely filled with bony trabeculae surrounded by dense cortical bone. Dense Haversian bone extends from the perimedullary region to at least the mid‐cortex in all sampled bones. Primary bone in the outer cortex of limb elements of P. hesternus is generally zonal fibrolamellar with a peripheral layer of parallel‐fibred bone. These data suggest periodic rapid osteogenesis followed by slower growth. Among dicynodonts, this strategy is most similar to growth previously reported in other Triassic (Lystrosaurus, Wadiasaurus) and some Permian taxa (Oudenodon, Tropidostoma). An external fundamental system (EFS), suggesting complete or near complete cessation of appositional growth, is present in the largest tibia. This is the first report of EFS in dicynodonts and may represent the attainment of maximum size in P. hesternus. Slow‐growing peripheral bone was observed in elements of varying size in our sample and may support a differential growth pattern between P. hesternus individuals from this locality. A complete growth series of P. hesternus, analysis of Placerias specimens from other localities, and further sampling of other Upper Triassic dicynodonts are needed to better understand a more complete picture of the growth and remodelling patterns that we have initially investigated.  相似文献   

15.
Reptilian skull morphology is highly diverse and broadly categorized into three categories based on the number and position of the temporal fenestrations: anapsid, synapsid, and diapsid. According to recent phylogenetic analysis, temporal fenestrations evolved twice independently in amniotes, once in Synapsida and once in Diapsida. Although functional aspects underlying the evolution of tetrapod temporal fenestrations have been well investigated, few studies have investigated the developmental mechanisms responsible for differences in the pattern of temporal skull region. To determine what these mechanisms might be, we first examined how the five temporal bones develop by comparing embryonic cranial osteogenesis between representative extant reptilian species. The pattern of temporal skull region may depend on differences in temporal bone growth rate and growth direction during ontogeny. Next, we compared the histogenesis patterns and the expression of two key osteogenic genes, Runx2 and Msx2, in the temporal region of the representative reptilian embryos. Our comparative analyses suggest that the embryonic histological condition of the domain where temporal fenestrations would form predicts temporal skull morphology in adults and regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal skull region of reptiles.  相似文献   

16.
The femoral microanatomy of 155 species of extant amniotes (57 species of mammals, 15 species of turtles, 56 species of lepidosaurs, and 27 species of birds) of known lifestyle is studied to demonstrate a possible link between some basic parameters of bone structure and specific lifestyles, as well as phylogenetic relationships between taxa. Squared change parsimony with random taxon reshuffling and pairwise comparisons reveal that most compactness and size parameters exhibit both phylogenetic and ecological signals. A discriminant analysis produces several inference models, including a ternary model (aquatic, amphibious, terrestrial) that yield the correct lifestyle in 88% of the cases. These models are used to infer the lifestyle of three extinct Permian temnospondyls: Eryops megacephalus, Acheloma dunni, and Trimerorhachis insignis. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 644–655.  相似文献   

17.
Mortality of vertebrates was monitored on a local road running across Poland’s Biebrza River Valley during 2 years (August 2005–July 2006). On the basis of distance from the river and surrounding habitats, the road (of total length 2,510 m) was divided into three stretches. The road was monitored on foot by two people every month, over a few consecutive days. A total of 1,892 road kills representing at least 47 species were found. Of these, 90.7% were amphibians, 4.2% mammals, 3.1% birds and 2.0% reptiles. Most (70%) of the amphibians were anurans, with the common toad, common frog and moor frog among them together accounting for 82% of the total. Mortality among amphibians differed between months, most anurans dying in May and August, while a majority of Urodela are lost in October. The peaks in mortality were connected with the migration of adult amphibians in spring and juveniles in summer and autumn. The number of amphibians killed was greatest on the (wettest) stretch adjacent to the river and decreased with distance from it. Mortality among birds was highest in July—probably in association with the dispersal of young individuals. Among recorded mammalian road kills, there was a prevalence of small rodents (mainly voles) and insectivores (mainly shrews). Medium-sized mammals were found only accidentally. Mortality in general was conditioned by the number of anurans killed.  相似文献   

18.
The sense of bitter taste plays a critical role in how organisms avoid generally bitter toxic and harmful substances. Previous studies revealed that there were 25 intact bitter taste receptor (T2R) genes in humans and 34 in mice. However, because the recent chicken genome project reported only three T2R genes, it appears that extensive gene expansions occurred in the lineage leading to mammals or extensive gene contractions occurred in the lineage leading to birds. Here, I examined the T2R gene repertoire in placental mammals (dogs, Canis familiaris; and cows, Bos taurus), marsupials (opossums, Monodelphis domestica), amphibians (frogs, Xenopus tropicalis), and fishes (zebrafishes, Danio rerio; and pufferfishes, Takifugu rubripes) to investigate the birth-and-death process of T2R genes throughout vertebrate evolution. I show that (1) the first extensive gene expansions occurred before the divergence of mammals from reptiles/birds but after the divergence of amniotes (reptiles/birds/mammals) from amphibians, (2) subsequent gene expansions continuously took place in the ancestral mammalian lineage and the lineage leading to amphibians, as evidenced by the presence of 15, 18, 26, and 49 intact T2R genes in the dog, cow, opossum, and frog genome, respectively, and (3) contractions of the gene repertoire happened in the lineage leading to chickens. Thus, continuous gene expansions have shaped the T2R repertoire in mammals, but the contractions subsequent to the first round of expansions have made the chicken T2R repertoire narrow. These dramatic changes in the repertoire size might reflect the daily intake of foods from an external environment as a driving force of evolution.  相似文献   

19.

Aim

Although the effects of life history traits on population density have been investigated widely, how spatial environmental variation influences population density for a large range of organisms and at a broad spatial scale is poorly known. Filling this knowledge gap is crucial for global species management and conservation planning and to understand the potential impact of environmental changes on multiple species.

Location

Global.

Time period

Present.

Major taxa studied

Terrestrial amphibians, reptiles, birds and mammals.

Methods

We collected population density estimates for a range of terrestrial vertebrates, including 364 estimates for amphibians, 850 for reptiles, 5,667 for birds and 7,651 for mammals. We contrasted the importance of life history traits and environmental predictors using mixed models and tested different hypotheses to explain the variation in population density for the four groups. We assessed the predictive accuracy of models through cross‐validation and mapped the partial response of vertebrate population density to environmental variables globally.

Results

Amphibians were more abundant in wet areas with high productivity levels, whereas reptiles showed relatively higher densities in arid areas with low productivity and stable temperatures. The density of birds and mammals was typically high in temperate wet areas with intermediate levels of productivity. The models showed good predictive abilities, with pseudo‐R2 ranging between 0.68 (birds) and 0.83 (reptiles).

Main conclusions

Traits determine most of the variation in population density across species, whereas environmental conditions explain the intraspecific variation across populations. Species traits, resource availability and climatic stability have a different influence on the population density of the four groups. These models can be used to predict the average species population density over large areas and be used to explore macroecological patterns and inform conservation analyses.  相似文献   

20.
We present the first comprehensive DNA barcoding study of German reptiles and amphibians representing likewise the first on the European herpetofauna. A total of 248 barcodes for all native species and subspecies in the country and a few additional taxa were obtained in the framework of the projects ‘Barcoding Fauna Bavarica’ (BFB) and ‘German Barcode of Life’ (GBOL). In contrast to many invertebrate groups, the success rate of the identification of mitochondrial lineages representing species via DNA barcode was almost 100% because no cases of Barcode Index Number (BIN) sharing were detected within German native reptiles and amphibians. However, as expected, a reliable identification of the hybridogenetic species complex in the frog genus Pelophylax was not possible. Deep conspecific lineages resulting in the identification of more than one BIN were found in Lissotriton vulgaris, Natrix natrix and the hybridogenetic Pelophylax complex. A high variety of lineages with different BINs was also found in the barcodes of wall lizards (Podarcis muralis), confirming the existence of many introduced lineages and the frequent occurrence of multiple introductions. Besides the reliable species identification of all life stages and even of tissue remains, our study highlights other potential applications of DNA barcoding concerning German amphibians and reptiles, such as the detection of allochthonous lineages, monitoring of gene flow and also noninvasive sampling via environmental DNA. DNA barcoding based on COI has now proven to be a reliable and efficient tool for studying most amphibians and reptiles as it is already for many other organism groups in zoology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号