首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Aim  To illustrate problems in the methods proposed by B. Vilenkin and V. Chikatunov to study levels of endemism and species–area relationships.
Location  The study used data on the distribution of tenebrionid beetles (Coleoptera, Tenebrionidae) on the Aegean Islands (Greece).
Methods  A total of 32 islands and 170 taxa (species and subspecies) were included in this study. Levels of endemism were evaluated both as the proportion of endemic taxa, and according to the methods proposed by Vilenkin and Chikatunov, which are based on the number of non-endemic taxa and various relationships with area. A model of the species–area relationship proposed by these authors was also analysed.
Results  The number of endemic taxa was positively correlated with the number of taxa with different distribution types, but this positive correlation did not influence the estimation of the level of endemism. In fact, the commonly used estimate of endemicity as a percentage was strongly correlated with the endemism values calculated according to the method of Vilenkin and Chikatunov. The usual power function fitted the species–area relationship as well as the most complicated method of Vilenkin and Chikatunov.
Main conclusions  As hypothesized by Vilenkin and Chikatunov, the number of endemic taxa was influenced both by the number of taxa of other biogeographical ranks, and by an island's area. However, explanations for the positive relationship between the number of endemic taxa and taxa of different biogeographical ranks are equivocal. Importantly, this relationship did not necessarily influence the level of endemism, which could be expressed adequately by percentages. The method proposed by Vilenkin and Chikatunov to estimate the species–area relationship cannot be clearly justified on theoretical grounds and is of questionable practical utility.  相似文献   

2.
Conservation efforts are often constrained by uncertainty over the factors driving declines in marine mammal populations. In Scotland, there is concern over the potential impact of unrecorded shooting of seals, particularly where this occurs near Special Areas of Conservation. Here, we show that the abundance of harbour seals Phoca vitulina in the Moray Firth, north-east Scotland, declined by 2–5% per annum between 1993 and 2004. Records from local salmon fisheries and aquaculture sites indicated that 66–327 harbour seals were shot each year between 1994 and 2002. Matrix models and estimates of potential biological removal indicate that this level of shooting is sufficient to explain observed declines. Nevertheless, uncertainty over the number and identity of seals shot means that other factors such as changes in food availability may be contributing. Recent conservation measures markedly reduced the recorded levels of shooting in 2003 and 2004. In 2005, a coordinated management plan was developed to protect salmon fisheries interests while minimizing impacts on local seal populations. Comprehensive monitoring of future population trends and improved regulation of culls are now required to provide more robust assessments of the impact of human persecution on harbour seal populations in the Moray Firth and in other parts of the UK.  相似文献   

3.
The timing of migration is one of the key life‐history parameters of migratory birds. It is expected to be under strong selection, to be sensitive to changing environmental conditions and to have implications for population dynamics. However, most phenological studies do not describe arrival and departure phenologies for a species in a way that is robust to potential biases, or that can be clearly related to breeding populations. This hampers our ability to understand more fully how climate change may affect species’ migratory strategies, their life histories and ultimately their population dynamics. Using generalized additive models (GAMs) and extensive large‐scale data collected in the UK over a 40‐year period, we present standardized measures of migration phenology for common migratory birds, and examine how the phenology of bird migration has changed in the UK since the 1960s. Arrival dates for 11 of 14 common migrants became significantly earlier, with six species advancing their arrival by more than 10 days. These comprised two species, Blackcap Sylvia atricapilla and Chiffchaff Phylloscopus collybita, which winter closest to Britain in southern Europe and the arid northern zone of Africa, Common Redstart Phoenicurus phoenicurus, which winters in the arid zone, and three hirundines (Sand Martin Riparia riparia, House Martin Delichon urbicum and Barn Swallow Hirundo rustica), which winter in different parts of Africa. Concurrently, departure dates became significantly later for four of the 14 species and included species that winter in southern Europe (Blackcap and Chiffchaff) and in humid zones of Africa (Garden Warbler Sylvia borin and Whinchat Saxicola rubetra). Common Swift Apus apus was the exception in departing significantly earlier. The net result of earlier arrival and later departure for most species was that length of stay has become significantly longer for nine of the 14 species. Species that have advanced their timing of arrival showed the most positive trends in abundance, in accordance with previous studies. Related in part to earlier arrival and the relationship above, we also show that species extending their stay in Great Britain have shown the most positive trends. Further applications of our modelling approach will provide opportunities for more robust tests of relationships between phenological change and population dynamics than have been possible previously.  相似文献   

4.
Detecting coherent signals of climate change is best achieved by conducting expansive, long‐term studies. Here, using counts of waders (Charadrii) collected from ca. 3500 sites over 30 years and covering a major portion of western Europe, we present the largest‐scale study to show that faunal abundance is influenced by climate in winter. We demonstrate that the ‘weighted centroids’ of populations of seven species of wader occurring in internationally important numbers have undergone substantial shifts of up to 115 km, generally in a northeasterly direction. To our knowledge, this shift is greater than that recorded in any other study, but closer to what would be expected as a result of the spatial distribution of ecological zones. We establish that year‐to‐year changes in site abundance have been positively correlated with concurrent changes in temperature, but that this relationship is most marked towards the colder extremities of the birds' range, suggesting that shifts have occurred as a result of range expansion and that responses to climate change are temperature dependent. Many attempts to model the future impacts of climate change on the distribution of organisms, assume uniform responses or shifts throughout a species' range or with temperature, but our results suggest that this may not be a valid approach. We propose that, with warming temperatures, hitherto unsuitable sites in northeastern Europe will host increasingly important wader numbers, but that this may not be matched by declines elsewhere within the study area. The need to establish that such changes are occurring is accentuated by the statutory importance of this taxon in the designation of protected areas.  相似文献   

5.
Summary Since the early 1980s, the winter moth, Operophtera brumata L. (Lepidoptera: Geometridae) has emerged as a serious pest of Sitka Spruce, Picea sitchensis Bong. plantations in southern Scotland. Outbreaks are characterised by susceptible sites within plantations which can occur immediately adjacent to resistant sites. We investigated the level of some nutrients in the trees, the date of budburst of the trees, and the numbers of some potential predators of winter moth pupae. None could satisfactorily explain outbreak patterns. Although foliage analysis demonstrated that many trees were marginal or deficient in phosphorus, nitrogen and potassium, these deficiencies were not related to the susceptibility of a site. Within sites, the numbers and weights of O. brumata were positively related to phosphorus content and negatively related to calcium content of foliage. Other evidence suggests, however, that these correlations may not represent direct effects of phosphorus and calcium on larval growth and survival. Date of budburst, which commonly determines susceptibility of deciduous hosts to O. brumata, was unrelated to density, and pupal predators were more, not less, abundant in susceptible sites. Although it is difficult to distinguish between factors that initiate outbreaks and those that maintain them, these data suggest that nutrient deficiencies of trees, budburst date, and the distribution of pupal predators of the winter moth cannot explain patterns of outbreak of the winter moth on spruce.  相似文献   

6.
Biological and physico-chemical factors affecting abundance and biomass of shrimp Palaemon peringueyi were investigated in 2010–2011 in the lower, middle and upper reaches of the freshwater-deprived permanently open Kariega Estuary. Shrimp abundance and biomass ranged from 0 to 88 ind. m?2 and 0 to 4.4 g wwt m?2, respectively. Shrimps were most abundant in the lower reach, and highest abundances and biomasses were recorded in the lower reach in June when salinities were low. The shrimps were almost always absent in the upper reach. Juveniles were found mostly in the lower and middle reaches, whereas adults were distributed in all three reaches. Regression analyses showed no statistically significant relationship for either abundance or biomass of the shrimps with temperature, salinity and dissolved oxygen (p > 0.05). The relationship between shrimp abundance and biomass and vegetation cover was positive and statistically significant (R2 = 0.109 and 0.185, respectively; p < 0.05). Vegetation cover plays an important role in determining the presence, distribution and abundance or biomass of P. peringueyi in this estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号