首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc finger proteins: getting a grip on RNA   总被引:11,自引:0,他引:11  
C2H2 (Cys-Cys-His-His motif) zinc finger proteins are members of a large superfamily of nucleic-acid-binding proteins in eukaryotes. On the basis of NMR and X-ray structures, we know that DNA sequence recognition involves a short alpha helix bound to the major groove. Exactly how some zinc finger proteins bind to double-stranded RNA has been a complete mystery for over two decades. This has been resolved by the long-awaited crystal structure of part of the TFIIIA-5S RNA complex. A comparison can be made with identical fingers in a TFIIIA-DNA structure. Additionally, the NMR structure of TIS11d bound to an AU-rich element reveals the molecular details of the interaction between CCCH fingers and single-stranded RNA. Together, these results contrast the different ways that zinc finger proteins bind with high specificity to their RNA targets.  相似文献   

2.
The tandem zinc finger (TZF) domain of the protein TIS11d binds to the class II AU-rich element (ARE) in the 3' untranslated region (3' UTR) of target mRNAs and promotes their deadenylation and degradation. The NMR structure of the TIS11d TZF domain bound to the RNA sequence 5'-UUAUUUAUU-3' comprises a pair of novel CCCH fingers of type CX(8)CX(5)CX(3)H separated by an 18-residue linker. The two TIS11d zinc fingers bind in a symmetrical fashion to adjacent 5'-UAUU-3' subsites on the single-stranded RNA via a combination of electrostatic and hydrogen-bonding interactions, with intercalative stacking between conserved aromatic side chains and the RNA bases. Sequence specificity in RNA recognition is achieved by a network of intermolecular hydrogen bonds, mostly between TIS11d main-chain functional groups and the Watson-Crick edges of the bases. The TIS11d structure provides insights into the RNA-binding functions of this large family of CCCH zinc finger proteins.  相似文献   

3.
4.
5.
The muscleblind‐like (MBNL) proteins 1, 2, and 3, which contain four CCCH zinc finger motifs (ZF1–4), are involved in the differentiation of muscle inclusion by controlling the splicing patterns of several pre‐mRNAs. Especially, MBNL1 plays a crucial role in myotonic dystrophy. The CCCH zinc finger is a sequence motif found in many RNA binding proteins and is suggested to play an important role in the recognition of RNA molecules. Here, we solved the solution structures of both tandem zinc finger (TZF) motifs, TZF12 (comprising ZF1 and ZF2) and TZF34 (ZF3 and ZF4), in MBNL2 from Homo sapiens. In TZF12 of MBNL2, ZF1 and ZF2 adopt a similar fold, as reported previously for the CCCH‐type zinc fingers in the TIS11d protein. The linker between ZF1 and ZF2 in MBNL2 forms an antiparallel β‐sheet with the N‐terminal extension of ZF1. Furthermore, ZF1 and ZF2 in MBNL2 interact with each other through hydrophobic interactions. Consequently, TZF12 forms a single, compact global fold, where ZF1 and ZF2 are approximately symmetrical about the C2 axis. The structure of the second tandem zinc finger (TZF34) in MBNL2 is similar to that of TZF12. This novel three‐dimensional structure of the TZF domains in MBNL2 provides a basis for functional studies of the CCCH‐type zinc finger motifs in the MBNL protein family.  相似文献   

6.
7.
8.
9.
10.
RNA and DNA binding zinc fingers in Xenopus TFIIIA.   总被引:4,自引:0,他引:4  
O Theunissen  F Rudt  U Guddat  H Mentzel  T Pieler 《Cell》1992,71(4):679-690
  相似文献   

11.
12.
13.
14.
15.
16.
Zinc fingers are usually associated with proteins that interact with DNA. Yet in two oocyte-specific Xenopus proteins, TFIIA and p43, zinc fingers are used to bind 5S RNA. One of these, TFIIIA, also binds the 5S RNA gene. Both proteins have nine zinc fingers that are nearly identical with respect to size and spacing. We have determined the relative affinities of groups of zinc fingers from TFIIIA for both 5S RNA and the 5S RNA gene. We have also determined the relative affinities of groups of zinc fingers from p43 for 5S RNA. The primary protein regions for RNA and DNA interaction in TFIIIA are located at opposite ends of the molecule. All zinc fingers from TFIIIA participate in binding 5S RNA, but zinc fingers from the C terminus have the highest affinity. N-terminal zinc fingers are essential for binding the 5S RNA gene. In contrast, zinc fingers at the amino terminus of p43 are essential for binding 5S RNA.  相似文献   

17.
18.
C2H2型锌指蛋白是哺乳动物中数量最多的一类转录调控因子.C2H2型锌指蛋白中含有的C2H2型锌指基序多是不相同的,表明它们很可能结合不同的DNA序列,从而调控不同的基因,行使多样化的调控功能.然而,目前大多数C2H2型锌指蛋白结合的DNA序列仍不明确,这阻碍了C2H2型锌指蛋白的功能研究.目前,针对C2H2型锌指蛋白的靶序列预测已有一些初步的研究.本文介绍了C2H2型锌指基序与DNA结合的经典模式,并对C2H2型锌指蛋白靶序列预测方法中所用到的算法、训练集、金标准数据集及相应工具进行了全面系统的总结归纳,旨在丰富对C2H2型锌指蛋白靶序列预测原理和工具的认识,为C2H2型锌指蛋白靶序列的精确预测和更深入的功能研究打下基础.  相似文献   

19.
20.
The Rev responsive element (RRE), a part of unspliced human immunodeficiency virus (HIV) RNA, serves a crucial role in the production of infectious HIV virions. The viral protein Rev binds to RRE and facilitates transport of mRNA to the cytoplasm. Inhibition of the Rev-RRE interaction disrupts the viral life cycle. Using a phage display protocol, dual zinc finger proteins (ZNFs) were generated that bind specifically to RREIIB at the high affinity Rev binding site. These proteins were further shortened and simplified, and they still retained their RNA binding affinity. The solution structures of ZNF29 and a mutant, ZNF29G29R, have been determined by nuclear magnetic resonance (NMR) spectroscopy. Both proteins form C(2)H(2)-type zinc fingers with essentially identical structures. RNA protein interactions were evaluated quantitatively by isothermal titration calorimetry, which revealed dissociation constants (K(d)'s) in the nanomolar range. The interaction with the RNA is dependent upon the zinc finger structure; in the presence of EDTA, RNA binding is abolished. For both proteins, RNA binding is mediated by the alpha-helical portion of the zinc fingers and target the bulge region of RREIIB-TR. However, ZNF29G29R exhibits significantly stronger binding to the RNA target than ZNF29; this illustrates that the binding of the zinc finger scaffold is amenable to further improvements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号