首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effects of climate and fishing on marine ecosystems have usually been studied separately, but their interactions make ecosystem dynamics difficult to understand and predict. Of particular interest to management, the potential synergism or antagonism between fishing pressure and climate forcing is analysed in this paper, using an end-to-end ecosystem model of the southern Benguela ecosystem, built from coupling hydrodynamic, biogeochemical and multispecies fish models (ROMS-N2P2Z2D2-OSMOSE). Scenarios of different intensities of upwelling-favourable wind stress combined with scenarios of fishing top-predator fish were tested. Analyses of isolated drivers show that the bottom-up effect of the climate forcing propagates up the food chain whereas the top-down effect of fishing cascades down to zooplankton in unfavourable environmental conditions but dampens before it reaches phytoplankton. When considering both climate and fishing drivers together, it appears that top-down control dominates the link between top-predator fish and forage fish, whereas interactions between the lower trophic levels are dominated by bottom-up control. The forage fish functional group appears to be a central component of this ecosystem, being the meeting point of two opposite trophic controls. The set of combined scenarios shows that fishing pressure and upwelling-favourable wind stress have mostly dampened effects on fish populations, compared to predictions from the separate effects of the stressors. Dampened effects result in biomass accumulation at the top predator fish level but a depletion of biomass at the forage fish level. This should draw our attention to the evolution of this functional group, which appears as both structurally important in the trophic functioning of the ecosystem, and very sensitive to climate and fishing pressures. In particular, diagnoses considering fishing pressure only might be more optimistic than those that consider combined effects of fishing and environmental variability.  相似文献   

2.
Some overharvested fish populations fail to recover even after considerable reductions in fishing pressure. The reasons are unclear but may involve genetic changes in life history traits that are detrimental to population growth when natural environmental factors prevail. We empirically modelled this process by subjecting populations of a harvested marine fish, the Atlantic silverside, to experimental size-biased fishing regimes over five generations and then measured correlated responses across multiple traits. Populations where large fish were selectively harvested (as in most fisheries) displayed substantial declines in fecundity, egg volume, larval size at hatch, larval viability, larval growth rates, food consumption rate and conversion efficiency, vertebral number, and willingness to forage. These genetically based changes in numerous traits generally reduce the capacity for population recovery.  相似文献   

3.
Long-term, concurrent measurement of population dynamics and associated top-down and bottom-up processes are rare for unmanipulated, terrestrial systems. Here, we analyse populations of moose, their predators (wolves, Canis lupus), their primary winter forage (balsam fir, Abies balsamea) and several climatic variables that were monitored for 40 consecutive years in Isle Royale National Park (544 km2), Lake Superior, USA. We judged the relative importance of top-down, bottom-up and abiotic factors on moose population growth rate by constructing multiple linear regression models, and calculating the proportion of interannual variation in moose population growth rate explained by each factor. Our analysis indicates that more variation in population growth rate is explained by bottom-up than top-down processes, and abiotic factors explain more variation than do bottom-up processes. Surprisingly, winter precipitation did not explain any significant variation in population growth rate. Like that detected for two Norwegian ungulate populations, the relationship between population growth rate and the North Atlantic Oscillation was nonlinear. Although this analysis provides significant insight, much remains unknown: of the models examined, the most parsimonious explain little more than half the variation in moose population growth rate.  相似文献   

4.
Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species – Atlantic salmon and European sea bass – mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process‐based ecological–economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different scenarios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond.  相似文献   

5.
Wasp-waist interactions in the North Sea ecosystem   总被引:1,自引:0,他引:1  

Background

In a “wasp-waist” ecosystem, an intermediate trophic level is expected to control the abundance of predators through a bottom-up interaction and the abundance of prey through a top-down interaction. Previous studies suggest that the North Sea is mainly governed by bottom-up interactions driven by climate perturbations. However, few studies have investigated the importance of the intermediate trophic level occupied by small pelagic fishes.

Methodology/Principal Findings

We investigated the numeric interactions among 10 species of seabirds, two species of pelagic fish and four groups of zooplankton in the North Sea using decadal-scale databases. Linear models were used to relate the time series of zooplankton and seabirds to the time series of pelagic fish. Seabirds were positively related to herring (Clupea harengus), suggesting a bottom-up interaction. Two groups of zooplankton; Calanus helgolandicus and krill were negatively related to sprat (Sprattus sprattus) and herring respectively, suggesting top-down interactions. In addition, we found positive relationships among the zooplankton groups. Para/pseudocalanus was positively related to C. helgolandicus and C. finmarchicus was positively related to krill.

Conclusion/Significance

Our results indicate that herring was important in regulating the abundance of seabirds through a bottom-up interaction and that herring and sprat were important in regulating zooplankton through top-down interactions. We suggest that the positive relationships among zooplankton groups were due to selective foraging and switching in the two clupeid fishes. Our results suggest that “wasp-waist” interactions might be more important in the North Sea than previously anticipated. Fluctuations in the populations of pelagic fish due to harvesting and depletion of their predators might accordingly have profound consequences for ecosystem dynamics through trophic cascades.  相似文献   

6.
North American Atlantic salmon (Salmo salar) populations experienced substantial declines in the early 1990s, and many populations have persisted at low abundances in recent years. Abundance and productivity declined in a coherent manner across major regions of North America, and this coherence points toward a potential shift in marine survivorship, rather than local, river‐specific factors. The major declines in Atlantic salmon populations occurred against a backdrop of physical and biological shifts in Northwest Atlantic ecosystems. Analyses of changes in climate, physical, and lower trophic level biological factors provide substantial evidence that climate conditions directly and indirectly influence the abundance and productivity of North American Atlantic salmon populations. A major decline in salmon abundance after 1990 was preceded by a series of changes across multiple levels of the ecosystem, and a subsequent population change in 1997, primarily related to salmon productivity, followed an unusually low NAO event. Pairwise correlations further demonstrate that climate and physical conditions are associated with changes in plankton communities and prey availability, which are ultimately linked to Atlantic salmon populations. Results suggest that poor trophic conditions, likely due to climate‐driven environmental factors, and warmer ocean temperatures throughout their marine habitat area are constraining the productivity and recovery of North American Atlantic salmon populations.  相似文献   

7.
The dependence of long-term fishery yields on primary productivity, largely based on cross-system comparisons and without reference to the potential dynamic character of this relationship, has long been considered strong evidence for bottom-up control in marine systems. We examined time series of intensive empirical observations from nine heavily exploited regions in the western North Atlantic and find evidence of spatial variance of trophic control. Top-down control dominated in northern areas, the dynamics evolved from bottom-up to top-down in an intermediate region, and bottom-up control governed the southern areas. A simplified, trophic control diagram was developed accounting for top-down and bottom-up forcing within a larger region whose base state dynamics are bottom-up and can accommodate time-varying dynamics. Species diversity and ocean temperature co-varied, being relatively high in southern areas and lower in the north, mirroring the shifting pattern of trophic control. A combination of compensatory population dynamics and accelerated demographic rates in southern areas seems to account for the greater stability of the predator species complex in this region.  相似文献   

8.
Fisheries ecologists traditionally aimed at disentangling climate and fishing effects from the population dynamics of exploited marine fish stocks. However, recent studies have shown that internal characteristics and external forcing (climate and exploitation) have interactive rather than additive effects. Thought most of these studies explored how demographic truncation induced by exploitation affected the response of recruitment to climate, identifying a general pattern revealed to be difficult as interactions are often case‐specific. Here we compared five exploited stocks of European hake Merluccius merluccius from the Atlantic Ocean and Mediterranean Sea to investigate how the interaction between internal characteristics and external forces affect the variability of the population growth rate and their consequences on recruitment. Our results show that demographic truncation induces a novel population scenario in which the growth rate is maximized when the reproductive stock is younger and less diverse. This scenario is shaped by the climate variability and the fishing pattern. The population growth rate becomes more dependent on the maturation schedule and less on the survival rates. The consequences for the recruitment dynamics are twofold; the effect of density‐dependent regulatory processes decreases while the effect of the density‐independent drivers increases. Our study shows that the interaction between internal characteristics and external forces changes across geographic locations according to 1) the importance of demographic truncation, 2) the influence of the climate on the regional hydrography and 3) the spatiotemporal heterogeneity of the physical environment to which fish life history is adapted.  相似文献   

9.
Climate change has strongly influenced the distribution and abundance of marine fish species, leading to concern about effects of future climate on commercially harvested stocks. Understanding the key drivers of large-scale spatial variation across present-day marine assemblages enables predictions of future change. Here we present a unique analysis of standardised abundance data for 198 marine fish species from across the Northeast Atlantic collected by 23 surveys and 31,502 sampling events between 2005 and 2018. Our analyses of the spatially comprehensive standardised data identified temperature as the key driver of fish community structure across the region, followed by salinity and depth. We employed these key environmental variables to model how climate change will affect both the distributions of individual species and local community structure for the years 2050 and 2100 under multiple emissions scenarios. Our results consistently indicate that projected climate change will lead to shifts in species communities across the entire region. Overall, the greatest community-level changes are predicted at locations with greater warming, with the most pronounced effects at higher latitudes. Based on these results, we suggest that future climate-driven warming will lead to widespread changes in opportunities for commercial fisheries across the region.  相似文献   

10.
Global climate change is driving rapid distribution shifts in marine ecosystems; these are well established for lower trophic levels, but are harder to quantify for migratory top predators. By analysing a 25-year sightings-based dataset, we found evidence for rapid northwards range expansion of the critically endangered Balearic shearwater Puffinus mauretanicus in northeast Atlantic waters. A 0.6 degrees C sea surface temperature increase in the mid-1990s is interpreted as an underlying controlling factor, while simultaneous northward shifts of plankton and prey fish species suggests a strong bottom-up control. Our results have important conservation implications and provide new evidence for climate-driven regime shift in Atlantic ecosystems.  相似文献   

11.
Climate change has been identified as one of the most important drivers of wildlife population dynamics. The in‐depth knowledge of the complex relationships between climate and population sizes through density dependent demographic processes is important for understanding and predicting population shifts under climate change, which requires integrated population models (IPMs) that unify the analyses of demography and abundance data. In this study we developed an IPM based on Gaussian approximation to dynamic N‐mixture models for large scale population data. We then analyzed four decades (1972–2013) of mallard Anas platyrhynchos breeding population survey, band‐recovery and climate data covering a large spatial extent from North American prairies through boreal habitat to Alaska. We aimed to test the hypothesis that climate change will cause shifts in population dynamics if climatic effects on demographic parameters that have substantial contribution to population growth vary spatially. More specifically, we examined the spatial variation of climatic effects on density dependent population demography, identified the key demographic parameters that are influential to population growth, and forecasted population responses to climate change. Our results revealed that recruitment, which explained more variance of population growth than survival, was sensitive to the temporal variation of precipitation in the southern portion of the study area but not in the north. Survival, by contrast, was insensitive to climatic variation. We then forecasted a decrease in mallard breeding population density in the south and an increase in the northwestern portion of the study area, indicating potential shifts in population dynamics under future climate change. Our results implied that different strategies need to be considered across regions to conserve waterfowl populations in the face of climate change. Our modelling approach can be adapted for other species and thus has wide application to understanding and predicting population dynamics in the presence of global change.  相似文献   

12.
Carr SM  Marshall HD 《Genetics》2008,180(1):381-389
On the basis of multiple complete mitochondrial DNA genome sequences, we describe the temporal phylogeography of Atlantic cod (Gadus morhua), a lineage that has undergone a complex pattern of vicariant evolution, postglacial demographic shifts, and historic sharp population declines due to fishing and/or environmental shifts. Each of 32 fish from four spawning aggregations from the northwest Atlantic and Norway has a unique mtDNA sequence, which differs by 6-60 substitutions. Phylogenetic analysis identifies six major haplogroups that range in age from 37 to 75 KYA. The widespread haplotype identified by previous single-locus analyses at the center of a "star phylogeny" is shown to be a paraphyletic assemblage of genome lineages. The coalescent that includes all cod occurs 162 KYA. The most basal clade comprises two fish from the western Atlantic. The most recent superclade that includes all fish examined from Norway, and which includes 84% of all fish examined, dates to 128 KYA at the Sangamon/Würm interglacial, when ocean depths on continental shelves would have favored transcontinental movement. The pairwise mismatch distribution dates population expansion of this superclade to the middle of the Wisconsinan/Weichsel glaciation 59 KYA, rather than to a postglacial emergence from a marine refugium 12 KYA, or to more recent historic events. We discuss alternative scenarios for the expansion and distribution of the descendants of the "codmother" in the North Atlantic. Mitochondrial phylogenomic analyses generate highly resolved trees that enable fine-scale tests of temporal hypotheses with an accuracy not possible with single-locus methods.  相似文献   

13.
L. E. Miranda  H. Gu 《Hydrobiologia》1998,377(1-3):73-83
We studied dietary shifts in the early life stages of gizzard shad Dorosoma cepedianum, a dominant forage species in North American reservoirs. Larval fish and zooplankton samples were collected weekly during spring in Sardis Reservoir, Mississippi, USA. Diet and prey electivity data suggested the existence of three dietary niches during early life stages: microzooplankton (larvae ≤10 mm total length) in which microzooplankters comprised over 90% by number; crustacean zooplankton (larvae 11–25 mm) in which larval gizzard shad consumed substantial numbers of crustacean zooplankton; and microplankton (larvae >25 mm) in which gizzard shad shifted to filtering protozoans, rotifers, and phytoplankton. There was a high overlap (84%) between the diet of larval gizzard shad and crappies Pomoxis spp. during early May. Larval gizzard shad can potentially reduce microzooplankton density through predation, then shift to crustacean zooplankton and drive their density to decline, then revert to filtration of microzooplankton and exploit phytoplankton. Although, gizzard shad have the ability to influence trophic interactions in reservoir ecosystems, their influence may sometimes be masked by the intensity of bottom-up and top-down effects, as well as population and community interactions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Population estimates of the critically endangered North Atlantic right whale (Eubalaena glacialis) put the number of individuals at 458 with the actual number likely being lower due to a recent unusual mortality event. Entanglement with fixed fishing gear is the most significant cause of mortality of North Atlantic right whales. There remains little documentation of how North Atlantic right whales become enwrapped during an encounter with fixed fishing gear. In order to gain a better understanding of how entanglements might occur, an interactive simulator was developed that allows the user to swim a virtual whale model using a standard game controller through a gear field in an attempt to re‐create an entanglement. The morphologically accurate right whale model produces realistic swimming motions and is capable of pectoral fin motions in response to user input. Using the simulator, gear entanglements involving the pectoral flippers including ropes wrapping around the body and entanglements involving the tailstock were re‐created. Entanglements involving the pectoral flippers with body wraps were more easily generated than entanglements involving the tailstock only. The simulator should aid scientists, fisheries experts, fishing gear designers, and bycatch reduction scientists in understanding entanglement dynamics and testing potential new gear configurations.  相似文献   

15.
Warming of the global climate is now unequivocal and its impact on Earth' functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod in order to minimize social and economic consequences.  相似文献   

16.
Marine ecosystems, particularly in high‐latitude regions such as the Arctic, have been significantly affected by human activities and contributions to climate change. Evaluating how fish populations responded to past changes in their environment is helpful for evaluating their future patterns, but is often hindered by the lack of long‐term biological data available. Using otolith increments of Northeast Arctic cod (Gadus morhua) as a proxy for individual growth, we developed a century‐scale biochronology (1924–2014) based on the measurements of 3,894 fish, which revealed significant variations in cod growth over the last 91 years. We combined mixed‐effect modeling and path analysis to relate these growth variations to selected climate, population and fishing‐related factors. Cod growth was negatively related to cod population size and positively related to capelin population size, one of the most important prey items. This suggests that density‐dependent effects are the main source of growth variability due to competition for resources and cannibalism. Growth was also positively correlated with warming sea temperatures but negatively correlated with the Atlantic Multidecadal Oscillation, suggesting contrasting effects of climate warming at different spatial scales. Fishing pressure had a significant but weak negative direct impact on growth. Additionally, path analysis revealed that the selected growth factors were interrelated. Capelin biomass was positively related to sea temperature and negatively influenced by herring biomass, while cod biomass was mainly driven by fishing mortality. Together, these results give a better understanding of how multiple interacting factors have shaped cod growth throughout a century, both directly and indirectly.  相似文献   

17.
Pelagic fishes are among the most ecologically and economically important fish species in European seas. In principle, these pelagic fishes have potential to demonstrate rapid abundance and distribution shifts in response to climatic variability due to their high adult motility, planktonic larval stages, and low dependence on benthic habitat for food or shelter during their life histories. Here, we provide evidence of substantial climate‐driven changes to the structure of pelagic fish communities in European shelf seas. We investigated the patterns of species‐level change using catch records from 57 870 fisheries‐independent survey trawls from across European continental shelf region between 1965 and 2012. We analysed changes in the distribution and rate of occurrence of the six most common species, and observed a strong subtropicalization of the North Sea and Baltic Sea assemblages. These areas have shifted away from cold‐water assemblages typically characterized by Atlantic herring and European sprat from the 1960s to 1980s, to warmer‐water assemblages including Atlantic mackerel, Atlantic horse mackerel, European pilchard and European anchovy from the 1990s onwards. We next investigated if warming sea temperatures have forced these changes using temporally comprehensive data from the North Sea region. Our models indicated the primary driver of change in these species has been sea surface temperatures in all cases. Together, these analyses highlight how individual species responses have combined to result in a dramatic subtropicalization of the pelagic fish assemblage of the European continental shelf.  相似文献   

18.
Globally, lake fish communities are being subjected to a range of scale‐dependent anthropogenic pressures, from climate change to eutrophication, and from overexploitation to species introductions. As a consequence, the composition of these communities is being reshuffled, in most cases leading to a surge in taxonomic similarity at the regional scale termed homogenization. The drivers of homogenization remain unclear, which may be a reflection of interactions between various environmental changes. In this study, we investigate two potential drivers of the recent changes in the composition of freshwater fish communities: recreational fishing and climate change. Our results, derived from 524 lakes of Ontario, Canada sampled in two periods (1965–1982 and 2008–2012), demonstrate that the main contributors to homogenization are the dispersal of gamefish species, most of which are large predators. Alternative explanations relating to lake habitat (e.g., area, phosphorus) or variations in climate have limited explanatory power. Our analysis suggests that human‐assisted migration is the primary driver of the observed compositional shifts, homogenizing freshwater fish community among Ontario lakes and generating food webs dominated by gamefish species.  相似文献   

19.
Changes in the strength and position of the Intertropical Convergence Zone (ITCZ) are an important component of climate variability in the tropical Atlantic. The Cariaco Basin, located on the northern margin of Venezuela, is sensitive to tropical Atlantic climate change and its sediments provide a record of past ITCZ behavior. Today, the Cariaco Basin experiences two distinct seasons that reflect the annual migration of the Atlantic ITCZ. Between January and March, when the ITCZ lies south of the equator, northeasterly trade winds sit directly over Cariaco Basin and strong coastal upwelling and dry conditions dominate. Beginning in June-July, as the ITCZ moves north, local rainfall reaches a maximum and the upwelling diminishes or disappears. Here we summarize new and previously published data on the river-derived terrigenous fraction of Cariaco Basin sediments, as well as comparisons to other paleoclimate records, which together suggest a coherent climatologic response in the tropical Atlantic triggered by a pattern of ITCZ migration that mimics the seasonal cycle. During periods of cooler North Atlantic SSTs, on time-scales ranging from the Little Ice Age to the Younger Dryas to the cold stadials of the last glacial, decreased detrital delivery to Cariaco Basin from local rivers suggests a southward shift in the mean latitudinal position of the ITCZ. During warm interstadials and periods of Holocene and deglacial warmth, northward shifts in ITCZ position and its belt of convective rainfall are inferred from increased detrital delivery to the basin. Whether the rapid shifts in ITCZ position and precipitation recorded by Cariaco Basin sediments and other regional records reflect a response to forcing originating in the high latitude Atlantic or to forcing potentially sourced in the tropics is a key question yet to be fully answered.  相似文献   

20.
The ups and downs of trophic control in continental shelf ecosystems   总被引:1,自引:0,他引:1  
Traditionally, marine ecosystem structure was thought to be determined by phytoplankton dynamics. However, an integrated view on the relative roles of top-down (consumer-driven) and bottom-up (resource-driven) forcing in large-scale, exploited marine ecosystems is emerging. Long time series of scientific survey data, underpinning the management of commercially exploited species such as cod, are being used to diagnose mechanisms that could affect the composition and relative abundance of species in marine food webs. By assembling published data from studies in exploited North Atlantic ecosystems, we found pronounced geographical variation in top-down and bottom-up trophic forcing. The data suggest that ecosystem susceptibility to top-down control and their resiliency to exploitation are related to species richness and oceanic temperature conditions. Such knowledge could be used to produce ecosystem guidelines to regulate and manage fisheries in a sustainable fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号