首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We conducted laboratory experiments with Volga River Russian sturgeon, Acipenser gueldenstaedtii, to develop a conceptual model of early behavior. We daily observed fish from day-0 (embryos, first life interval after hatching) to day-29 feeding larvae for preference of bright habitat and cover, swimming distance above the bottom, up- and downstream movement, and diel activity. Hatchling embryos initiated a downstream migration, which suggests that predation risk of embryos at spawning sites is high. Migration peaked on days 0–5 and ceased on day 7 (8-day migration). Migrants preferred bright, open habitat and early migrants swam-up far above the bottom (maximum daily median, 140cm) in a vertical swim tube. Post-migrant embryos did not prefer bright illumination but continued to prefer white substrate, increased use of cover habitat, and swam on the bottom. Larvae initiated feeding on day 10 after 170.6 cumulative temperature degree-days. Larvae did not migrate, weakly preferred bright illumination, preferred white substrate and open habitat, and swam near the bottom (daily median 5–78cm). The lack of a strong preference by larvae for bright illumination suggests foraging relies more on olfaction than vision for locating prey. A short migration by embryos would disperse wild sturgeon from a spawning area, but larvae did not migrate, so a second later migration by juveniles disperses young sturgeon to the sea (2-step migration). Embryo and larva body color was light tan and tail color was black. The migration, behavior, and light body color of Russian sturgeon embryos was similar to species of Acipenser and Scaphirhynchus in North America and to Acipenser in Asia that migrate after hatching as embryos. The similarity in migration style and body color among species with diverse phylogenies likely reflects convergence for common adaptations across biogeographic regions.  相似文献   

2.
We conducted laboratory experiments with kaluga, Huso dauricus, and Amur sturgeon, Acipenser schrenckii, to develop a conceptual model of early behavior. We daily observed embryos (first life phase after hatching) and larvae (period initiating exogenous feeding) to day-30 (late larvae) for preference of bright habitat and cover, swimming distance above the bottom, up- and downstream movement, and diel activity. Day-0 embryos of both species strongly preferred bright, open habitat and initiated a strong, downstream migration that lasted 4 days (3 day peak) for kaluga and 3 days (2 day peak) for Amur sturgeon. Kaluga migrants swam far above the bottom (150cm) on only 1 day and moved day and night; Amur sturgeon migrants swam far above the bottom (median 130cm) during 3 days and were more nocturnal than kaluga. Post-migrant embryos of both species moved day and night, but Amur sturgeon used dark, cover habitat and swam closer to the bottom than kaluga. The larva period of both species began on day 7 (cumulative temperature degree-days, 192.0 for kaluga and 171.5 for Amur sturgeon). Larvae of both species preferred open habitat. Kaluga larvae strongly preferred bright habitat, initially swam far above the bottom (median 50–105cm), and migrated downstream at night during days 10–16 (7-day migration). Amur sturgeon larvae strongly avoided illumination, had a mixed response to white substrate, swam 20–30cm above the bottom during most days, and during days 12–34 (most of the larva period) moved downstream mostly at night (23-day migration). The embryo–larva migration style of the two species likely shows convergence of non-related species for a common style in response to environmental selection in the Amur River. The embryo–larva migration style of Amur sturgeon is unique among Acipenser yet studied.  相似文献   

3.
We studied ontogenetic behavior, migration, and wintering behavior of young Klamath River green sturgeon, Acipenser medirostris, in the laboratory to provide insight into likely behavior of wild sturgeon. Hatchling free embryos preferred cover but were poor swimmers and could not move farther than a few centimeters to cover. The poor swimming ability and cover preference of hatchlings suggests evolution for habitat selection of females to place eggs in habitat with cover for eggs (and hatchlings), and for egg characteristics (large, dense, and weakly adhesive) to cause rapid sinking into cover without drifting. A day or so after fish developed into larvae (first life interval feeding exogenously), day-12 larvae initiated a 12-day downstream nocturnal migration. A totally nocturnal migration is unlike other Acipenser migrants yet studied. Migrant larvae had a dark-colored body typical of other Acipenser species that migrate as larvae. Tail color was a dark black (black-tail phenotype) only during the early larva period, suggesting a morphological adaptation for migration, foraging, or both. Post-migrant larvae and early juveniles to day 84 foraged diurnally with a nocturnal activity peak. Day 110–181 juveniles moved downstream at night until water temperature decreased to about 8°C, indicating wild juveniles migrate downstream to wintering habitat. Habitat preference of month 9–10 wintering juveniles suggests wild juveniles are in deep pools with low light and some rock structure. Wintering juveniles were only active at night. Initiation and cessation of daily activity was at dusk and dawn during illumination changes of <1.0lx. This sensitivity to illumination has not been found before in sturgeons. During the first 10months of life, nocturnal activity of early life intervals is a dominant feature of migration, foraging, and wintering.  相似文献   

4.
We conducted laboratory studies on the ontogenetic behavior of free embryos (first life interval after hatching) and larvae (first feeding interval) of pallid and shovelnose sturgeon. Migration styles of both species were similar for timing of migration (initiation by embryos on day 0 after hatching and cessation by larvae on days 12–13 at 236–243 cumulative temperature degree units), migration distance (about 13km), life interval when most distance was moved (embryo), and diel behavior of embryos (diurnal). However, the species differed for two behaviors: movement characteristics of embryos (peak movement rate of pallid sturgeon was only one-half the peak rate of shovelnose sturgeon, but pallid sturgeon continued the lower rate for twice as long) and diel behavior of larvae (pallid sturgeon were diurnal and shovelnose sturgeon were nocturnal). Thus, the species used different methods to move the same distance. Migrating as poorly developed embryos suggests a migration style to avoid predation at the spawning site, but moving from spawning habitat to rearing habitat before first feeding could also be important. Migrants of both species preferred bright habitat (high illumination intensity and white substrate), a behavioral preference that may characterize the migrants of many species of sturgeon. Both species were remarkably similar for swimming height above the bottom by age, and day 7 and older migrants may swim far above the bottom and move far downstream. A migration of 12 or 13 days will probably not distribute larvae throughout the population's range, so an older life interval likely initiates a second longer downstream migration (2-step migration). By day 2, individuals of both species were a black-tail phenotype (light grey body with a black-tail that moved conspicuously during swimming). Aggregation behavior suggests that black-tail is a visual signal used for group cohesion.  相似文献   

5.
We observed Suwannee River Gulf sturgeon, Acipenser oxyrinchus desotoi, in the laboratory and found free embryos (first interval after hatching) hid under rocks and did not migrate. Thus, wild embryos should be at the spawning area. Larvae (first interval feeding exogenously) initiated a slow downstream migration, and some juveniles (interval with adult features) continued to migrate slowly for at least 5 months, e.g., a 1-step long larva-juvenile migration. No other population of sturgeon yet studied has this migration style. A conceptual model using this result suggests wild year-0 sturgeon have a variable downstream migration style with short-duration (short distance) migrants and long-duration (long distance) migrants. This migration style should widely disperse wild fish. The model is supported by field studies that found year-0 juveniles are widely dispersed in fresh water to river km 10. Thus, laboratory and field data agree that the entire freshwater reach of river downstream of spawning is nursery habitat. Foraging position of larvae and early juveniles was mostly on the bottom, but fish also spent hours holding position in the water column, an unusual feeding location for sturgeons. The holding position of fish above the bottom suggests benthic forage in the river is scarce and fish have evolved drift feeding. The unusual migration and foraging styles may be adaptations to rear in a river at the southern limit of the species range with poor rearing habitat (low abundance of benthic forage and high summer water temperatures). Suwannee River Gulf sturgeon and Hudson River Atlantic sturgeon, A. o. oxyrinchus, are similar for initiation of migration, early habitat preference, and diel migration. The two subspecies differ greatly for migration and foraging styles, which is likely related to major differences in the quality of rearing habitat. The differences between Atlantic sturgeon populations show the need for geographical studies to represent the behavior of an entire species.  相似文献   

6.
Synopsis We studied Sacramento River white sturgeon, Acipenser transmontanus, in the laboratory to develop a conceptual model of ontogenetic behavior and provide insight into probable behavior of wild sturgeon. After hatching, free embryos initiated a low intensity, brief downstream dispersal during which fish swam near the bottom and were photonegative. The weak, short dispersal style and behavior of white sturgeon free embryos contrasts greatly with the intense, long dispersal style and behavior (photopositive and swimming far above the bottom) of dispersing free embryos of other sturgeon species. If spawned eggs are concentrated within a few kilometers downstream of a spawning site, the adaptive significance of the free embryo dispersal is likely to move fish away from the egg deposition site to avoid predation and reduce fish density prior to feeding. Larvae foraged on the open bottom, swam <1 m above the bottom, aggregated, but did not disperse. Early juveniles initiated a strong dispersal with fish strongly vigorously swimming downstream. Duration of the juvenile dispersal is unknown, but the strong swimming likely disperses fish many kilometers. Recruitment failure in white sturgeon populations may be a mis-match between the innate fish dispersal and post-dispersal rearing habitat, which is now highly altered by damming and reservoirs. Sacramento River white sturgeon has a two-step downstream dispersal by the free embryo and juvenile life intervals. Diel activity of all life intervals peaked at night, whether fish were dispersing or foraging. Nocturnal behavior is likely a response to predation, which occurs during both activities. An intense black-tail body color was present on foraging larvae, but was weak or absent on the two life intervals that disperse. Black-tail color may be an adaptation for avoiding predation, signaling among aggregated larvae, or both, but not for dispersal.  相似文献   

7.
Laboratory studies indicated the following ontogenetic behavior and body color of wild Kootenai River White Sturgeon, Acipenser transmontanus, (hereafter, Kootenai Sturgeon), a landlocked population in the Kootenai River, a major tributary of the Columbia River (United States) and Kootenay Lake (Canada). Hatchling free embryos (hereafter, embryos) are photonegative and hide under cover at a spawning site, and have a grey body. Late-embryos are photopositive and weakly prefer white substrate, use cover less with age, and develop a black tail. Day 13 larvae forage in the day on the open bottom, use cover less with age, prefer bright habitat, have a light-grey body and black tail, and initiate a mostly nocturnal dispersal for about 21 days, and then, continue a weaker dispersal. As they age, the entire body and tail of larvae is a dark-grey color when they develop into juveniles (about 66 days). The common body and tail color of larvae from the Kootenai, Columbia, and Sacramento rivers indicate a common adaptation to signal conspecifics or avoid predators. Juveniles are variable for foraging height, do not hide in bottom cover, and continue a weak nocturnal downstream movement. Movement of larvae and juveniles in the artificial stream suggests wild Kootenai Sturgeon have a long slow dispersal style (disperse for months). The long dispersal style of young Kootenai Sturgeon may adapt larvae to dispersing all summer in a 100–200 km long reach with a low abundance of food. The final destination of Kootenai Sturgeon during their first rearing season is unknown, but the long dispersal suggests fish could easily move to the lower river or to Kootenay Lake. Ontogenetic behavior of Kootenai Sturgeon is slightly different from Columbia River White Sturgeon, which has a weak embryo dispersal, but both populations have a similar major dispersal by larvae. However, both of these populations differ qualitatively from Sacramento River White Sturgeon, in which juveniles initiate the major dispersal. Thus, major geographic behavioral variation exists among populations and should be considered in restoration programs.  相似文献   

8.
Ontogenetic behavior of Hudson River Atlantic sturgeon and Connecticut River shortnose sturgeon early life intervals were similar during laboratory observations. After hatching, free embryos were photonegative and sought cover. When embryos developed into larvae, fish left cover, were photopositive, and initiated downstream migration. Free embryos may remain at the spawning site instead of migrating downstream because the risk of predation at spawning sites is low. The two species are sympatric, but not closely related, so the similarities in innate behaviors suggest common adaptations, not phylogenetic relationship. Atlantic sturgeon migrated downstream for 12 days (peak, first 6 days), shortnose sturgeon migrated for 3 days, and year-0 juveniles of both species did not resume downstream migration. Short or long migrations of larvae may reflect different styles related to the total migratory distance from spawning sites to juvenile rearing areas. Atlantic sturgeon need to move a short distance to reach rearing areas and they had a long 1-step migration of 6–12 days. In contrast, shortnose sturgeon need to move a long distance to reach all rearing areas. This may be accomplished by a 2-step migration, of which the brief migration of larvae is only the first step. Early migrant Atlantic sturgeon were nocturnal, while late migrants were diurnal, and shortnose sturgeon were diurnal. These diel differences may also be adaptations for long (Atlantic sturgeon) or short (shortnose sturgeon) migrations. Cultured shortnose sturgeon, and possibly Atlantic sturgeon, have a dominance hierarchy with large fish dominant when competing for limited foraging space. Social behavior may be more important in the life history of wild sturgeons than is generally recognized.  相似文献   

9.
The Chinese sturgeon, Acipenser sinensis, is an anadromous protected species that presently only spawns in the Yangtze River. Using laboratory experiments, we examined the behavioral preference of young Chinese sturgeon to physical habitat (water depth, illumination intensity, substrate color, and cover) and monitored their downstream migration. Hatchling free embryos were photopositive, preferred open habitat, and immediately upon hatching, swam far above the bottom using swim-up and drift. Downstream migration peaked on days 0–1, decreased about 50% or more during days 2–7, and ceased by day 8. Days 0–1 migrants were active both day and night, but days 2–7 migrants were most active during the day. After ceasing migration, days 8–11 embryos were photonegative, preferred dark substrate and sought cover. Free embryos developed into larvae and began feeding on day 12, when another shift in behavior occurred–larvae returned to photopositive behavior and preferred white substrate. The selective factor favoring migration of free embryos upon hatching and swimming far above the bottom may be avoidance of benthic predatory fishes. Free embryos, which must rely on yolk energy for activity and growth, only used 19 cumulative temperature degree-days for peak migration compared to 234 degree-days for growth to first feeding larvae, a 1:12 ratio of cumulative temperature units. This ratio suggests that sturgeon species with large migratory embryos, like Chinese sturgeon, which require a high level of energy to swim during migration, may migrate only a short time to conserve most yolk energy for growth.  相似文献   

10.
Dabry's sturgeon, Acipenser dabryanus, is a relatively small (130 cm, 16 kg) and now rare sturgeon restricted to the Yangtze River Basin. It behaves as a resident freshwater fish, does not undertake long distance migrations (except for spawning), and lives in a variety of habitats. It historically spawned in the upper Yangtze River, but the spawning sites are unknown. Acipenser dabryanus reaches maturity earlier than do other Chinese sturgeons, which gives the species aquaculture potential, and artificial spawning has been carried out. However, the native population in the Yangtze has sharply declined in the last two decades due to overfishing, pollution and habitat alteration and destruction, especially since the construction of the Gezhouba Dam, which was built in 1981 across the Yangtze River at Yichang, Hubei Province. Since 1981, Dabry's sturgeon rarely occurs below the Gezhouba Dam because downstream movements are blocked. Clearly, conservation of Dabry's sturgeon must be emphasized. Conservation methods may include protecting habitats, controlling capture and stock replenishment.  相似文献   

11.
This study reports the only direct evidence of spawning of green sturgeon, Acipenser medirostris, in the upper Sacramento River, CA. Two green sturgeon eggs were collected with substrate mats immediately below Red Bluff Diversion Dam. One green sturgeon larva was collected with a larval net at Bend Bridge. We concluded that green sturgeon spawn in the upper Sacramento River, both above and below RBDD. Temperature ranges in the study area (10–15°C) are similar to conditions used in successful artificial rearing of green sturgeon and do not appear to be a limiting factor to successful spawning of green sturgeon; however, suitable habitat upstream of RBDD is inaccessible when dam gates are lowered.  相似文献   

12.
Migration of green sturgeon, Acipenser medirostris, in the Sacramento River   总被引:1,自引:0,他引:1  
Adult green sturgeon, Acipenser medirostris, were collected in San Pablo Bay, California, and surgically implanted with ultrasonic acoustic tags from 2004 to 2006. An array of automated acoustic monitors was maintained in the Sacramento River to record movements of these fish. We presumed movements to known spawning areas (based on previous green sturgeon egg collections) or areas with potential spawning habitat (characterized by substrate, flow, and temperature criteria) represented a “spawning migration.” Three separate annual “spawning migrations” were recorded involving 15 individuals. The majority of the Sacramento River migrants entered the system in the months of March and April. Two different patterns of “spawning migration” and out-migration were observed. Six individuals potentially spawned, over-summered and moved out of the river with the first fall flow event. This is believed to be the common behavior of the green sturgeon. Alternatively, nine individuals promptly moved out of the Sacramento River before 1 September, and any known flow or temperature cue. Some green sturgeon appeared to be impeded on their upstream movement by the 15 May closure of the Red Bluff Diversion Dam, and at least five passed under the dam gates during downstream migration. A delay in the closure of the Red Bluff Diversion Dam would likely allow upstream passage of spawning green sturgeon, further, the potential mortality affects of downstream passage beneath the Red Bluff Diversion Dam should be assessed. Specific protection should be also given to the large aggregation of green sturgeon located in the reach of the Sacramento River adjacent to the Glen Colusa Irrigation District pumping facility.  相似文献   

13.
Lake sturgeon (Acipenser fulvescens) have experienced significant habitat loss, resulting in reduced population sizes. Three artificial reefs were built in the Huron‐Erie corridor in the Great Lakes to replace lost spawning habitat. Genetic data were collected to determine the source and numbers of adult lake sturgeon spawning on the reefs and to determine if the founder effect resulted in reduced genetic diversity. DNA was extracted from larval tail clips and 12 microsatellite loci were amplified. Larval genotypes were then compared to 22 previously studied spawning lake sturgeon populations in the Great Lakes to determine the source of the parental population. The effective number of breeders (Nb) was calculated for each reef cohort. The larval genotypes were then compared to the source population to determine if there were any losses in genetic diversity that are indicative of the founder effect. The St. Clair and Detroit River adult populations were found to be the source parental population for the larvae collected on all three artificial reefs. There were large numbers of contributing adults relative to the number of sampled larvae. There was no significant difference between levels of genetic diversity in the source population and larval samples from the artificial reefs; however, there is some evidence for a genetic bottleneck in the reef populations likely due to the founder effect. Habitat restoration in the Huron‐Erie corridor is likely resulting in increased habitat for the large lake sturgeon population in the system and in maintenance of the population's genetic diversity.  相似文献   

14.
The reproductive biology ofBarbus holubi, B. kimberleyensis, Labeo capensis andL. umbratus was examined in a large reservoir on the Orange River, South Africa. The findings are integrated into the existing knowledge on largeBarbus andLabeo species, which coexist in most river systems in Africa and Asia.LargeBarbus spawn on gravel beds within the river channel during floods in spring or summer. In continuously flowing regulated rivers, time of spawning is governed by water temperatures. They have moderate fecundity; large eggs, incubation time of several days and the larvae are initially immobile with large yolk sacs. In the impoundment, they spawn in the inflowing regulated river withB. kimberleyensis spawning four to six weeks later than the more cold-tolerantB. holubi, the dominant largeBarbus. Survival is generally good and the juveniles disperse throughout the lake, but unseasonal release of cold water from an upstream impoundment may cause poor reproductive success.In contrast,Labeo species generally spawn on newly flooded ground, usually leaving the main river channel. Spawning may or may not be preceded by a longitudinal migration. Labeos are relatively fecund with small (30%Barbus size) eggs which hatch quickly and the larvae swim in bursts up into the water column before sinking down again.L. capensis does not require a longitudinal spawning migration and breeds throughout the lake, depending on local conditions. Large temporal variation in gonadal development within the population can result in more than one spawning. Dispersal within the lake is poor.L. umbratus uses larger inflowing tributaries for spawning thanL. capensis and its juveniles have a much greater power of dispersal. Early dependence on external feeding and undependable occurrence of conditions for spawning and juvenile feeding makes for variable reproductive success.  相似文献   

15.
The Kootenai River white sturgeon Acipenser transmontanus population in Idaho, US and British Columbia (BC), Canada became recruitment limited shortly after Libby Dam became fully operational on the Kootenai River, Montana, USA in 1974. In the USA the species was listed under the Endangered Species Act in September of 1994. Kootenai River white sturgeon spawn within an 18‐km reach in Idaho, river kilometer (rkm) 228.0–246.0. Each autumn and spring Kootenai River white sturgeon follow a ‘short two‐step’ migration from the lower river and Kootenay Lake, BC, to staging reaches downstream of Bonners Ferry, Idaho. Initially, augmented spring flows for white sturgeon spawning were thought to be sufficient to recover the population. Spring discharge mitigation enhanced white sturgeon spawning but a series of research investigations determined that the white sturgeon were spawning over unsuitable incubation and rearing habitat (sand) and that survival of eggs and larvae was negligible. It was not known whether post‐Libby Dam management had changed the habitat or if the white sturgeon were not returning to more suitable spawning substrates farther upstream. Fisheries and hydrology researchers made a team effort to determine if the spawning habitat had been changed by Libby Dam operations. Researchers modeled and compared velocities, sediment transport, and bathymetry with post‐Libby Dam white sturgeon egg collection locations. Substrate coring studies confirmed cobbles and gravel substrates in most of the spawning locations but that they were buried under a meter or more of post‐Libby Dam sediment. Analysis suggested that Kootenai River white sturgeon spawn in areas of highest available velocity and depths over a range of flows. Regardless of the discharge, the locations of accelerating velocities and maximum depth do not change and spawning locations remain consistent. Kootenai River white sturgeon are likely spawning in the same locations as pre‐dam, but post‐Libby Dam water management has reduced velocities and shear stress, thus sediment is now covering the cobbles and gravels. Although higher discharges will likely provide more suitable spawning and rearing conditions, this would be socially and politically unacceptable because it would bring the river elevation to or in excess of 537.66 m, which is flood stage. Thus, support should be given to habitat modifications incorporated into a management plan to restore suitable habitat and ensure better survival of eggs and larvae.  相似文献   

16.
The Hudson River estuary supports substantial number of Atlantic sturgeon, Acipenser oxyrinchus, and shortnose sturgeon, Acipenser brevirostrum. Both species have complex life cycles that have been studied sporadically in the past 50 years. The life cycle of the shortnose sturgeon may be divided into four life intervals: non-spawning adults, spawning adults, eggs and larvae, and juveniles. The life cycle of the Atlantic sturgeon is reviewed in six intervals: non-spawning adults, female spawners, male spawners, eggs and larvae, early juveniles, and late juveniles. Both species are long-lived, mature at advanced age, have rapid and similar growth during the first few years of life, feed on generally similar taxa, use deep channel habitats for all life intervals, and have complex migratory patterns with distinct, seasonal, concentration areas. Atlantic and shortnose sturgeons differ, however, in ages and sizes at maturity, maximum size, timing and location of spawning, migratory behaviors, and management. Use of marine habitats and long-distance coastal migrations are restricted to Atlantic sturgeon, but some evidence indicates that large Atlantic sturgeon juveniles reside in riverine habitats along the Atlantic coast during warm months. Movements and habitat use by both sturgeons in the Hudson River estuary contrasts with the spatial segregation of the species reported in other river systems. Juvenile shortnose sturgeon and early juvenile Atlantic sturgeon have almost the same distributions in the Hudson River estuary during all seasons. During this period of co-occurrence, both species are very similar in size, grow at about the same rate, feed on similar foods, and share deep, channel habitats. Adult shortnose sturgeon distribution overlaps with the distribution of juvenile Atlantic sturgeon, and the latter commence river emigration at a size comparable to co-occurring adult shortnose sturgeon. Life history information on the Hudson River sturgeons substantiates the need to carefully conserve these species because of vulnerability to exploitation and habitat disruption.  相似文献   

17.
Knowledge of the effects of environment and genotype on behavior during early ontogenetic stages of many fish species including lake sturgeon (Acipenser fulvescens) is generally lacking. Understanding these effects is particularly important at a time when human activities are fundamentally altering habitats and seasonal and diel physical and biotic stream features. Artificial stream channels were used in a controlled experiment to quantify lake sturgeon yolk‐sac larvae dispersal distance and stream substrate preference from different females (N = 2) whose eggs were incubated at different temperatures (10 and 18°C) that simulated stream conditions during early and late spawning and incubation periods in the Black River, Michigan. Data revealed that yolk‐sac larvae exhibited considerable variability in dispersal distance as a function of family (genotype), temperature experienced during previous (embryonic) ontogenetic stages, and environmental ‘grain’. Yolk‐sac larvae dispersal distance varied as a function of the juxtaposition of substrate to location of egg hatch. Lake sturgeon yolk‐sac larvae dispersed from mesh screens attached to bricks and settled exclusively in gravel substrate. Dispersal distance also varied as a function of family and egg incubation temperatures, reflecting differences in offspring body size and levels of endogenous yolk reserves (yolk sac area) at hatch. Expression of plasticity in dispersal behavior may be particularly important to individual survival and population levels of recruitment contingent upon the location, size, and degree of fragmentation of suitable (gravel) habitats between adult spawning and yolk‐sac larvae rearing areas.  相似文献   

18.
The state of natural spawning of sturgeons in the Lower Volga River was investigated through genetic monitoring of juveniles (larvae, fingerlings, subadults) captured at seven traditionally used monitoring locations. Sampling was performed during the period 2017–2019. In total, 460 individuals were caught and genotyped using a set of six microsatellite loci (Afug41, Afug51, Afug135, An20, AoxD161, AoxD165) and mtDNA control region sequencing. The observed species-specific microsatellite alleles revealed the presence of juvenile sturgeons originating from natural spawning also included some hybrids between Acipenser stellatus and A. ruthenus. Thus, the majority of sterlet breeding takes place in natural spawning grounds but also sterlet hybridizes with a small number of stellate sturgeons. Juveniles of other sturgeon species were not identified, and it is concluded that natural spawning activities of Russian sturgeon, beluga and ship sturgeon were insignificant or even absent in the Lower Volga during the observation period.  相似文献   

19.
Acipenseriformes (sturgeons and paddlefish) globally have declined throughout their range due to river fragmentation, habitat loss, overfishing, and degradation of water quality. In North America, pallid sturgeon (Scaphirhynchus albus) populations have experienced poor to no recruitment, or substantial levels of hybridization with the closely related shovelnose sturgeon (S. platorynchus). The Lower Missouri River is the only portion of the species’ range where successful reproduction and recruitment of genetically pure pallid sturgeon have been documented. This paper documents spawning habitat and behavior on the Lower Missouri River, which comprises over 1,300 km of unfragmented river habitat. The objective of this study was to determine spawning locations and describe habitat characteristics and environmental conditions (depth, water velocity, substrate, discharge, temperature, and turbidity) on the Lower Missouri River. We measured habitat characteristics for spawning events of ten telemetry-tagged female pallid sturgeon from 2008–2013 that occurred in discrete reaches distributed over hundreds of kilometers. These results show pallid sturgeon select deep and fast areas in or near the navigation channel along outside revetted banks for spawning. These habitats are deeper and faster than nearby river habitats within the surrounding river reach. Spawning patches have a mean depth of 6.6 m and a mean depth-averaged water-column velocity of 1.4 m per second. Substrates in spawning patches consist of coarse bank revetment, gravel, sand, and bedrock. Results indicate habitat used by pallid sturgeon for spawning is more common and widespread in the present-day channelized Lower Missouri River relative to the sparse and disperse coarse substrates available prior to channelization. Understanding the spawning habitats currently utilized on the Lower Missouri River and if they are functioning properly is important for improving habitat remediation measures aimed at increasing reproductive success. Recovery efforts for pallid sturgeon on the Missouri River, if successful, can provide guidance to sturgeon recovery on other river systems; particularly large, regulated, and channelized rivers.  相似文献   

20.
Chinese sturgeon (Acipenser sinensis) is a protected anadromous fish species. The migration pattern of the fish has been blocked by the construction of Gezhouba Dam, reducing the natural spawning site length to less than 7 km along the Yangtze River. However, the fish has since established an alternative spawning ground in the narrow reach downstream of Gezhouba Dam. To enhance navigation, a Separation Levee Project (SLP) was implemented in the new-found spawning habitat of the fish. To therefore evaluate the effect of the SLP on Chinese sturgeon spawning habitat suitability, the conditions in the spawning habitat were simulated using River2D (a two-dimensional hydrodynamic model). Two main approaches (habitat kinetic energy and circulation metrics) were used in the simulation. The study showed that SLP only slightly changed the physical conditions in the spawning habitat. Using hydrodynamic simulation, the weighted usable area (WUA) before and after the SLP construction was also computed and habitat preference curve developed for water depth and velocity. On the average, SLP reduced WUA—a finding that was consistent with field-measured data. Based on WUA, the habitat conditions were more sensitive to SLP proximity than metrics based on velocity gradients. SLP posed detrimental impacts on the suitability of spawning habitats of Chinese sturgeon. The findings in this study provide further basis for the protection and restoration of Chinese sturgeon spawning habitats in especially the lower reach of Yangtze River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号