首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
  1. Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) is a forest pest that damages a wide range of trees in areas where it has recently been introduced, demanding a proactive evaluation of its possible future distribution.
  2. This study aimed to project the potential distribution of A. glabripennis using species distribution modelling and constructed an ensemble map for evaluating global risk areas.
  3. We used CLIMEX and MaxEnt to evaluate the potential distribution of A. glabripennis as a function of current and future climates.
  4. The results showed that the models predicted a high probability of A. glabripennis distribution where this species is currently found, and the suitable climate was shifted northward due to climate change.
  5. The projected area differed between the models because of different modelling algorithm and climate change scenario; thus, an ensemble map projecting the consensus areas from two models was constructed to identify the risk areas that corresponded to the eastern United States, Europe, and native countries, Korea and China, and nearby Japan.
  6. From the perspective of ensemble modelling for evaluating species distributions with reduced uncertainties, this study will enhance the model reliability for defining areas at risk of A. glabripennis occurrence.
  相似文献   

2.
  1. Patterns of genetic diversity in invasive populations can be modulated by a range of factors acting at different stages of the invasion process, including the genetic composition of the source population(s), the introduction history (e.g. propagule pressure), the environmental suitability of recipient areas, and the features of secondary introductions.
  2. The North American red swamp crayfish, Procambarus clarkii, is one of the most widely introduced freshwater species worldwide. It was legally introduced into Spain twice, near the city of Badajoz in 1973 and in the Guadalquivir marshes in 1974. Thereafter the species rapidly colonised almost the entire Iberian Peninsula.
  3. We used seven nuclear microsatellites to describe the genetic diversity and structure of 28 locations distributed across the Iberian Peninsula and to explain the expansion process of the red swamp crayfish. Additionally, we analysed the relationship between environmental suitability and genetic diversity of the studied locations.
  4. The red swamp crayfish had a clear spatial genetic structure in the Iberian Peninsula, probably determined by the two independent introduction events in the 1970s, which produced two main clusters separated spatially, one of which was dominant in Portugal and the other in Spain.
  5. The human-mediated dispersal process seemed to have involved invasion hubs, hosting highly genetically diverse areas and acting as sources for subsequent introductions. Genetic diversity also tended to be higher in more suitable environments across the Iberian Peninsula .
  6. Our results showed that the complex and human-mediated expansion of the red swamp crayfish in the Iberian Peninsula has involved several long- and short-distance movements and that both ecological and anthropogenic factors have shaped the genetic diversity patterns resulting from this invasion process. Early detection of potential invasion hubs may help to halt multiple short-distance translocations and thus the rapid expansion of highly prolific invasive species over non-native areas.
  相似文献   

3.
Aim We investigated the roles of lithology and climate in constraining the ranges of four co‐distributed species of Iberian saline‐habitat specialist water beetles (Ochthebius glaber, Ochthebius notabilis, Enochrus falcarius and Nebrioporus baeticus) across the late Quaternary and in shaping their geographical genetic structure. The aim was to improve our understanding of the effects of past climate changes on the biota of arid Mediterranean environments and of the relative importance of history and landscape on phylogeographical patterns. Location Iberian Peninsula, Mediterranean. Methods We combined species distribution modelling (SDM) and comparative phylogeography. We used a multi‐model inference and model‐averaging approach both for assessment of range determinants (climate and lithology) and for provision of spatially explicit estimates of the species current and Last Glacial Maximum (LGM) potential ranges. Potential LGM distributions were then contrasted with the phylogeographical and population expansion patterns as assessed using mitochondrial DNA sequence data. We also evaluated the relative importance of geographical distance, habitat resistance and historical isolation for genetic structure in a causal modelling framework. Results Lithology poses a strong constraint on the distribution of Iberian saline‐habitat specialist water beetles, with a variable, but generally moderate, additional influence by climate. The degree to which potential LGM distributions were reduced and fragmented decreased with increasing importance of lithology. These SDM‐based suitability predictions were mostly congruent with phylogeographical and population genetic patterns across the study species, with stronger geographical structure in the genetic diversity of the more temperature‐sensitive species (O. glaber and E. falcarius). Furthermore, while historical isolation was the only factor explaining genetic structure in the more temperature‐sensitive species, lithology‐controlled landscape configuration also played an important role for those species with more lithology‐determined ranges (O. notabilis and N. baeticus). Main conclusions Our data show that lithology is an important constraint on the distribution and range dynamics of endemic Iberian saline‐habitat water beetles, in interaction with climate and long‐term climate change, and overrides the latter in importance for some species. Hence, geological landscape structure and long‐term history may codetermine the overall range and the distribution of genetic lineages in endemic species with specialized edaphic requirements.  相似文献   

4.
  1. Being the largest extant amphibian in the world, the IUCN Critically Endangered Chinese giant salamander Andrias davidianus is a charismatic species with great international public interest. While threats such as commercial overexploitation and habitat degradation have been extensively documented to affect natural populations of A. davidianus, still no information is available about the species sensitivity to climate change.
  2. Here, we develop an ensemble of species distribution models (SDMs) for A. davidianus and projected its habitat suitability under present-day and future climate change scenarios. We based our SDMs on bioclimatic and topographic predictors, and recent (2012–2018) field-collected occurrence data across the whole distribution range of the species.
  3. The ensemble SDMs exhibited good predictive capacity and suggested that slope, maximum temperature of warmest month, precipitation of driest month, and isothermality are the most influential predictors in determining distribution patterns in this species. The projections of our models point to a pronounced impact of climate changes over A. davidianus, with more than two-thirds of its suitable range expected to be lost in all scenarios of future climates tested.
  4. In concert with the numerous other threats that are affecting this species, climate change poses a serious hindrance to the long-term survival of A. davidianus. We emphasise the urgent need of undertaking strict measures to manage this species and safeguard the few remaining available suitable habitats. We suggest that adaptive management strategies including designation of new reserves should be considered to mitigate the impacts of climate change on A. davidianus.
  相似文献   

5.
  • 1 European rabbits are considered a keystone species in the Iberian Peninsula. Their populations have sharply declined over the past century, mainly due to habitat loss and the arrival of two viral diseases: myxomatosis in the 1950s and rabbit haemorrhagic disease (RHD) at the end of the 1980s. For the conservation of the Iberian Mediterranean ecosystem, it is important to determine whether rabbit populations are recovering two decades after the RHD outbreak, and to identify the factors associated with population recovery.
  • 2 Here, we review the current knowledge on recent rabbit population trends in the Iberian Peninsula and the factors associated with these trends.
  • 3 Although most rabbit populations are still declining in the Iberian Peninsula, a few seem to have recovered. In general, positive trends have been recorded in species‐friendly habitats characterized by non‐fragmented landscapes, interspersed patches of Mediterranean scrubland, good pastures and/or crops, soft soils that are suitable for warren construction and a Mediterranean climate with relatively high rainfall. Additionally, rabbits seem to be recovering better in areas where management practices (e.g. low hunting pressure, habitat management and predator control) are applied to increase their numbers.
  • 4 From these findings, it is possible to identify five broad objectives for rabbit conservation in the Iberian Peninsula. First, it is clearly necessary to establish a long‐term programme for monitoring rabbit abundance and trends on a large scale. Second, the conservation and restoration of open Mediterranean scrubland should be a priority for stabilizing and maintaining existing healthy rabbit populations. Third, despite the lack of experimental evidence, management activities aimed at increasing the quantity and quality of both refuge and food should continue to be implemented. Fourth, legislation on the timing of the hunting season should be revisited following recommendations made by scientists. Finally, experimental approaches are required to investigate whether the control of generalist predators is a successful strategy to allow rabbit populations to recover.
  相似文献   

6.
  1. Invasive alien species and climate change are two of the most serious global environmental threats. In particular, it is of great interest to understand how changing climates could impact the distribution of invaders that pose serious threats to ecosystems and human activities.
  2. In this study, we developed ensemble species distribution models for predicting the current and future global distribution of the signal crayfish Pacifastacus leniusculus and the red swamp crayfish Procambarus clarkii, two of the most highly problematic invaders of freshwater ecosystems worldwide. We collected occurrence records of the species, from native and alien established ranges worldwide. These records in combination with averaged observations of current climatic conditions were used to calibrate a set of 10 distinct correlative models for estimating the climatic niche of each species. We next projected the estimated niches into the geographical space for the current climate conditions and for the 2050s and 2070s under representative concentration pathway 2.6 and 8.5 scenarios.
  3. Our species distribution models had high predictive abilities and suggest that annual mean temperature is the main driver of the distribution of both species. Model predictions indicated that the two crayfish species have not fully occupied their suitable climates and will respond differently to future climate scenarios in different geographic regions. Suitable climate for P. leniusculus was predicted to shift poleward and to increase in extent in North America and Europe but decrease in Asia. Regions with suitable climate for P. clarkii are predicted to widen in Europe but contract in North America and Asia.
  4. This study highlights that invasive species with different thermal preference are likely to respond differently to future climate changes. Our results provide important information for policy makers to design and implement anticipated measures for the prevention and control of these two problematic species.
  相似文献   

7.
Since the Cenozoic Era, the southern Iberian Peninsula has undergone a series of complex geological and climatic changes that have shaped the hydrographic configuration of the freshwater network, influencing the present‐day distribution of primary freshwater species and favoring a high level of local endemicity. The cyprinid species Luciobarbus sclateri (Günther, 1968) is an endemic species confined to the southern Iberian Peninsula and characterized by a complex evolutionary history. Previous studies linked the structure of L. sclateri populations to the effects of climate change during glaciations and were not able to explain the genetic discordance found between nuclear and mitochondrial markers. The results of this study show that the structure of L. sclateri populations is a reflection of diversification processes linked to the geological history of the region. Thus, we found three main mitochondrial phylogroups: the first one corresponding to small basins in southern Iberian Peninsula, a second one in eastern Iberian Peninsula, corresponding to Segura population, and a third one including the rest of the basins where the species is distributed. The southern group began diverging in the Pliocene as result of tectonic dynamics characterized by the emersion of the basins around the Strait of Gibraltar. The other two groups began diverging with the formation of the current Iberian hydrographic system during Pleistocene. So, the isolation of the hydrographic basins was the main factor driving intraspecific differentiation, followed by recent secondary contacts, admixture, and re‐isolation of the populations.  相似文献   

8.
  1. Aridity and salinity have a key role in driving physiological and ecological processes in desert ecosystems. However, how community‐scale foliar nutrients respond to aridity and salinity, and how these responses might vary with community composition along aridity and salinity gradients is unclear. We hypothesize that the response will be a shift in community stoichiometric values resulting from nutrient variability of shared species and unique species (site‐specific species), but little research has addressed the relative contribution of either component.
  2. We analyzed the community‐scale stoichiometric response of a desert community of perennial plants along an aridity and salinity transect by focusing on foliar nitrogen (N) and phosphorous (P) concentrations and N:P ratios. After evaluating the shared and unique species variability, we determined their relative contribution to the community stoichiometric response to aridity and salinity, reflected by changes in nonweighted and weighted community‐average values.
  3. Community‐scale stoichiometry decreased significantly under aridity and salinity, with significantly consistent changes in nonweighted and weighted community‐average stoichiometry for most shared and unique species measurements. The relative contribution of unique species shifts to the changes in community stoichiometry was greater (15%–77%) than the relative contribution of shared species shifts (7%–45%), excluding the change in weighted P concentration under aridity. Thus, the shifts of unique species amplified the community stoichiometric response to environmental changes.
  4. Synthesis. These results highlighted the need for a more in‐depth consideration of shared and unique species variability to understand and predict the effects of environmental change on the stoichiometry of plant communities. Although variation in community stoichiometry can be expected under extreme aridity and salinity conditions, changes of unique species could be a more important driver of the stoichiometric response of plant communities.
  相似文献   

9.
? The ecological and adaptive significance of plant polyploidization is not well understood and no clear pattern of association between polyploid frequency and environment has emerged. Climatic factors are expected to predict cytotype distribution. However, the relationship among climate, cytotype distribution and variation of abiotic stress tolerance traits has rarely been examined. ? Here, we use flow cytometry and root-tip squashes to examine the cytotype distribution in the temperate annual grass Brachypodium distachyon in 57 natural populations distributed across an aridity gradient in the Iberian Peninsula. We further investigate the link between environmental aridity, ploidy, and variation of drought tolerance and drought avoidance (flowering time) traits. ? Distribution of diploids (2n = 10) and allotetraploids (2n = 30) in this species is geographically structured throughout its range in the Iberian Peninsula, and is associated with aridity gradients. Importantly, after controlling for geographic and altitudinal effects, the link between aridity and polyploidization occurrence persisted. Water-use efficiency varied between ploidy levels, with tetraploids being more efficient in the use of water than diploids under water-restricted growing conditions. ? Our results indicate that aridity is an important predictor of polyploid occurrence in B. distachyon, suggesting a possible adaptive origin of the cytotype segregation.  相似文献   

10.
Aim Quaternary palaeopalynological records collected throughout the Iberian Peninsula and species distribution models (SDMs) were integrated to gain a better understanding of the historical biogeography of the Iberian Abies species (i.e. Abies pinsapo and Abies alba). We hypothesize that SDMs and Abies palaeorecords are closely correlated, assuming a certain stasis in climatic and topographic ecological niche dimensions. In addition, the modelling results were used to assign the fossil records to A. alba or A. pinsapo, to identify environmental variables affecting their distribution, and to evaluate the ecological segregation between the two taxa. Location The Iberian Peninsula. Methods For the estimation of past Abies distributions, a hindcasting process was used. Abies pinsapo and A. alba were modelled individually, first calibrating the model for their current distributions in relation to the present climate, and then projecting it into the past—the last glacial maximum (LGM) and the Middle Holocene periods—in relation to palaeoclimate simulations. The resulting models were compared with Iberian‐wide fossil pollen records to detect areas of overlap. Results The overlap observed between past Abies refugia—inferred from fossil pollen records—and the SDMs helped to construct the Quaternary distribution of the Iberian Abies species. SDMs yielded two well‐differentiated potential distributions: A. pinsapo throughout the Baetic mountain Range and A. alba along the Pyrenees and Cantabrian Range. These results propose that the two taxa remained isolated throughout the Quaternary, indicating a significant geographical and ecological segregation. In addition, no significant differences were detected comparing the three projections (present‐day, Mid‐Holocene and LGM), suggesting a relative climate stasis in the refuge areas during the Quaternary. Main conclusions Our results confirm that SDM projections can provide a useful complement to palaeoecological studies, offering a less subjective and spatially explicit hypothesis concerning past geographic patterns of Iberian Abies species. The integration of ecological‐niche characteristics from known occurrences of Abies species in conjunction with palaeoecological studies could constitute a suitable tool to define appropriate areas in which to focus proactive conservation strategies.  相似文献   

11.
Genetic diversity provides insight into heterogeneous demographic and adaptive history across organisms’ distribution ranges. For this reason, decomposing single species into genetic units may represent a powerful tool to better understand biogeographical patterns as well as improve predictions of the effects of GCC (global climate change) on biodiversity loss. Using 279 georeferenced Iberian accessions, we used classes of three intraspecific genetic units of the annual plant Arabidopsis thaliana obtained from the genetic analyses of nuclear SNPs (single nucleotide polymorphisms), chloroplast SNPs, and the vernalization requirement for flowering. We used SDM (species distribution models), including climate, vegetation, and soil data, at the whole‐species and genetic‐unit levels. We compared model outputs for present environmental conditions and with a particularly severe GCC scenario. SDM accuracy was high for genetic units with smaller distribution ranges. Kernel density plots identified the environmental variables underpinning potential distribution ranges of genetic units. Combinations of environmental variables accounted for potential distribution ranges of genetic units, which shrank dramatically with GCC at almost all levels. Only two genetic clusters increased their potential distribution ranges with GCC. The application of SDM to intraspecific genetic units provides a detailed picture on the biogeographical patterns of distinct genetic groups based on different genetic criteria. Our approach also allowed us to pinpoint the genetic changes, in terms of genetic background and physiological requirements for flowering, that Iberian A. thaliana may experience with a GCC scenario applying SDM to intraspecific genetic units.  相似文献   

12.
Question: Will the predicted climate changes affect species distribution in the Iberian Peninsula? Location: Iberian Peninsula (Spain and Portugal). Methods: We modelled current and future tree distributions as a function of climate, using a computational framework that made use of one machine learning technique, the random forest (RF) algorithm. This algorithm provided good predictions of the current distribution of each species, as shown by the area under the corresponding receiver operating characteristics (ROC) curves. Species turnover, richness and the change in distributions over time to 2080 under four Intergovernmental panel on climate change (IPCC) scenarios were calculated using the species map outputs. Results and Conclusions: The results show a notable reduction in the potential distribution of the studied species under all the IPCC scenarios, particularly so for mountain conifer species such as Pinus sylvestris, P. uncinata and Abies alba. Temperate species, especially Fagus sylvatica and Quercus petraea, were also predicted to suffer a reduction in their range; also sub‐mediterranean species, especially Q. pyrenaica, were predicted to undergo notable decline. In contrast, typically Mediterranean species appeared to be generally more capable of migration, and are therefore likely to be less affected.  相似文献   

13.
The diversity of the genus Mantisalca in southwest Europe is the subject of much controversy. The present taxonomic revision of the genus on the Iberian Peninsula allows four species to be recognized, whose morphological variability is described and various synonyms are typified. A new species is described, M. cabezudoi Ruiz de Clavijo and Devesa, endemic to southeast Spain. The name Microlonchus spinulosus Rouy is reinstated for a species endemic to the central and east Iberian Peninsula, for which a new combination is made: Mantisalca spinulosa (Rouy) Ruiz de Clavijo and Devesa. A diagnostic key to the taxa is given.  相似文献   

14.
15.
  1. Traits that are significant to the thermal ecology of temperate or montane species are expected to prominently co-vary with the thermal environment experienced by an organism. The Himalayan Pieris canidia butterfly exhibits considerable variation in wing melanisation. We investigated: (i) whether variation in wing melanisation and (ii) activity period of this montane butterfly was influenced by the seasonally and elevationally changing thermal landscape.
  2. We discovered that wing melanisation varied across elevation, seasons, sex, and wing surfaces, with the variation strongly structured in space and time: colder seasons and higher elevations produced more melanic individuals. Notably, melanisation did not vary uniformly across all wing surfaces: (i) melanisation of the ventral hindwing co-varied much more prominently with elevation, but (ii) melanisation on all other surfaces varied with seasonal changes in the thermal environment.
  3. Observed wing surface-specific patterns indicated thermoregulatory function for this variation in melanisation. Such wing surface-specific responses to seasonal and elevational variation in temperature have rarely been reported in montane insects.
  4. Moreover, daily and seasonal thermal cycles were found to strongly influence activity periods of this species, suggesting the potential limits to wing melanisation plasticity.
  5. Overall, these results showed that the seasonal and elevational gradients in temperature influence the thermal phenotype as well as activity periods of this Himalayan butterfly. It will be critical to study the phenotypic evolution of such montane insects in response to the ongoing climate change, which is already showing significant signs in this iconic mountain range.
  相似文献   

16.
Eurylophella iberica Keffermüller and Da Terra, 1978 is an endemic insect species of the Iberian Peninsula whose distribution has been poorly studied to date with rather old and scattered records. Here we compiled all existing distribution records and add new records from recent sampling activities. We also used this updated distributional information and environmental data (climate and geology) to estimate both current and future potential distributions in different climate change scenarios. We found that currently ca. 50% of the total Iberian region could present suitable environmental conditions for E. iberica (all the Iberian Peninsula, save the most eastern and Mediterranean areas). However, the potential distributions estimated when considering future climate change scenarios showed a marked reduction in the areas with suitable environmental conditions for the species, especially in the south. The northwest part of the Iberian Peninsula is a crucial zone for the future survival of this endemic species. We also found that most populations that occur in areas with suitable (both current and future) environmental conditions fall outside the Natura 2000 network of protected areas. Our results represent the first attempt to estimate the potential distribution of this endemic species providing important insights for its conservation.  相似文献   

17.
  1. North America has a diverse array of mammalian species. Model projections indicate significant variations in future climate conditions of North America, and the habitats of woodland mammals of this continent may be particularly sensitive to changes in climate.
  2. We report on the potential spatial distributions of 13 wide-ranging, relatively common species of North American woodland mammals under future climate scenarios.
  3. We examined the potential influence of the mean and seasonal climate variables on the distribution of species. Presence-only occurrence records of species, four predictor variables, two future climate scenarios (Representative Concentration Pathways 4.5 and 8.5), and two time steps (current and 2070) were used to build species’ distribution models using a maximum entropy algorithm (MaxEnt).
  4. Our results suggested that overall, 11 of the 13 species are likely to gain climatically suitable space (regions where climate conditions will be similar to those of area currently occupied) at the continental scale, but American marten Martes americana and ‘woodland’ caribou Rangifer tarandus are likely to lose suitable climate range by 2070. Furthermore, climate space is likely to be expanding northwards under future climate scenarios for most of the mammals, and many jurisdictions in the border region between Canada and the USA are likely to lose iconic species, such as moose Alces alces. We identified regions as potential in situ and ex situ climate change refugia, which are increasingly considered to be important for biodiversity conservation.
  5. The model results suggest significant implications for conservation planning for the 13 mammalian species under global climate change, especially at fine spatial scales. Numerous species that are presently common at their southern range edge will be functionally or completely extirpated in 50 years. The potential in situ and ex situ climate change refugia could provide an effective support for adaptive strategies aimed at species conservation planning.
  相似文献   

18.
The degree of influence of environment, location and geography on the distribution of closely-related Jekelius nitidus and Jekelius hernandezi , coleopteran species endemic to the Iberian Peninsula, was examined. Niche envelope model predictions of probable absence points were based on available presence information. Presence–absence information for each of the two species was logistic-regressed against climate, altitude, lithology, spatial and river basin variables from each of 100 km2 UTM Iberian Peninsula squares. Models predict that environmental conditions are suitable for both species in an area larger than that in which they have been found. The best-fitting environment model for J. nitidus , based on summer precipitation, area underlain by siliceous rocks, area with siliceous sediments and aridity index, explains more than 81% of total deviance. The final model, which includes spatial and river basin variables, accounts for nearly of 89% of total deviance. The best-fitting environment model for J. hernandezi, based on the area underlain by calcareous rocks, summer precipitation, aridity index, altitude and minimum annual temperature, explains 63% of total deviance. The final model based on both spatial and river basin variables accounts for nearly 70% of total deviance.
  Our results suggest that climate influences the distribution of both species similarly and that the acidic or basic nature of the substrate is the environment variable that most influences the occurrence of both species. The major degree of influence of river basin variables, together with lithologic variables, on the current distribution of both species may be due to the limited mobility of these flightless species.  相似文献   

19.
With ongoing climate change, it is likely that shifts in species distribution ranges will lead to changes in the type and intensity of plant–herbivore interactions. Plants currently exposed to lower levels of herbivory could have less developed defensive mechanisms and therefore could suffer in case of increased herbivore pressure.We performed a common garden experiment using clones of Festuca rubra originating from four populations experiencing contrasting temperature and precipitation regimes. Clones of identical genotype were subjected to both the control and the herbivory treatment using larvae of the nymphalid butterfly Coenonympha pamphilus, a generalist herbivore feeding on several grass species. Various measures of constitutive and induced defence as well as growth response to herbivory were assessed, compared between populations of different climatic origin and related to herbivore performance (larval survival).The four F. rubra populations significantly differed in constitutive defence (content of Si and total phenols), nutritional quality (content of C) and inducibility of defence (change in total phenols), but not in growth response to herbivory. Herbivores survived better on populations from colder climate and better survival was generally related to lower Si content and lower initial plant size.We demonstrated population differentiation in both constitutive and induced defence against insect herbivory, which directly affected survival of a generalist herbivore. Our findings confirmed the expectation that plants from higher elevations are more prone to herbivory. Moreover, differences in various aspects of plant defence between populations from the same altitude stresses the need of considering multiple factors when assessing the effect of climate on plant–herbivore interactions.  相似文献   

20.
  1. A preference experiment was set up with two planthopper species (Hemiptera: Delphacidae) to test the influence of competition on host plant choice.
  2. The delphacid Javesella pellucida was chosen as a generalist and the rarer Ribautodelphax imitans as a monophagous specialist, which feeds on the grass, tall fescue Schedonorus arundinaceus.
  3. In the absence of the specialist, the generalist showed a marked preference for tall fescue. In some experiments, however, the introduction of the specialist resulted in a shift of preference to an alternative plant if the specialist was established prior to the introduction of the generalist.
  4. This experiment supports the hypothesis that specialist herbivores can potentially alter the host plant choices of generalists, which may lead to differing host plant use patterns in insect communities.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号