首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Our laboratory has recently demonstrated arole for the phosphatidylinositol 3-kinase-mediatedinducible NO synthase (iNOS) signaling pathway in acute regulation ofinsulin-induced mitogen-activated protein phosphatase-1 (MKP-1)expression in primary cultures of rat aortic vascular smooth musclecells (VSMCs) (N. Begum, L. Ragolia, M. McCarthy, and N. Duddy.J. Biol. Chem. 273: 25164-25170, 1998). We now show that prolonged treatment of VSMCs with 100 nMinsulin and high glucose (25 mM) for 12-24 h, to mimichyperinsulinemia and hyperglycemia, completely blocked MKP-1 mRNA andprotein expression in response to subsequent acute insulin treatment.To understand the mechanism of insulin resistance induced by highglucose and insulin, we studied the regulation of iNOS proteininduction in these cells. Both high glucose and chronic insulintreatment caused a marked impairment of iNOS induction in response toacute insulin. Blocking of signaling via the p38 mitogen-activatedprotein kinase (MAPK) pathway by prior treatment for 1 h withSB-203580, a synthetic p38 MAPK inhibitor, completely prevented theinhibition of iNOS induced by high glucose and insulin and restoredMKP-1 induction to levels observed with acute insulin treatment. Incontrast, PD-98059, a MEK inhibitor, had no effect. Furthermore, highglucose and chronic insulin treatment caused sustained p38 MAPKactivation. We conclude 1) thatchronic insulin and high glucose-induced insulin resistance isaccompanied by marked reductions in both iNOS and MKP-1 inductions dueto p38 MAPK activation that leads to excessive cell growth and2) that p38 MAPK/extracellularsignal-regulated kinase pathways regulate iNOS induction, therebycontrolling MKP-1 expression, which in turn inactivates MAPKs as afeedback mechanism and inhibits cell growth.

  相似文献   

5.
Nitric oxide (NO), produced by the inducible isoform of the NO synthase (iNOS), plays an important role in the pathophysiology of arthritic diseases. This work aimed at elucidating the role of the mitogen-activated protein kinases (MAPK), p38MAPK and p42/44MAPK, and of protein tyrosine kinases (PTK) on interleukin-1beta (IL-1)-induced iNOS expression in bovine articular chondrocytes. The specific inhibitor of the p38MAPK, SB 203580, effectively inhibited IL-1-induced iNOS mRNA and protein synthesis, as well as NO production, while the specific inhibitor of the p42/44MAPK, PD 98059, had no effect. These responses to IL-1 were also inhibited by treatment of the cells with the tyrosine kinase inhibitors, genistein and tyrphostin B42, which also prevented IL-1-induced NF-kappaB activation. The p38MAPK inhibitor, SB 203580, had no effect on IL-1-induced NF-kappaB activation. Finally, the p42/44MAPK inhibitor, PD 98059, prevented IL-1-induced AP-1 activation in a concentration that did not inhibit iNOS expression. In conclusion, this study shows that (1) PTK are part of the signaling pathway that leads to IL-1-induced NF-kappaB activation and iNOS expression; (2) the p38MAPK cascade is required for IL-1-induced iNOS expression; (3) the p42/44MAPK and AP-1 are not involved in IL-1-induced iNOS expression; and (4) NF-kappaB and the p38MAPK lie on two distinct pathways that seem to be independently required for IL-1-induced iNOS expression. Hence, inhibition of any of these two signaling cascades is sufficient to prevent iNOS expression and the subsequent production of NO in articular chondrocytes.  相似文献   

6.
We investigated the effects of high concentrations of glucose on plasminogen activator inhibitor-1 (PAI-1) gene expression in cultured rat vascular smooth muscle cells (VSMC). In response to a high glucose concentration (27.5 mM), PAI-1 mRNA increased within 2 h, peaked at 4 h, remained elevated for another 4 h, then decreased to basal levels at 24 h. On the other hand, mannose at the same concentration (22.5 mM mannose plus 5.5 mM glucose) as an osmotic control had little effect on PAI-1 mRNA expression. The expression of PAI-1 mRNA that was also increased by H(2)O(2), angiotensin II, or phorbol myristate acetate, was reversed by the MAPK kinase (MEK) inhibitor PD98059 or the specific protein kinase C (PKC) inhibitor GF109203X. High glucose appeared to activate MAPK and PKC in VSMC judging from Elk-1 and AP-1 activation, respectively. PD98059 inhibited and GF109203X prevented subsequent PAI-1 induction by glucose. These results suggest that glucose at high concentrations induces PAI-1 gene expression in VSMC at least partially via MAPK and PKC activation. This direct effect of glucose might have important implications for the increased plasma concentrations of PAI-1 and possibly atherosclerosis that are associated with diabetes.  相似文献   

7.
目的:研究高浓度葡萄糖抑制MC3T3-E1细胞成骨分化的机理。方法:建立MC3T3-E1细胞成骨分化诱导体系,观察不同浓度葡萄糖(5.5mM和22mM)对MC3T3-E1细胞成骨分化的影响;用不同浓度的p38 MAPK抑制剂Fr167653(0.1μM、1.0μM和10μM)进行药物干预,观察MC3T3-E1细胞在22mM葡萄糖浓度下成骨分化的变化情况。通过钙含量检测、Real time PCR检测相关分化的变化;用Western Blot方法检测MC3T3-E1细胞分化过程中p38 MAPK磷酸化状态、TXNIP表达水平的变化;使用胰岛素二硫键还原法检测细胞内TRX活性水平;使用活性氧检测试剂盒检测细胞内自由氧生成水平。结果:体外诱导条件下,高浓度(22mM)葡萄糖通过升高p38 MAPK磷酸化水平,上调TXNIP表达水平,同时降低TRX活性,使细胞内自由氧生成增加,抑制MC3T3-E1细胞的成骨分化;Fr167653通过抑制p38 MAPK磷酸化,下调TXNIP表达同时升高TRX活性,抑制细胞内自由氧生成,解除高浓度葡萄糖对细胞成骨分化的抑制作用。结论:高浓度葡萄糖通过p38 MAPK-TXNIP/TRX-ROS信号通路抑制MC3T3-E1细胞成骨分化。  相似文献   

8.
TNFalpha, which activates three different MAPKs [ERK, p38, and jun amino terminal kinase (JNK)], also induces insulin resistance. To better understand the respective roles of these three MAPK pathways in insulin signaling and their contribution to insulin resistance, constitutively active MAPK/ERK kinase (MEK)1, MAPK kinase (MKK6), and MKK7 mutants were overexpressed in 3T3-L1 adipocytes using an adenovirus-mediated transfection procedure. The MEK1 mutant, which activates ERK, markedly down-regulated expression of the insulin receptor (IR) and its major substrates, IRS-1 and IRS-2, mRNA and protein, and in turn reduced tyrosine phosphorylation of IR as well as IRS-1 and IRS-2 and their associated phosphatidyl inositol 3-kinase (PI3K) activity. The MKK6 mutant, which activates p38, moderately inhibited IRS-1 and IRS-2 expressions and IRS-1-associated PI3K activity without exerting a significant effect on the IR. Finally, the MKK7 mutant, which activates JNK, reduced tyrosine phosphorylation of IRS-1 and IRS-2 and IRS-associated PI3K activity without affecting expression of the IR, IRS-1, or IRS-2. In the context of our earlier report showing down-regulation of glucose transporter 4 by MEK1-ERK and MKK6/3-p38, the present findings suggest that chronic activation of ERK, p38, or JNK can induce insulin resistance by affecting glucose transporter expression and insulin signaling, though via distinctly different mechanisms. The contribution of ERK is, however, the strongest.  相似文献   

9.
10.
In diabetes mellitus (DM), hyperglycemia causes cardiovascular lesions through endothelial dysfunction. Monocyte chemoattractant protein-1 (MCP-1) is implicated in the pathogenesis of cardiovascular lesions. By using human umbilical vein endothelial cells, we investigated the effect of hyperglycemia on MCP-1 production and its signaling pathways. Chronic incubation with high glucose increased mRNA expression and production rate of MCP-1 in a time (1-7 days)- and concentration (10-35 mM)-dependent manner. Chronic exposure to high glucose resulted in enhancement of generation of reactive oxygen species (ROS), as determined by increasing level of 2,7-dichlorofluorescein (DCF), and subsequent activation of p38 mitogen-activated protein kinase (MAPK). Neither c-Jun NH(2)-terminal kinase nor extracellular signal-regulated kinase1/2 was affected. SB203580 or FR167653, p38 MAPK specific inhibitors, completely suppressed MCP-1 expression. Catalase suppressed p38 MAPK phosphorylation and MCP-1 expression. These results indicate that hyperglycemia can accelerate MCP-1 production through the mechanism involving p38 MAPK, ROS-sensitive signaling pathway, in vascular endothelial cells.  相似文献   

11.
12.
13.
Lin Y  Chang G  Wang J  Jin W  Wang L  Li H  Ma L  Li Q  Pang T 《Experimental cell research》2011,(14):2031-2040
Na+/H+ exchanger 1 (NHE1), an important regulator of intracellular pH (pHi) and extracellular pH (pHe), has been shown to play a key role in breast cancer metastasis. However, the exact mechanism by which NHE1 mediates breast cancer metastasis is not yet well known. We showed here that inhibition of NHE1 activity, with specific inhibitor Cariporide, could suppress MDA-MB-231 cells invasion as well as the activity and expression of MT1-MMP. Overexpression of MT1-MMP resulted in a distinguished increase in MDA-MB-231 cells invasiveness, but treatment with Cariporide reversed the MT1-MMP-mediated enhanced invasiveness. To explore the role of MAPK signaling pathways in NHE1-mediated breast cancer metastasis, we compared the difference of constitutively phosphorylated ERK1/2, p38 MAPK and JNK in non-invasive MCF-7 cells and invasive MDA-MB-231cells. Interestingly, we found that the phosphorylation levels of ERK1/2 and p38 MAPK in MDA-MB-231 cells were higher than in MCF-7 cells, but both MCF-7 cells and MDA-MB-231 cells expressed similar constitutively phosphorylated JNK. Treating MDA-MB-231 cells with Cariporide led to decreased phosphorylation level of both p38 MAPK and ERK1/2 in a time-dependent manner, but JNK activity was not influenced. Supplementation with MAPK inhibitor (MEK inhibitor PD98059, p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125) or Cariporide all exhibited significant depression of MDA-MB-231 cells invasion and MT1-MMP expression. Furthermore, we co-treated MDA-MB-231 cells with MAPK inhibitor and Cariporide. The result showed that Cariporide synergistically suppressed invasion and MT1-MMP expression with MEK inhibitor and p38 MAPK inhibitor, but not be synergistic with the JNK inhibitor. These findings suggest that NHE1 mediates MDA-MB-231 cells invasion partly through regulating MT1-MMP in ERK1/2 and p38 MAPK signaling pathways dependent manner.  相似文献   

14.
15.
Indian hedgehog (Ihh) is produced by growth plate pre-hypertrophic chondrocytes, and is an important regulator of endochondral ossification. However, little is known about the regulation of Ihh in chondrocytes. We have examined the role of integrins and mitogen-activated protein (MAP) kinases in Ihh mRNA regulation in CFK-2 chondrocytic cells. Cells incubated with the beta1-integrin blocking antibody had decreased Ihh mRNA levels, which was accompanied by decreases of activated extracellular signal-regulated kinases (ERK1/2) and activated p38 MAPK. Ihh mRNA levels were also inhibited by U0126, a specific MEK1/2 inhibitor, or SB203580, a specific p38 MAPK inhibitor. Cells transfected with constitutively active MEK1 or MKK3 had increased Ihh mRNA levels, which were diminished by dominant-negative MEK1, p38alpha or p38beta. Stimulation of the PTH1R with 10(-8) M rPTH (1-34) resulted in dephosphorylation of ERK1/2 that was evident within 15 min and sustained for 1 h, as well as transient dephosphorylation of p38 MAPK that was maximal after 25 min. PTH stimulation decreased Ihh mRNA levels, and this effect was blocked by transfecting the cells with constitutively active MEK1 but not by MKK3. These studies demonstrated that activation of ERK1/2 or p38 MAPK increased Ihh mRNA levels. Stimulation of the PTH1R or blocking of beta1-integrin resulted in inhibition of ERK1/2 and p38 MAPK and decreased levels of Ihh mRNA. Our data demonstrate the central role of MAPK in the regulation of Ihh in CFK-2 cells.  相似文献   

16.
17.
Adenosine monophosphate-activated protein kinase (AMPK) is a well-known serine/threonine kinase that has been implicated in modulation of glucose and fatty acid metabolism. Recent reports have also implicated AMPK in modulation of mucin secretion. In this study, the effects and signaling pathways of AMPK on MUC5B expression were investigated in human NCI-H292 airway epithelial cells. Metformin, as an activator of AMPK, induced MUC5B expression in a dose-dependent manner. Compound C, as an inhibitor of AMPK, inhibited metformin-induced MUC5B expression in a dose-dependent manner. Metformin significantly activated phosphorylation of AMPK; compound C inhibited metformin-activated phosphorylation of AMPK. Without treatment with metformin, there was no difference in MUC5B mRNA expression between Ad-dnAMPK transfected and wild-type adenovirus transfected NCI-H292 cells. However, after treatment with metformin, MUC5B mRNA expression was increased in wild-type adenovirus transfected NCI-H292 cells; MUC5B mRNA expression was significantly decreased in Ad-dnAMPK transfected NCI-H292 cells. Metformin activated phosphorylation of p38 mitogen-activated protein kinase (MAPK); compound C inhibited metformin-activated phosphorylation of p38 MAPK. SB203580, as an inhibitor of p38 MAPK, significantly inhibited metformin-induced MUC5B mRNA expression, while U0126, as an inhibitor of ERK1/2 MAPK, had no effect. In addition, knockdown of p38 MAPK by p38 MAPK siRNA significantly blocked metformin-induced MUC5B mRNA expression. In conclusion, results of this study show that AMPK induces MUC5B expression through the p38 MAPK signaling pathway in airway epithelial cells.  相似文献   

18.
Collagenase-1 is a protease expressed by active fibroblasts that is involved in remodeling of the extracellular matrix (ECM). In this study, we characterize the intracellular signaling mechanism of collagenase-1 production by IL-1alpha in subcultured normal fibroblasts (NF) from uninjured normal corneas, compared to that in repair wound fibroblasts (WF). In NF, collagenase-1 was induced specifically after the exogenous addition of IL-1alpha via activation of ERK and p38MAPK. Collagenase-1 expression was strongly suppressed upon treatment with either a MEK or p38MAPK inhibitor. In contrast, repair WF constitutively synthesized both IL-1alpha and collagenase-1. Combined treatment with both mitogen-activated protein kinase (MAPK) inhibitors dramatically reduced collagenase-1 synthesis, while individual MEK1 or p38 inhibitors weakly modulated the collagenase-1 level. The results indicate that both pathways are crucial in the regulation of collagenase-1 synthesis. Furthermore, an IL-1alpha receptor antagonist (IL-1ra) could not abolish constitutive collagenase-1 synthesis, even at high doses, suggesting that other cytokines/factors are additionally involved in this process. We propose that induction of collagenase-1 by IL-1alpha in both WF and NF depends on a unique combination of cell type-specific signaling pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号