首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim Plant and arthropod diversity are often related, but data on the role of mature tree diversity on canopy insect communities are fragmentary. We compare species richness of canopy beetles across a tree diversity gradient ranging from mono‐dominant beech to mixed stands within a deciduous forest, and analyse community composition changes across space and time. Location Germany’s largest exclusively deciduous forest, the Hainich National Park (Thuringia). Methods We used flight interception traps to assess the beetle fauna of various tree species, and applied additive partitioning to examine spatiotemporal patterns of diversity. Results Species richness of beetle communities increased across the tree diversity gradient from 99 to 181 species per forest stand. Intra‐ and interspecific spatial turnover among trees contributed more than temporal turnover among months to the total γ‐beetle diversity of the sampled stands. However, due to parallel increases in the number of habitat generalists and the number of species in each feeding guild (herbivores, predators and fungivores), no proportional changes in community composition could be observed. If only beech trees were analysed across the gradient, patterns were similar but temporal (monthly) species turnover was higher compared to spatial turnover among trees and not related to tree diversity. Main conclusions The changes in species richness and community composition across the gradient can be explained by habitat heterogeneity, which increased with the mix of tree species. We conclude that understanding temporal and spatial species turnover is the key to understanding biodiversity patterns. Mono‐dominant beech stands are insufficient to conserve fully the regional species richness of the remaining semi‐natural deciduous forest habitats in Central Europe, and analysing beech alone would have resulted in the misleading conclusion that temporal (monthly) turnover contributes more to beetle diversity than spatial turnover among different tree species or tree individuals.  相似文献   

2.
Determining how thermal variability will affect the structure, stability, and function of ecological communities is becoming increasingly important as global warming is predicted to affect not only average temperatures but also increase the frequency of long runs of high temperatures. Latitudinal differences in the responses of ecological communities to changes in their thermal regimes have also been predicted based on adaptations over evolutionary time to different thermal environments. We conducted an experiment to determine whether variability in temperature leads to consistent changes in community structure, temporal dynamics, and ecosystem functioning in laboratory analogues of natural freshwater supralittoral rock pool communities inhabited by meiofauna and zooplankton collected from sub‐Arctic, temperate, and tropical regions. Thermal variability of +4 °C around mean temperature led to increased extinction frequency, decreases in consumer abundance, increases in temporal variability of consumer abundance, and shifts from predominately negative interactions observed under constant temperature to positive interactions in the temperate and tropical communities but not in the sub‐Arctic communities. That sub‐Arctic zooplankton communities may be more robust to thermal variability than temperate or tropical communities’ supports recent studies on macrophysiological adaptations of species along latitudinal gradients and suggests that increasing thermal variability may have the greatest effects on community structure and function in tropical and temperate regions.  相似文献   

3.
At large scales, the mechanisms underpinning stability in natural communities may vary in importance due to changes in species composition, mean abundance, and species richness. Here we link species characteristics (niche positions) and community characteristics (richness and abundance) to evaluate the importance of stability mechanisms in 156 butterfly communities monitored across three European countries and spanning five bioclimatic regions. We construct niche-based hierarchical structural Bayesian models to explain first differences in abundance, population stability, and species richness between the countries, and then explore how these factors impact community stability both directly and indirectly (via synchrony and population stability). Species richness was partially explained by the position of a site relative to the niches of the species pool, and species near the centre of their niche had higher average population stability. The differences in mean abundance, population stability, and species richness then influenced how much variation in community stability they explained across the countries. We found, using variance partitioning, that community stability in Finnish communities was most influenced by community abundance, whereas this aspect was unimportant in Spain with species synchrony explaining most variation; the UK was somewhat intermediate with both factors explaining variation. Across all countries, the diversity–stability relationship was indirect with species richness reducing synchrony which increased community stability, with no direct effects of species richness. Our results suggest that in natural communities, biogeographical variation observed in key drivers of stability, such as population abundance and species richness, leads to community stability being limited by different factors and that this can partially be explained due to the niche characteristics of the European butterfly assemblage.  相似文献   

4.
Over the last two decades, although much has been learned regarding the multifaceted nature of biodiversity, relatively little is known regarding spatial variation in constituents other than species richness. This is particularly true along extensive environmental gradients such as latitude. Herein, we describe latitudinal gradients in the functional diversity of New World bat communities. Bat species from each of 32 communities were assigned to one of seven functional groups. Latitudinal gradients existed for the richness, diversity and scaled‐dominance of functional groups. No significant patterns were observed for evenness of functional groups. Measures of functional diversity were different in magnitude and increased towards the equator at a faster rate than expected given the underlying spatial variation in species richness. Thus, latitudinal gradient in species richness alone do not cause the latitudinal gradient in functional diversity. When variation in species composition of the regional fauna of each community was incorporated into analyses, many differences between observed and simulated patterns of functional diversity were not significant. This suggests that those processes that determine the composition of regional faunas strongly influence the latitudinal gradient in functional diversity at the local level. Nonetheless, functional diversity was lower than expected across observed sites. Community‐wide responses to variation in the quantity and quality of resources at the local level probably contribute to differences in functional diversity at local and regional scales and enhance beta diversity.  相似文献   

5.
Soil nematodes are fundamentally aquatic animals, requiring water to move, feed, and reproduce. Nonetheless, they are ubiquitous in desert soils because they can enter an anhydrobiotic state that allows them to persist when water is biologically unavailable. In the hyper‐arid Namib Desert of Namibia, rain is rare, but fog routinely moves inland from the coast and supports plant and animal life. Very little is understood about how this fog may affect soil organisms. We investigated the role of fog moisture in the ecology of free‐living, soil nematodes across an 87‐km fog gradient in the gravel plains of the Namib Desert. We found that nematodes emerged from anhydrobiosis and became active during a fog event, suggesting that they can utilize fog moisture to survive. Nematode abundance did not differ significantly across the fog gradient and was similar under shrubs and in interplant spaces. Interplant soils harbor biological soil crusts that may sustain nematode communities. As fog declined along the gradient, nematode diversity increased in interplant soils. In areas where fog is rare, sporadic rainfall events can stimulate the germination and growth of desert ephemerals that may have a lasting effect on nematode diversity. In a 30‐day incubation experiment, nematode abundance increased when soils were amended with water and organic matter. However, these responses were not evident in field samples, which show no correlations among nematode abundance, location in the fog gradient, and soil organic matter content. Soil nematodes are found throughout the Namib Desert gravel plains under a variety of conditions. Although shown to be moisture‐ and organic matter‐limited and able to use moisture from the fog for activity, variation in fog frequency and soil organic matter across this unique ecosystem may be biologically irrelevant to soil nematodes in situ.  相似文献   

6.
陆地植物群落物种多样性研究进展   总被引:14,自引:2,他引:14  
王永健  陶建平  彭月   《广西植物》2006,26(4):406-411
生物多样性是当前生态学研究的热点之一,物种多样性层次是最直接、最易观察和最适合研究生物多样性的层次。总结了与群落动态、生境因子、取样尺度及生态系统相关的陆地植物物种多样性研究。同时,根据目前的趋势提出了多样性动态研究的发展动向。  相似文献   

7.
A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.  相似文献   

8.
9.

Aim

Land use is a main driver of biodiversity loss worldwide. However, quantifying its effects on global plant diversity remains a challenge due to the limited availability of data on the distributions of vascular plant species and their responses to land use. Here, we estimated the global extinction threat of land use to vascular plant species based on a novel integration of an ecoregion-level species-area model and the relative endemism richness of the ecoregions.

Location

Global.

Methods

First, we assessed ecoregion-level extinction threats using a countryside species–area relationship model based on responses of local plant richness to land use types and intensities and a high-resolution global land use map. Next, we estimated global species extinction threat by multiplying the relative endemism richness of each ecoregion with the ecoregion-level extinction threats.

Results

Our results indicate that 11% of vascular plant species are threatened with global extinction. We found the largest extinction threats in the Neotropic and Palearctic realms, mainly due to cropland of minimal and high intensity, respectively.

Main Conclusions

Our novel integration of the countryside species–area relationship and the relative endemism richness allows for the identification of hotspots of global extinction threat, as well as the contribution of specific land use types and intensities to this threat. Our findings inform where the development of measures to protect or restore plant diversity globally are most needed.  相似文献   

10.
11.
Trait diversity is believed to influence ecosystem dynamics through links between organismal traits and ecosystem processes. Theory predicts that key traits and high trait redundancy—large species richness and abundance supporting the same traits—can buffer communities against environmental disturbances. While experiments and data from simple ecological systems lend support, large‐scale evidence from diverse, natural systems under major disturbance is lacking. Here, using long‐term data from both temperate (English Channel) and tropical (Seychelles Islands) fishes, we show that sensitivity to disturbance depends on communities’ initial trait structure and initial trait redundancy. In both ecosystems, we found that increasing dominance by climatically vulnerable traits (e.g., small, fast‐growing pelagics/corallivores) rendered fish communities more sensitive to environmental change, while communities with higher trait redundancy were more resistant. To our knowledge, this is the first study demonstrating the influence of trait structure and redundancy on community sensitivity over large temporal and spatial scales in natural systems. Our results exemplify a consistent link between biological structure and community sensitivity that may be transferable across ecosystems and taxa and could help anticipate future disturbance impacts on biodiversity and ecosystem functioning.  相似文献   

12.
胡冬  吕光辉  王恒方  杨启  蔡艳 《生态学报》2021,41(17):6738-6748
荒漠生态系统多样性的研究对维持荒漠区群落稳定性有着重要意义。以艾比湖流域荒漠植物群落为研究对象,基于野外样方调查数据及实验分析,探讨不同水分梯度下植物多样性与稳定性的变化规律及土壤因子对二者的影响。结果表明:(1)随土壤水分含量下降,Shannon-Wiener多样性指数(H)、Simpson多样性指数(D)、Pielou均匀度指数(J)、Margalef丰富度指数(R)和种群密度稳定性(ICV)指数均呈下降趋势,且当土壤含水量低于4.65%时,荒漠植物多样性与群落稳定性总体显著降低(P<0.05);(2)不同水分梯度下影响艾比湖流域植物多样性的土壤因子具有差异性,高水梯度为硝态氮与有机质,中水梯度下影响植物多样性的因子为pH,低水梯度为全氮和有机质;(3)仅在环境适宜的情况下,土壤因子(土壤含盐量与有机质)才能对群落稳定性产生显著影响(P<0.01);(4)三种梯度下,物种多样性均对群落稳定性有显著性影响(P<0.001),植物多样性与群落稳定性存在正相关关系。  相似文献   

13.
黑龙江省不同纬度梯度农田大型土壤动物群落分布特征   总被引:1,自引:3,他引:1  
曹阳  高梅香  张雪萍  董承旭 《生态学报》2017,37(5):1677-1687
沿着由高到低的纬度梯度,分别在塔河、带岭、帽儿山的农田生境选择研究样地,采用手捡法调查不同纬度农田生态系统大型土壤动物的群落组成、水平结构、垂直结构和多样性特征,并运用双变量相关分析及典范对应分析阐明土壤动物群落和环境因子的相互关系,旨在揭示黑龙江省不同纬度梯度农田大型土壤动物群落分布特征及其影响因素。调查共捕获大型土壤动物35类2339只,隶属于2门6纲14目35科。其中线蚓科(Enchytraeidae)、正蚓科(Lumbricidae)、步甲科(Carabida)、隐翅虫科(Staphylinidae)为优势类群,其个体数占总个体数的58.84%;常见类群为蚁科(Formicidae)、蜘蛛目(Araneida)和地蜈蚣目(Geophilomorpha)等8类,其个体数占总个体数的32.79%。结果表明:(1)水平分布上:大型土壤动物个体密度和丰富度(即类群数)的水平分布均表现为帽儿山带岭塔河,单因素方差分析表明大型土壤动物的个体密度和丰富度在不同纬度地区无显著差异。Shannon-wiener多样性指数(H')和Pielou均匀度指数(E)均为帽儿山带岭塔河;Simpson优势度指数(C)表现为塔河和带岭最高,帽儿山最少;Margalef丰富度指数(D)则是塔河最多,其次为帽儿山和带岭。(2)垂直分布上:3个不同纬度样地的农田土壤动物个体密度和丰富度在同垂直层次间不存在明显差异(P0.05)。除帽儿山5—10 cm土层土壤动物类群数量较表层增加之外,其他样地大型土壤动物个体密度和丰富度均随土层深度的增加而逐渐降低,表聚性明显。(3)与土壤环境因子关系上:双变量相关分析表明,不同纬度农田大型土壤动物的类群数、个体密度、多样性指数、均匀度指数和优势度指数与土壤p H值、有机质、全氮、全磷和速效磷均没有显著的相关性;典范对应分析(CCA)进一步表明,优势类群和常见类群对环境因子具有较强的适应能力,广泛的分布在3个样地内。研究表明,农田生态系统大型土壤动物的类群数、个体密度和多样性指数随纬度梯度的增加先增加后减少,但不同纬度间均无显著性差异。不同土壤动物类群受到环境变量的影响程度不同,在局地尺度环境因子对土壤动物的影响不容忽视。研究为区域尺度农田生态系统土壤动物空间格局和生物多样性维持机制研究奠定基础。  相似文献   

14.
Aim The aim of this study was to test a variant of the evolutionary time hypothesis for the bird latitudinal diversity gradient derived from the effects of niche conservatism in the face of global climate change over evolutionary time. Location The Western Hemisphere. Methods We used digitized range maps of breeding birds to estimate the species richness at two grain sizes, 756 and 12,100 km2. We then used molecular phylogenies resolved to family to quantify the root distance (RD) of each species as a measure of its level of evolutionary development. Birds were classified as ‘basal’ or ‘derived’ based on the RD of their family, and richness patterns were contrasted for the most basal and most derived 30% of species. We also generated temperature estimates for the Palaeogene across the Western Hemisphere to examine how spatial covariation between past and present climates might make it difficult to distinguish between ecological and evolutionary hypotheses for the current richness gradient. Results The warm, wet tropics support many species from basal bird clades, whereas the northern temperate zone and cool or dry tropics are dominated by species from more recent, evolutionarily derived clades. Furthermore, crucial to evaluating how niche conservatism among birds may drive the hemispherical richness gradient, the spatial structure of the richness gradient for basal groups is statistically indistinguishable from the overall gradient, whereas the richness gradient for derived groups is much shallower than the overall gradient. Finally, modern temperatures and the pattern of climate cooling since the Eocene are indistinguishable as predictors of bird species richness. Main conclusions Differences in the richness gradients of basal vs. derived clades suggest that the hemispherical gradient has been strongly influenced by the differential extirpation of species in older, warm‐adapted clades from parts of the world that have become cooler in the present. We propose that niche conservatism and global‐scale climate change over evolutionary time provide a parsimonious explanation for the contemporary bird latitudinal diversity gradient in the New World, although dispersal limitation of some highly derived clades probably plays a secondary role.  相似文献   

15.
物种多样性与生态系统功能:影响机制及有关假说   总被引:59,自引:0,他引:59  
本文主要介绍了有关物种多样性对生态系统功能的影响机制及有关假说,包括冗余种假说、铆钉假说、不确定假说、无效假说、补偿/关键种假说、非线性假说、单调/驼峰模型假说等。尽管这些假说的提出都有一定的理论或实验研究基础,但到目前为止,还没有一种假说被普遍认为反映了两者之间关系的实际情形(如果确实存在这样一种普适机制)。通过分析,我们发现在这些假说之间存在一定的内在联系,它们或者互相包含,或者互相补充,并且都可以归结到冗余种假说有关。  相似文献   

16.
17.
植物多样性与植物竞争强度和生态位重叠度的关系会随环境发生变化。为探究上述关系在若尔盖地区的表现形式,于2021年8月对若尔盖地区典型的水生、湿生、湿生-中生和中生植物群落进行调查,构建了新的植物竞争强度(Competition intensity,CI)公式并进行测算,计算了植物群落的植物多样性指数(包括物种丰富度、Shannon-Weiner指数、Simpson指数和Pielou均匀度指数)和生态位重叠度(Niche overlap of species,NOS),分析了植物群落物种多样性指数与CI和NOS的关系。结果表明:1)从水生到中生生境,植物多样性指数均呈增加趋势(P<0.05);2)湿生-中生生境的CI显著高于湿生生境(P<0.05),湿生生境的NOS高于水生生境(P<0.05);CI与NOS无显著相关性,但在湿生生境中两者呈倒抛物线关系(P<0.05)。3)整体来看,植物群落的物种丰富度与CI呈抛物线关系(P<0.05),与NOS无显著关系(P>0.05);Shannon-Weiner指数、Simpson指数和Pielou均匀度指数均与NOS呈线性正相关(P<0.05),与CI无显著关系(P>0.05);从单个生境看,湿生-中生生境的Simpson指数、Shannon-Weiner指数和Pielou均匀度指数与CI呈线性负相关(P<0.05),其余生境的上述多样性指数与CI无显著关系(P>0.05);各生境的植物多样性指数均与NOS无显著相关性(P>0.05)。本研究表明,从水生到中生生境,若尔盖地区的植物多样性呈增加趋势,但植物多样性与物种竞争强度和生态位重叠度的关系较复杂。本研究结果有助于理解若尔盖高原植物多样性的形成机制。  相似文献   

18.
为探讨外来入侵植物空心莲子草群落稳定性的驱动机制,在中国21°N-37°N范围内设置73个面积为10 mX 10 m的空心莲子草群落样地(陆生39个,水生34个),分别计算其Godron群落稳定性坐标值和4个α-物种多样性指数,并测定各样地的7项环境因子(经度、纬度、海拔、铵态氮、硝态氮、年均温和年均降雨量),采用回归...  相似文献   

19.
全球变化和人类活动导致物种生境的萎缩, 造成很多植物种群数量缩减, 遗传多样性快速丧失。对于物种多样性低的生态系统, 优势种的遗传多样性可能比物种多样性对生态系统功能产生更大的影响。因此, 了解遗传多样性和生态系统功能的关系(GD-EF)及其机制对生物多样性保护、应对环境变化和生态修复具有指导意义。该文综述了植物遗传多样性对生态系统结构(高营养级生物群落结构)和生态系统功能(初级生产力、养分循环和稳定性)的影响及机制、功能多样性对GD-EF的影响、遗传多样性效应和物种多样性效应的比较, 以及GD-EF在生态修复等实际应用的研究进展。最后指出当前研究的不足之处, 以期为后续研究提供参考: 1)还需深入研究GD-EF机制; 2)未评估遗传多样性对生态系统多功能性的影响; 3)不同遗传多样性测度对生态系统功能的影响不明确; 4)缺少长期的和多空间尺度结合的GD-EF实验; 5)遗传多样性效应相对于其他因子的作用不清楚。  相似文献   

20.
Exploring vegetation distribution spatial patterns facilitates understanding how biodiversity addresses the potential threat of future climate variability, especially for highly diverse and threatened tropical plant communities, but few empirical studies have been performed. Dacrydium pectinatum is a constructive and endangered species in the tropical mountain forests of Hainan Island, China. In this study, sixty‐eight 30 m × 30 m permanent plots of D. pectinatum were investigated, and species‐based and phylogenetic‐based methods were used to analyze the α‐ and β‐diversity pattern variation and its key drivers. Our study showed that species and phylogenetic α‐diversity patterns are different on a local scale. However, on a regional scale, the variations in the two α‐diversity patterns tend to converge, and they decrease with increasing elevation. The phylogenetic structure changes from overdispersion to convergence with increasing elevation. Soil (SOM, TP, AP), topography (EL, SL), and stand (CD) factors and α‐diversity showed close correlations. Species and phylogenetic β‐diversity have significant positive correlations with changing environmental distance and geographical distance; however, as a representative form of habitat heterogeneity, elevation distance has a greater impact on β‐diversity changes than geographical distance. In conclusion, the α‐ and β‐diversity patterns of the D. pectinatum community are mainly related to habitat filtering, especially in high‐elevation areas, and the colonization history of various regions also affects the formation of diversity patterns. Species‐based and phylogenetic‐based methods robustly demonstrated the key role of the habitat filtering hypothesis in community assembly. We believe that more plant diversity patterns need to be explored to understand the biodiversity formation mechanisms in tropical forests. We also recommend strengthening the construction and management of nature reserves to help address the biodiversity loss crisis in endangered tropical plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号