首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用氯仿熏蒸浸提法和Biolog法,分析环丙沙星作用下的土壤微生物量碳和微生物群落碳代谢多样性,以揭示环丙沙星在环境中残留对土壤微生物学性状的影响.结果表明,环丙沙星(wCIP≥0.1 μg/g)对土壤微生物量碳含量影响显著(P<0.05),土壤中环丙沙星浓度愈高,微生物量碳含量愈低,100μg/g的环丙沙星处理使土壤微生物量碳含量下降58.69%.环丙沙星对土壤微生物群落碳代谢功能影响显著,环丙沙星降低了土壤微生物对碳水化合物、羧酸、氨基酸、聚合物、酚类和胺类的碳源利用率;环丙沙星(wCIP≥0.1 μg/g)显著影响了土壤微生物群落碳源代谢强度和代谢多样性,但不同浓度的环丙沙星对土壤微生物群落碳代谢功能的影响不同,0.1、1、10 μg/g的环丙沙星处理对土壤微生物群落碳代谢功能的影响主要表现在处理前期(用药第7天、21天),这种影响在处理后期(用药第35天)表现不明显,100μg/g的环丙沙星在用药的前期和后期均显著影响土壤微生物群落碳代谢功能,土壤中环丙沙星积累到该浓度可能对土壤微生物群落碳代谢功能产生难以逆转的长期影响.  相似文献   

2.
长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响   总被引:28,自引:2,他引:26  
采集湖南省祁阳县红壤长期定位施肥19年的土壤样品,分析长期不同施肥红壤的微生物生物量碳、氮和微生物碳源利用率,以揭示长期施肥对红壤微生物学性状的影响.结果表明:施肥19年后,有机肥单施或与化肥配合施用均显著提高土壤微生物生物量碳、氮和微生物碳源利用率.单施有机肥的土壤微生物生物量碳、氮含量分别为231和81 mg·kg-1,化肥有机肥配施分别为148和73 mg·kg-1,均显著高于化肥配施秸秆、不施肥和单施化肥;施用有机肥和化肥配施秸秆的土壤微生物生物量氮占全氮的比例平均为6.0%,显著高于单施化肥和不施肥.Biolog-ECO分析中,平均吸光值(AWCD)的大小为:化肥有机肥配施、单施有机肥>对照>单施化肥、化肥配施秸秆.单施有机肥或与化肥有机肥配施增加了红壤微生物对碳水化合物、羧酸、氨基酸、聚合物、酚类和胺类的碳源利用率;化肥配施有机肥的红壤微生物对聚合物类碳源利用率最高,化肥配施秸秆的红壤微生物对碳水化合物类碳源的利用率最高.表明施用有机肥能显著提高红壤的微生物生物量碳、氮和微生物碳源利用率,提高红壤肥力,保持作物高产.  相似文献   

3.
耕作方式对紫色水稻土有机碳和微生物生物量碳的影响   总被引:10,自引:2,他引:8  
以位于西南大学的农业部紫色土生态环境重点野外科学观测试验站始于1990年的长期定位试验田为对象,研究了冬水田平作(DP)、水旱轮作(SH)、垄作免耕(LM)及垄作翻耕(LF)等4种耕作方式对紫色水稻土有机碳(SOC)和微生物生物量碳(SMBC)的影响。结果表明,4种耕作方式下SOC和SMBC均呈现出在土壤剖面垂直递减趋势,翻耕栽培下其降低较均匀,而免耕栽培下其富集在表层土壤中。同一土层不同耕作方式间SOC和SMBC的差异在表层最大,随着土壤深度的增加,各处理之间的差异逐渐减小。在0—60 cm剖面中,SOC含量依次为:LM(17.6 g/kg)>DP(13.9 g/kg)>LF(12.5 g/kg)>SH(11.3 g/kg),SOC储量也依次为:LM(158.52 Mg C/hm2)>DP(106.74 Mg C/hm2)>LF(93.11 Mg C/hm2)>SH(88.59 Mg C/hm2),而SMBC含量则依次为:LM(259 mg/kg)>SH(213 mg/kg)>LF(160 mg/kg)>DP(144 mg/kg)。与其它3种耕作方式比较,LM处理显著提高SOC含量和储量以及SMBC含量。对土壤微生物商(SMBC/SOC)进行分析发现,耕作方式对SOC和SMBC的影响程度并不一致。SMBC与SOC、全氮、全磷、全硫、碱解氮、有效磷均呈现极显著正相关(P<0.01),与有效硫呈显著正相关(P<0.05);表明SMBC可以作为表征紫色水稻土土壤肥力的敏感因子。  相似文献   

4.
5.
Species‐rich plant communities have been shown to be more productive and to exhibit increased long‐term soil organic carbon (SOC) storage. Soil microorganisms are central to the conversion of plant organic matter into SOC, yet the relationship between plant diversity, soil microbial growth, turnover as well as carbon use efficiency (CUE) and SOC accumulation is unknown. As heterotrophic soil microbes are primarily carbon limited, it is important to understand how they respond to increased plant‐derived carbon inputs at higher plant species richness (PSR). We used the long‐term grassland biodiversity experiment in Jena, Germany, to examine how microbial physiology responds to changes in plant diversity and how this affects SOC content. The Jena Experiment considers different numbers of species (1–60), functional groups (1–4) as well as functional identity (small herbs, tall herbs, grasses, and legumes). We found that PSR accelerated microbial growth and turnover and increased microbial biomass and necromass. PSR also accelerated microbial respiration, but this effect was less strong than for microbial growth. In contrast, PSR did not affect microbial CUE or biomass‐specific respiration. Structural equation models revealed that PSR had direct positive effects on root biomass, and thereby on microbial growth and microbial biomass carbon. Finally, PSR increased SOC content via its positive influence on microbial biomass carbon. We suggest that PSR favors faster rates of microbial growth and turnover, likely due to greater plant productivity, resulting in higher amounts of microbial biomass and necromass that translate into the observed increase in SOC. We thus identify the microbial mechanism linking species‐rich plant communities to a carbon cycle process of importance to Earth's climate system.  相似文献   

6.
A mechanistic understanding of microbial assimilation of soil organic carbon is important to improve Earth system models’ ability to simulate carbon‐climate feedbacks. A simple modelling framework was developed to investigate how substrate quality and environmental controls over microbial activity regulate microbial assimilation of soil organic carbon and on the size of the microbial biomass. Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality leads to higher ratio of microbial carbon to soil organic carbon. Microbial biomass carbon peaks and then declines as cumulative activity increases. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global data set at the biome level. The modelling framework developed in this study offers a simple approach to incorporate microbial contributions to the carbon cycling into Earth system models to simulate carbon‐climate feedbacks and explain global patterns of microbial biomass.  相似文献   

7.
通过室内培养试验,研究了不同浓度氯嘧磺隆(20、200、2000 μg·kg-1土)单一施用及与尿素(120 mg· kg-1土)配合施用情况下,土壤微生物生物量碳、氮和土壤铵态氮、硝态氮随时间的动态变化规律.结果表明:各浓度氯嘧磺隆单独处理在整个培养期(60 d)中对微生物生物量碳、氮均有抑制作用,且浓度越高,后期抑制作用越强;各浓度氯嘧磺隆处理在培养前期对硝态氮、铵态氮没有明显影响,中期(15 d)能显著提高土壤中铵态氮的含量,后期(30 d后)显著提高了土壤中硝态氮的含量.尿素单独施用及与氯嘧磺隆配施均能在短时间内增加微生物生物量碳、氮,但随后配施处理的促进作用减弱;尿素单独和配施均能持久增加土壤中铵态氮、硝态氮含量.  相似文献   

8.
为探明荒漠草原土壤有机碳(SOC)和微生物生物量碳(MBC)含量特征,分别在内蒙古达茂旗、四子王旗和苏尼特右旗设置样地,依次代表轻度、中度和重度退化草地,分析了不同样地表层土壤(0~20 cm)SOC和MBC含量变化及季节动态.结果表明:退化草地SOC和MBC含量均随草地退化程度增加而减小;除2006年夏季外,轻度、中度退化荒漠草地的土壤可培养微生物总数都高于重度退化荒漠草地;MBC含量和土壤可培养微生物总数均在夏秋季较高,春冬季较低.相关分析结果显示,SOC含量与MBC含量之间呈极显著正相关(P<0.01),说明两者均可作为评价荒漠草原草地退化的敏感指标.  相似文献   

9.
The rate of CO conversion by a pure culture of a thermophilic CO-oxidizing, H2-producing bacterium Carboxydocella sp. strain 1503 was determined by the radioisotopic method. The overall daily uptake of 14CO by the bacterium was estimated at 38–56 μmol CO per 1 ml of the culture. A radioisotopic method was developed to separate and quantitatively determine the products of anaerobic CO conversion by microbial communities in hot springs. The new method was first tested on the microbial community from a sample obtained from a hot spring in Kamchatka. The potential rate of CO conversion by the anaerobic microbial community was found to be 40.75 nmol CO/cm3 sediment per day. 85% of the utilized 14CO was oxidized to carbon dioxide; 14.5% was incorporated into dissolved organic matter, including 0.2% that went into volatile fatty acids; 0.5% was used for cell biomass production; and only just over 0.001% was converted to methane.  相似文献   

10.
土壤微生物生物量在森林生态系统中充当具有生物活性的养分积累和储存库。土壤微生物转化有机质为植物提供可利用养分, 与植物的相互作用维系着陆地生态系统的生态功能。同时, 土壤微生物也与植物争夺营养元素, 在季节交替过程和植物的生长周期中呈现出复杂的互利-竞争关系。综合全球数据对温带、亚热带和热带森林土壤微生物生物量碳(C)、氮(N)、磷(P)含量及其化学计量比值的季节动态进行分析, 发现温带和亚热带森林的土壤微生物生物量C、N、P含量均呈现夏季低、冬季高的格局。热带森林四季的土壤微生物生物量C、N、P含量都低于温带和亚热带森林, 且热带森林土壤微生物生物量C含量、N含量在秋季相对最低, 土壤微生物生物量P含量四季都相对恒定。温带森林的土壤微生物生物量C:N在春季显著高于其他两个森林类型; 热带森林的土壤微生物生物量C:N在秋季显著高于其他2个森林类型。温带森林土壤微生物生物量N:P和C:P在四季都保持相对恒定, 而热带森林土壤微生物生物量N:P和C:P在夏季高于其他3个季节。阔叶树的土壤微生物生物量C含量、N含量、N:P、C:P在四季都显著高于针叶树; 而针叶树的土壤微生物生物量P含量在四季都显著高于阔叶树。在春季和冬季时, 土壤微生物生物量C:N在阔叶树和针叶树之间都没有显著差异; 但是在夏季和秋季, 针叶树的土壤微生物生物量C:N显著高于阔叶树。对于土壤微生物生物量的变化来说, 森林类型是主要的显著影响因子, 季节不是显著影响因子, 暗示土壤微生物生物量的季节波动是随着植物其内在固有的周期变化而变化。植物和土壤微生物密切作用表现出来的对养分的不同步吸收是保留养分和维持生态功能的一种权衡机制。  相似文献   

11.
采用室内土壤培养法,比较分析了湖南省会同地区常绿阔叶林、杉木纯林土壤有机碳的矿化速率和累计矿化量,分析了有机碳矿化量与土壤活性有机碳初始含量的关系。结果表明:常绿阔叶林土壤有机碳矿化速率和累计矿化量均显著高于杉木纯林。在培养的第21天,在培养温度为9℃和28℃条件下,常绿阔叶林0~10和10~20cm土层的土壤有机碳累计矿化量为杉木纯林的1.7~2.7倍。常绿阔叶林土壤有机碳矿化释放的CO2-C分配比例高于杉木纯林。林地土壤有机碳矿化量受土壤微生物碳、可溶性有机碳初始含量的影响(P<0.01)。土壤有机碳矿化使土壤微生物碳增加而可溶性有机碳下降,但变化幅度均不大。温度从9℃升高到28℃后,林地土壤有机碳矿化速率提高3.1~4.5倍;2林地有机碳矿化对温度的敏感性无显著差异。  相似文献   

12.
施用控释氮肥对稻田土壤微生物生物量碳、氮的影响   总被引:9,自引:0,他引:9  
罗兰芳  聂军  郑圣先  廖育林  谢坚 《生态学报》2010,30(11):2925-2932
借助农业部望城红壤水稻土生态环境野外观测试验站的控释氮肥试验,研究了施用控释氮肥对水稻不同生育期间稻田土壤微生物生物量碳、氮动态变化的影响。试验共设5个处理:①CK,(不施氮肥);②Urea(施用尿素);③CRNF(施用与处理②等氮量的控释氮肥);④70%CRNF(施用控释氮肥,用氮量为处理②的70%);⑤50%CRNF+M(施用控释氮肥和猪粪,总氮量为处理②的70%,其中控释氮肥用量为处理②的50%,猪粪含氮量为处理②的20%)。结果表明,施肥后10 d,施氮处理土壤微生物生物量碳和氮均达最高,随生育进程推进逐渐下降,成熟期有一定的回升;施肥初期,施用等氮量的控释氮肥处理(CRNF)土壤微生物量碳、氮含量较尿素处理(Urea)分别增加5.4%和22.5%,而水稻生育中后期,控释氮肥处理(CRNF)土壤微生物量碳、氮含量较尿素处理(Urea)下降幅度大,该处理向地上部提供氮素营养较尿素处理高;施氮量较高的CRNF处理,土壤微生物生物量碳低于控释氮肥节氮处理(70%CRNF),但在大多数取样时期,土壤微生物量氮高于控释氮肥节氮处理(70%CRNF);控释氮肥配施有机肥的节氮处理较其他单施化肥处理显著增加土壤微生物生物量碳、氮含量。控释氮肥与有机肥配施,不仅能节约氮肥用量,而且能明显地提高土壤微生物生物量碳、氮的含量。  相似文献   

13.
外源碳输入对土壤碳源可利用性的改变不仅直接影响着微生物参与陆地生态系统的碳循环过程,而且也制约着微生物对其它营养元素的需求。在大气氮沉降持续增加的全球变化背景下,部分地区已出现生态系统氮养分条件的显著变化甚至土壤中活性氮素的过量积累,进而带来微生物对碳源需求的增加。通过人为调控碳源的可利用性,改善微生物的碳限制状况,将对科学的增加陆地生态系统固碳能力具有极为重大的意义。综述了国内外有关外源碳输入对土壤碳排放、凋落物分解以及土壤碳库影响及其主要的微生物作用机制的相关研究结果,以期能够为未来氮沉降持续增加情景下,如何科学有效地提高生态系统的碳汇潜力提供一定的参考。  相似文献   

14.
Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member''s contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development.  相似文献   

15.
以黄土高原土壤类型和土壤肥力差异较大的25个农田石灰性耕层土壤为供试土样,研究了土壤微生物量碳(BC)、微生物量氮(BN)与土壤氮素矿化势(NO)、全氮(TN)、有机碳(OC)及土壤颗粒组成的关系.结果表明:BC、BN与TN、OC呈极显著正相关(P〈0.01),表明BC、BN与土壤肥力关系密切,可作为评价土壤质量的生物学指标.BC、BN与NO均呈高度正相关,相关系数分别为0.665和0.741(P〈0.01).BC、BN、TN、OC、NO与土壤物理性粘粒(〈0.01mm)呈显著或极显著正相关,而与物理性砂粒(〉0.01mm)呈显著或极显著负相关,与物理性粘粒和砂粒比值呈显著或极显著正相关,表明土壤有机质主要通过与土壤物理性粘粒复合而形成有机无机复合体.  相似文献   

16.

Aim

The aim was to explore how conversions of primary or secondary forests to plantations or agricultural systems influence soil microbial communities and soil carbon (C) cycling.

Location

Global.

Time period

1993–2017.

Major taxa studied

Soil microbes.

Methods

A meta‐analysis was conducted to examine effects of forest degradation on soil properties and microbial attributes related to microbial biomass, activity, community composition and diversity based on 408 cases from 119 studies in the world.

Results

Forest degradation decreased the ratios of K‐strategists to r‐strategists (i.e., ratios of fungi to bacteria, Acidobacteria to Proteobacteria, Actinobacteria to Bacteroidetes and Acidobacteria + Actinobacteria to Proteobacteria + Bacteroidetes). The response ratios (RRs) of the K‐strategist to r‐strategist ratios to forest degradation decreased and increased with increased RRs of soil pH and soil C to nitrogen ratio (C:N), respectively. Forest degradation increased the bacterial alpha‐diversity indexes, of which the RRs increased and decreased as the RRs of soil pH and soil C:N increased, respectively. The overall RRs across all the forest degradation types ranked as microbial C (?40.4%) > soil C (?33.3%) > microbial respiration (?18.9%) > microbial C to soil C ratio (qMBC; ?15.9%), leading to the RRs of microbial respiration rate per unit microbial C (qCO2) and soil C decomposition rate (respiration rate per unit soil C), on average, increasing by +43.2 and +25.0%, respectively. Variances of the RRs of qMBC and qCO2 were significantly explained by the soil C, soil C:N and mean annual precipitation.

Main conclusions

Forest degradation consistently shifted soil microbial community compositions from K‐strategist dominated to r‐strategist dominated, altered soil properties and stimulated microbial activity and soil C decomposition. These results are important for modelling the soil C cycling under projected global land‐use changes and provide supportive evidence for applying the macroecology theory on ecosystem succession and disturbance in soil microbial ecology.  相似文献   

17.
Carbon use efficiency (CUE) is being intensively applied to quantify carbon (C) cycling processes from microbial cell to global scales. Energy use efficiency (EUE) is at least as important as the CUE because (i) microorganisms use organic C mainly as an energy source and not as elemental C per se, and (ii) microbial growth and maintenance are limited by energy, but not by C as a structural element. We conceptualize and review the importance of EUE by soil microorganisms and focus on (i) the energy content in organic compounds depending on the nominal oxidation state of carbon (NOSC), (ii) approaches to assess EUE, (iii) similarities and differences between CUE and EUE, and (iv) discuss mechanisms responsible for lower EUE compared to CUE. The energy content per C atom (enthalpy of combustion, the total energy stored in a compound) in organic compounds is very closely (R2 = 0.98) positively related to NOSC and increases by 108 kJ mol−1 C per one NOSC unit. For the first time we assessed the NOSC of microbial biomass in soil (−0.52) and calculated the corresponding energy content of −510 kJ mol−1 C. We linked CUE and EUE considering the NOSC of microbial biomass and element compositions of substrates utilized by microorganisms. The mean microbial EUE (0.32–0.35) is 18% lower than CUE (0.41) using glucose as a substrate. This definitely indicates that microbial growth is limited by energy relative to C. Based on the comparison of a broad range of processes of C and energy utilization for cell growth and maintenance, as well as database of experimental CUE from various compounds, we clearly explained five mechanisms and main factors why EUE is lower than CUE. The two main mechanisms behind lower EUE versus CUE are: (i) microbial recycling: C can be microbially recycled, whereas energy is always utilized only once, and (ii) chemical reduction of organic and inorganic compounds: Energy is used for reduction, which is ongoing without C utilization.  相似文献   

18.
One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO2. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO2 conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO2. PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO2, and such significant effects of eCO2 on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO2. Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO2. Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO2 and environmental factors shaping the microbial community structure.  相似文献   

19.
菌渣化肥配施对稻田土壤微生物量碳氮和可溶性碳氮的影响   总被引:12,自引:0,他引:12  
石思博  王旭东  叶正钱  陈绩  龚臣  李婷  任泽涛 《生态学报》2018,38(23):8612-8620
菌渣作为一种养分丰富的有机物料还田,可减少化肥施用,同时保持土壤肥力;而土壤微生物量碳、氮和可溶性碳、氮是土壤活性碳氮库的重要组成部分,其含量和比例变化对土壤肥力均具有重要作用。因此,探讨不同比例菌渣化肥配施对土壤微生物量碳、氮及可溶性碳、氮的影响,评价菌渣在优化土壤肥力方面的生态作用具有重要意义。本研究在水稻田间定位试验条件下,设置3个化肥水平(C) 0%、50%、100%,菌渣相对用量(F) 0%、50%、100%,共9个处理,分析了各处理土壤微生物量碳(MBC)、氮(MBN)和可溶性碳(DOC)、氮(DON)的变化特征,及其占土壤有机碳(SOC)和全氮(TN)的比例与相关关系。结果表明:菌渣化肥配施后,微生物量碳和可溶性碳、氮均在C100F50最高,微生物量氮在C50F100最高,与不施肥处理相比,分别显著增加了49.40%、43.65%、83.52%、207.19%;MBC/SOC和DOC/SOC均随着菌渣化肥配施量的增加而减少,MBN/TN和DON/TN均在C100F50最高。相关分析表明,MBC、DOC与SOC,MBN与TN均呈极显著正相关,DON和TN呈显著正相关。总体来讲,菌渣化肥配施能够显著提高土壤微生物量碳、氮和可溶性碳、氮含量,但不是随着用量的增加一直呈增加趋势,高量菌渣或者化肥下会有降低趋势;菌渣化肥配施降低了土壤微生物量和可溶性碳氮比,因此适宜的菌渣化肥配施是提高土壤有机碳周转速度、微生物活性及其氮素供应能力和有效性的最佳选择。  相似文献   

20.
为探明不同有机肥氮素占总氮投入的百分比对双季稻区早、晚稻各生育时期稻田根际土壤微生物的影响,本研究以大田定位试验为平台,应用氯仿熏蒸-K2SO4提取法和化学分析法系统分析了施用化肥N(M1)、30%有机肥N(M2)、50%有机肥N(M3)、100%有机肥N(M4)和无N对照(M0)5个不同施肥处理双季稻田根际土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)和微生物熵的差异.结果表明: 在早稻和晚稻各主要生育时期,施肥措施均能提高稻田根际土壤MBC、MBN和微生物熵,各施肥处理根际土壤MBC、MBN和微生物熵均随水稻生育期推进呈先增加后降低的变化趋势,均于齐穗期达到最大值,成熟期为最低值;其中,各处理双季稻田根际土壤MBC、MBN、MBC/MBN值和微生物熵一般均表现为M4>M3>M2>M1>M0,M2、M3和M4处理间均无显著差异,但均显著高于M0处理.可见,单独施用化肥措施对提高根际土壤微生物生物量碳、氮和微生物熵效果有限,施用有机肥或有机无机肥配施提高根际土壤微生物生物量碳、氮和微生物熵的效果较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号