共查询到20条相似文献,搜索用时 0 毫秒
1.
Guohua Yu Dingqi Rao Mingwang Zhang Junxing Yang 《Molecular phylogenetics and evolution》2009,50(3):571-579
The phylogenetic relationships among rhacophorid frogs are under dispute. We use partial sequences of three mitochondrial (12S rRNA, 16S rRNA, and cytochrome b) and three nuclear protein-coding (Rag-1, rhodopsin exon 1, and tyrosinase exon 1) genes from 57 ingroup taxa and eight outgroup taxa to propose a hypothesis for phylogenetic relationships within Rhacophoridae. Our results support recognition of the genus Feihyla, and Chiromantis is the sister taxon to the clade formed by Feihyla, Polypedates and Rhacophorus. We place Aquixalus odontotarsus within Kurixalus, and the remaining species of Aquixalus and Philautus jinxiuensis into the genus Gracixalus. We give Philautus (Kirtixalus) the rank of genus and place Philautus menglaensis within it. The division of species groups among Chinese Rhacophorus needs revision, and a cryptic species is revealed within Rhacophorus nigropunctatus. Rhacophorus pingbianensis is considered a synonym of Rhacophorus omeimontis. The validity of Rhacophorus hui is confirmed by present molecular evidence. 相似文献
2.
Allan D. McDevitt Naiara Guimarães Sales Samuel S. Browett Abbie O. Sparnenn Stefano Mariani Owen S. Wangensteen Ilaria Coscia Chiara Benvenuto 《Journal of fish biology》2019,95(2):679-682
We focus on a case study along an English canal comparing environmental DNA (eDNA) metabarcoding with two types of electrofishing techniques (wade-and-reach and boom-boat). In addition to corroborating data obtained by electrofishing, eDNA provided a wider snapshot of fish assemblages. Given the semi-lotic nature of canals, we encourage the use of eDNA as a fast and cost-effective tool to detect and monitor whole fish communities. 相似文献
3.
Wouter Beukema Alfredo G. Nicieza André Lourenço Guillermo Velo‐Antón 《Journal of Zoological Systematics and Evolutionary Research》2016,54(2):127-136
The existence of two or more distinctly coloured phenotypes among individuals of an interbreeding population is known as colour polymorphism. In amphibians, this phenomenon is pervasive among anurans, but rare or absent among salamanders and caecilians, respectively. Here, we examine whether various distinct phenotypes of Salamandra salamandra in North Spain, used as a basis to describe the subspecies S. s. bernardezi and S. s. alfredschmidti, indeed warrant separate taxonomic status or that these co‐occur and belong to a single taxon. Based on a sample of 1147 individuals from 27 local populations, six phenotype classes were designated. Although two phenotypes that are attributable to S. s. alfredschmidti show some degree of geographical restriction, these co‐occur with those representing typical S. s. bernardezi. A fifth phenotype class could not be unambiguously attributed to either subspecies due to an overlap in previously suggested diagnostic characteristics. Mitochondrial (cytochrome b) and nuclear (β‐fibrinogen) DNA analyses revealed S. s. alfredschmidti to be nested within several subclades of S. s. bernardezi, without displaying unique lineages. Furthermore, no significant divergence was recovered by means of niche overlap analyses. As a result, we revoke the subspecies status of S. s. alfredschmidti, which should be regarded as a junior synonym of S. s. bernardezi. The current findings confirm the existence of colour polymorphism in S. salamandra and the family Salamandridae, which provides exciting possibilities for future research. 相似文献
4.
Wood DA Vandergast AG Lemos Espinal JA Fisher RN Holycross AT 《Molecular ecology》2011,20(18):3856-3878
Glacial–interglacial cycles of the Pleistocene are hypothesized as one of the foremost contributors to biological diversification. This is especially true for cold‐adapted montane species, where range shifts have had a pronounced effect on population‐level divergence. Gartersnakes of the Thamnophis rufipunctatus species complex are restricted to cold headwater streams in the highlands of the Sierra Madre Occidental and southwestern USA. We used coalescent and multilocus phylogenetic approaches to test whether genetic diversification of this montane‐restricted species complex is consistent with two prevailing models of range fluctuation for species affected by Pleistocene climate changes. Our concatenated nuDNA and multilocus species analyses recovered evidence for the persistence of multiple lineages that are restricted geographically, despite a mtDNA signature consistent with either more recent connectivity (and introgression) or recent expansion (and incomplete lineage sorting). Divergence times estimated using a relaxed molecular clock and fossil calibrations fall within the Late Pleistocene, and zero gene flow scenarios among current geographically isolated lineages could not be rejected. These results suggest that increased climate shifts in the Late Pleistocene have driven diversification and current range retraction patterns and that the differences between markers reflect the stochasticity of gene lineages (i.e. ancestral polymorphism) rather than gene flow and introgression. These results have important implications for the conservation of T. rufipunctatus (sensu novo), which is restricted to two drainage systems in the southwestern US and has undergone a recent and dramatic decline. 相似文献
5.
Emily Dziedzic Brian Sidlauskas Richard Cronn James Anthony Trevan Cornwell Thomas A. Friesen Peter Konstantinidis Brooke E. Penaluna Staci Stein Taal Levi 《Molecular ecology resources》2023,23(8):1880-1904
Species detection using eDNA is revolutionizing global capacity to monitor biodiversity. However, the lack of regional, vouchered, genomic sequence information—especially sequence information that includes intraspecific variation—creates a bottleneck for management agencies wanting to harness the complete power of eDNA to monitor taxa and implement eDNA analyses. eDNA studies depend upon regional databases of mitogenomic sequence information to evaluate the effectiveness of such data to detect and identify taxa. We created the Oregon Biodiversity Genome Project to create a database of complete, nearly error-free mitogenomic sequences for all of Oregon's fishes. We have successfully assembled the complete mitogenomes of 313 specimens of freshwater, anadromous and estuarine fishes representing 24 families, 55 genera and 129 species and lineages. Comparative analyses of these sequences illustrate that many regions of the mitogenome are taxonomically informative, that the short (~150 bp) mitochondrial ‘barcode’ regions typically used for eDNA assays do not consistently diagnose for species and that complete single or multiple genes of the mitogenome are preferable for identifying Oregon's fishes. This project provides a blueprint for other researchers to follow as they build regional databases, illustrates the taxonomic value and limits of complete mitogenomic sequences and offers clues as to how current eDNA assays and environmental genomics methods of the future can best leverage this information. 相似文献
6.
Mark D. Johnson Joanna R. Freeland Laura Parducci Darren M. Evans Rachel S. Meyer Brenda Molano-Flores Mark A. Davis 《American journal of botany》2023,110(2):e16120
Over the past quarter century, environmental DNA (eDNA) has been ascendant as a tool to detect, measure, and monitor biodiversity (species and communities), as a means of elucidating biological interaction networks, and as a window into understanding past patterns of biodiversity. However, only recently has the potential of eDNA been realized in the botanical world. Here we synthesize the state of eDNA applications in botanical systems with emphases on aquatic, ancient, contemporary sediment, and airborne systems, and focusing on both single-species approaches and multispecies community metabarcoding. Further, we describe how abiotic and biotic factors, taxonomic resolution, primer choice, spatiotemporal scales, and relative abundance influence the utilization and interpretation of airborne eDNA results. Lastly, we explore several areas and opportunities for further development of eDNA tools for plants, advancing our knowledge and understanding of the efficacy, utility, and cost-effectiveness, and ultimately facilitating increased adoption of eDNA analyses in botanical systems. 相似文献
7.
Laurence Dugal Luke Thomas Mads Reinholdt Jensen Eva Egelyng Sigsgaard Tiffany Simpson Simon Jarman Philip Francis Thomsen Mark Meekan 《Molecular ecology resources》2022,22(1):56-65
Population genetic data can provide valuable information on the demography of a species. For rare and elusive marine megafauna, samples for generating the data are traditionally obtained from tissue biopsies, which can be logistically difficult and expensive to collect and require invasive sampling techniques. Analysis of environmental DNA (eDNA) offers an alternative, minimally invasive approach to provide important genetic information. Although eDNA approaches have been studied extensively for species detection and biodiversity monitoring in metabarcoding studies, the potential for the technique to address population-level questions remains largely unexplored. Here, we applied “eDNA haplotyping” to obtain estimates of the intraspecific genetic diversity of a whale shark (Rhincodon typus) aggregation at Ningaloo reef, Australia. Over 2 weeks, we collected seawater samples directly behind individual sharks prior to taking a tissue biopsy sample from the same animal. Our data showed a 100% match between mtDNA sequences recovered in the eDNA and tissue sample for all 28 individuals sampled. In the seawater samples, >97% of all reads were assigned to six dominant haplotypes, and a clear dominant signal (~99% of sample reads) was recovered in each sample. Our study demonstrates accurate individual-level haplotyping from seawater eDNA. When DNA from one individual clearly dominates each eDNA sample, it provides many of the same opportunities for population genetic analyses as a tissue sample, potentially removing the need for tissue sampling. Our results show that eDNA approaches for population-level analyses have the potential to supply critical demographic data for the conservation and management of marine megafauna. 相似文献
8.
Arial J. Shogren Jennifer L. Tank Scott P. Egan Diogo Bolster Tenna Riis 《Freshwater Biology》2019,64(8):1467-1479
- Sampling water for environmental DNA (eDNA) is an emerging tool for documenting species presence without direct observation, allowing for earlier detection and faster response than conventional sampling methods in aquatic ecosystems.
- However, current understanding of how eDNA is transported in streams and rivers remains imprecise, with uncertainty of how the unique transport properties of eDNA may influence the interpretation of a positive detection. To test the utility of eDNA sensing in flowing waters, we compared quantitative eDNA analyses to zebra mussel density surveys in a Danish river.
- Although flowing water complicates the relationships between eDNA production, transport, and removal, we found weak but positive relationships between eDNA concentration, zebra mussels, and biophysical parameters. For example, while zebra mussel densities were only moderately predicted by eDNA concentrations, eDNA was most strongly influenced by nutrient concentrations and water velocity. These results may be used to inform future sampling strategies, where hydrological variables could better constrain eDNA fate.
- We also modelled estimates for net eDNA transport, retention, and degradation to estimate the relative importance of these processes for removing eDNA from the water column. In our study system, physical retention accounted for c. 70% of removal when compared to degradation alone, making it an important process to consider when assessing downstream eDNA transport.
9.
Toshifumi Minamoto 《DNA research》2022,29(3)
In an era of severe biodiversity loss, biological monitoring is becoming increasingly essential. The analysis of environmental DNA (eDNA) has emerged as a new approach that could revolutionize the biological monitoring of aquatic ecosystems. Over the past decade, macro-organismal eDNA analysis has undergone significant developments and is rapidly becoming established as the golden standard for non-destructive and non-invasive biological monitoring. In this review, I summarize the development of macro-organismal eDNA analysis to date and the techniques used in this field. I also discuss the future perspective of these analytical methods in combination with sophisticated analytical techniques for DNA research developed in the fields of molecular biology and molecular genetics, including genomics, epigenomics, and single-cell technologies. eDNA analysis, which to date has been used primarily for determining the distribution of organisms, is expected to develop into a tool for elucidating the physiological state and behaviour of organisms. The fusion of microbiology and macrobiology through an amalgamation of these technologies is anticipated to lead to the future development of an integrated biology. 相似文献
10.
11.
Atlantic salmon survival in the R. Bush (N. Ireland) from egg to summer 0+ was inversely density-dependent on egg deposition ( P <0.05). A stock-recruitment relationship derived from egg deposition and summer 0+ abundance index data was compared to that derived from adult and smolt counts based on total trapping. Fitted Ricker curves indicated maximum recruitment at around 2.35 million eggs and 2.46 million eggs for 0+ index and smolt count methods, respectively. Salmon 0+ abundance index data from semi-quantitative electrofishing could be obtained with relatively little effort, and used to derive whole-river stock-recruitment relationships on rivers where only adult count or some other estimator of parental stock is available. The derivation and expression of spawning targets from stock/recruitment relationships is discussed with reference to the R. Bush data. 相似文献
12.
Chub Leuciscus cephalus exposed to simulated pulsed direct current electrofishing operations exhibited rapid elevations in plasma glucose and blood lactate levels. Plasma glucose levels were significantly higher 0·5 h after simulated electrofishing operations, and peaked 2 h after treatment. Glucose levels remained high for up to 4 h. No changes in plasma glucose were evident following handling. Simulated electrofishing operations and handling induced an immediate lactacidosis in chub. Initial responses to both treatments were similar except that blood lactate was significantly higher in fish exposed to simulated electrofishing operations than in handled fish 5 and 15 min after treatment. Blood lactate remained elevated in fish exposed to simulated electrofishing operations for 2 h, while blood lactate of handled fish returned to levels similar to those in the control fish within 0·5 h post‐treatment. 相似文献
13.
The effects of electrofishing on salmonid movement and of salmonid movement on electrofishing‐derived abundance estimates were studied in two streams in western Montana, U.S.A. Electrofishing increased emigration of salmonids from study reaches for 1 day, but not for succeeding days, whereas immigration to study reaches was unaffected. Movement of most emigrating fishes was downstream. On these small streams, electrofishing did not appear to cause fishes to flee during sampling. Numbers of salmonids migrating between mark and recapture runs were small relative to the fish abundance estimates in study reaches, usually much less than the 95% CL for those estimates, thus disregarding movements of marked fishes from the study reaches would have produced small positive biases in abundance estimates. Overall, for this suite of salmonid species in mid‐summer in these streams, the effects of electrofishing on fish movement and of fish movement on abundance estimates were minor. 相似文献
14.
Invasive species are one of the most significant problem in freshwater ecosystems. Most common non-native freshwater species in Turkish freshwater fish fauna are Prussian Carp (Carassius gibelio), North African Catfish (Clarias gariepinus), Nile Tilapia (Oreochromis niloticus) and Topmouth Gudgeon (Pseudorasbora parva).Recent studies showed that environmental DNA could be used to detect target species inhabiting the ecosystem with higher precision and less effort compared to traditional field surveys. In this study, eDNA approach was used to investigate non-native freshwater fish species from fifteen different locations of Upper Sakarya Basin. eDNA was successfully extracted from the water samples of locations where the species were visually observed. Mean amplification rate of eDNA was calculated as 77.03%.This study is the first environmental DNA study used in detection of four of the most common invasive freshwater fish species. Results clearly indicating that eDNA surveys could be used as an important molecular tool to monitor invasive fish species in freshwater ecosystems. 相似文献
15.
A semi-quantitative electrofishing technique is described, which has applications for assessing distribution and densities of 0+ salmonids in streams. Linear regressions of logarithmically-transformed data satisfactorily described the relationship between numbers of 0+ Atlantic salmon ( Salmo salar L.) and 0+ brown trout ( Salmo trutta L.) captured in a standard 5 min fishing and quantitative population estimates obtained using a commonly used method. Applications of the semi-quantitative technique to management are discussed and a categorization system proposed. 相似文献
16.
Survival to hatching was determined after electroshocking embryos of largemouth bass Micropterus salmoides , bluegill Lepomis macrochirus and channel catfish Ictalurus punctatus . Embryos at different developmental stages were exposed for 20 s to homogeneous electric fields (4–16 V cm−1 ) of direct current (DC) or 60 or 120 Hz pulsed direct current (PDC) in water of 100 μS cm−1 ambient conductivity. For all species, DC reduced survival of embryos at developmental stages before, during, or soon after epiboly; but survival did not differ from controls during later developmental stages. Survival of largemouth bass and bluegill was not reduced by 60 or 120 Hz PDC except for bluegill exposed at 12 h post‐fertilization. Channel catfish embryo survival was <5% when exposed to 60 or 120 Hz PDC at 8 h post‐fertilization, survival improved for embryos exposed at 67 h to 60 Hz but not to 120 Hz, and all embryos survived exposure to PDC at 150 h post‐fertilization. Exposure durations as short as 5 s resulted in <10% survival of largemouth bass during sensitive stages. All bluegill embryos aged 22 h post‐fertilization hatched prematurely after exposure to 16 V cm−1 DC, but survival was not affected. The use of PDC for electroshocking near largemouth bass and bluegill nests could reduce the negative effects on survival of these species; however, PDC can reduce survival of channel catfish embryos. 相似文献
17.
The effect of electroshocking and walking on the substrate on macroinvertebrate drift was evaluated in three streams located in southwestern Oregon, USA. A randomized block experimental design was used to determine treatment (electroshocking and walking, electroshocking-only, walking-only) and drift distance effects on the number, biomass, and length of macroinvertebrates drifting up to 30 m downstream. In all streams, electroshocking caused significantly (p < 0.05) greater number of macroinvertebrates to drift compared to merely walking on the substrate. The differences among treatments decreased the farther downstream the macroinvertebrates drifted. No significant difference (p > 0.05) was observed in mean biomass between electroshocking and walking on the substrate among the drift distances. The longest macroinvertebrates were collected from the electroshocking treatment at the shortest drift distance (2.5 m) in all of the streams. The length of macroinvertebrates collected between electroshocking and walking on the substrate were similar at drift distances of 10 m and greater and represented predominately the smaller, poor swimming taxa. 相似文献
18.
Environmental DNA (eDNA) approaches contributing to species identifications are quickly becoming the new norm in biomonitoring and ecosystem assessments. Yet, information such as age and health state of the population, which is vital to species biomonitoring, has not been accessible from eDNA. DNA methylation has the potential to provide such information on the state of a population. Here, we measured the methylation of eDNA along with tissue DNA (tDNA) of Lymnaea stagnalis at four life stages. We demonstrate that eDNA methylation varies with age and allows distinguishing among age classes. Moreover, eDNA was globally hypermethylated in comparison to tDNA. This difference was age-specific and connected to a limited number of eDNA sites. This differential methylation pattern suggests that eDNA release with age is partially regulated through DNA methylation. Our findings help to understand mechanisms involved in eDNA release and shows the potential of eDNA methylation analysis to assess age classes. Such age class assessments will encourage future eDNA studies to assess fundamental processes of population dynamics and functioning in ecology, biodiversity conservation and impact assessments. 相似文献
19.
Torgny Bohlin Stellan Hamrin Tor G. Heggberget Gorm Rasmussen Svein Jakob Saltveit 《Hydrobiologia》1989,173(1):9-43
This report attempts to establish guide-lines for electrofishing in population studies and is the result of literature studies and experience from electrofishing in Denmark, Finland, Norway and Sweden. Equipment, safety and training, sampling design and precision requirements for various types of investigations, population estimation and fishing practice are discussed. The results are put forward in the form of recommendations. Special attention is paid to the sampling design of surveys in streams of different types and for different purposes. Examples of the computation procedures are also included. 相似文献