首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The regulation of prostaglandin stimulated cAMP accumulation in cells of the human T-cell leukemia line Jurkat was examined. Pretreatment with PGE2 (0.1-10 nM) for 2 hour caused a concentration dependent desensitization of the prostaglandin receptor. Tumor promoting phorbol esters (1-1000 nM) could also inhibit PGE2 stimulated cAMP production dose dependently. Inhibition of tubulin polymerization with colchicine or nocodazole (1 microM) eliminated prostaglandin but not phorbol ester induced desensitization of the receptor. It is concluded that agonist and phorbol ester induced desensitization are mediated by two distinct mechanisms and that tubulin polymerization appear to be required only for agonist induced desensitization of the prostaglandin receptor.  相似文献   

3.
The expression of cyclooxygenase-2 (COX-2) and the synthesis of prostaglandin E2 (PGE2) as well as of cytokines such as interleukin-6 (IL-6) have all been suggested to propagate neuropathology in different brain disorders such as HIV-dementia, prion diseases, stroke and Alzheimer's disease. In this report, we show that PGE2-stimulated IL-6 release in U373 MG human astroglioma cells and primary rat astrocytes. PGE2-induced intracellular cAMP formation was mediated via prostaglandin E receptor 2 (EP2), but inhibition of cAMP formation and protein kinase A or blockade of EP1/EP2 receptors did not affect PGE2-induced IL-6 synthesis. This indicates that the cAMP pathway is not part of PGE2-induced signal transduction cascade leading to IL-6 release. The EP3/EP1-receptor agonist sulprostone failed to induce IL-6 release, suggesting an involvement of EP4-like receptors. PGE2-activated p38 mitogen-activated kinase (p38 MAPK) and protein kinase C (PKC). PGE2-induced IL-6 synthesis was inhibited by specific inhibitors of p38 MAPK (SB202190) and PKC (GF203190X). Although, up to now, EP receptors have only rarely been linked to p38 MAPK or PKC activation, these results suggest that PGE2 induces IL-6 via an EP4-like receptor by the activation of PKC and p38 MAPK via an EP4-like receptor independently of cAMP.  相似文献   

4.
Although G protein-coupled receptor (GPCR) kinases (GRKs) have been shown to mediate desensitization of numerous GPCRs in studies using cellular expression systems, their function under physiological conditions is less well understood. In the current study, we employed various strategies to assess the effect of inhibiting endogenous GRK2/3 on signaling and function of endogenously expressed G s-coupled receptors in human airway smooth muscle (ASM) cells. GRK2/3 inhibition by expression of a Gbetagamma sequestrant, a GRK2/3 dominant-negative mutant, or siRNA-mediated knockdown increased intracellular cAMP accumulation mediated via beta-agonist stimulation of the beta-2-adrenergic receptor (beta 2AR). Conversely, neither 5'-( N-ethylcarboxamido)-adenosine (NECA; activating the A2b adenosine receptor) nor prostaglandin E2 (PGE 2; activating EP2 or EP4 receptors)-stimulated cAMP was significantly increased by GRK2/3 inhibition. Selective knockdown using siRNA suggested the majority of PGE 2-stimulated cAMP in ASM was mediated by the EP2 receptor. Although a minor role for EP3 receptors in influencing PGE 2-mediated cAMP was determined, the GRK2/3-resistant nature of EP2 receptor signaling in ASM was confirmed using the EP2-selective agonist butaprost. Somewhat surprisingly, GRK2/3 inhibition did not augment the inhibitory effect of the beta-agonist on mitogen-stimulated increases in ASM growth. These findings demonstrate that with respect to G s-coupled receptors in ASM, GRK2/3 selectively attenuates beta 2AR signaling, yet relief of GRK2/3-dependent beta 2AR desensitization does not influence at least one important physiological function of the receptor.  相似文献   

5.
6.
We previously demonstrated that the activation of prostaglandin E-prostanoid-3 (EP3) receptor sensitized the canine nociceptor response to bradykinin (BK). To elucidate the molecular mechanism for this sensitization, we cloned two cDNAs encoding EP3s with different C-terminals, from canine dorsal root ganglia, and established the transformed cell lines stably expressing them. In both transformants, EP3 agonist did not increase intracellular cAMP levels, but it attenuated forskolin-dependent cAMP accumulation in a pertussis toxin (PTX)-sensitive manner and increased intracellular calcium levels in a PTX-resistant manner, indicating that both EP3s can couple with Gi and Gq, but not with Gs proteins. As the nociceptor response to BK is mediated by BK B2 receptor, it was transfected into the transformants and the effects of EP3 agonist on BK-dependent calcium mobilization were investigated. When BK was applied twice with a 6-min interval, the second response was markedly attenuated. Pre-treatment with EP3 agonist had no effect on the initial response, but restored the second response in a PTX-sensitive manner. A protein kinase A inhibitor mimicked the effect of EP3 agonist. These results demonstrate that the activation of EP3 restores the response to BK by attenuating the desensitization of BK B2 receptor activity via Gi protein.  相似文献   

7.
Human secretin receptor is a G protein-coupled receptor that is functionally linked to the cAMP second messenger system by stimulation of adenylate cyclase. To functionally characterize the receptor and evaluate its signal transduction pathway, the full-length human secretin receptor cDNA was subcloned into the mammalian expression vector pRc/CMV and expressed in cultured CHO cells. Intracellular cAMP accumulation of the stably transfected cells was measured by a radioimmunoassay (RIA), while the extracellular acidification rate was measured by the Cytosensor microphysiometer. Human secretin and biotinylated human secretin were equipotent in both assays in a dose-dependent manner. The EC50 values of stimulating the intracellular cAMP accumulation and the extracellular acidification rate were 0.2-0.5 nM and 0.1 nM, respectively, indicating that microphysiometry is more sensitive than the cAMP assay in monitoring ligand stimulation of the human secretin receptor. The secretin-stimulated response could be mimicked by forskolin and augmented by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, indicating that the extracellular acidification response is positively correlated with intracellular cAMP level. The response could be abolished by the protein kinase A inhibitor H-89, suggesting that protein kinase A plays an essential role in the intracellular signaling of the receptor. Upon repeated stimulation by the ligand, the peak acidification responses did not change significantly at both physiological (0.03 nM and 3 nM) and pharmacological (0.3 microM) concentrations of human secretin, suggesting that the human secretin receptor did not exhibit robust homologous desensitization.  相似文献   

8.
9.
Wild-type (WT) Rat-1 fibroblasts express undetectable quantities of the prostaglandin E(2) (PGE(2)) EP1, EP2, and EP3 receptor types and detectable amounts of the EP4 receptor. In the WT Rat-1, PGE(2) enhances connective tissue growth factor (CTGF) mRNA. PGE(2) does not stimulate cAMP production in these cells. However, forskolin induces cAMP production and ablates TGF beta-stimulated increases in CTGF mRNA. A similar pattern of CTGF expression in response to PGE(2) and forskolin is observed in neonatal rat primary smooth muscle cell cultures. When WT Rat-1 cells are stably transfected with the EP2 receptor, PGE(2) causes a sizable elevation in intracellular cAMP and ablates the TGF beta-stimulated increase in CTGF mRNA. PGE(2) does not have this effect on cells expressing the EP1, EP3, or EP4 receptor subtypes. These results demonstrate the importance of the EP2 receptor and cAMP in the inhibition of TGF beta-stimulated CTGF production and suggest a role for PGE(2) in increasing CTGF mRNA levels in the absence of the EP2 receptor. Involvement of inositol phosphate in this upregulation of CTGF expression by PGE(2) is doubtful. None of the cell lines containing the four EP transfectants nor the WT Rat-1 cells responded to PGE(2) with inositol phosphate production.  相似文献   

10.
The purpose of these studies was to investigate the pharmacology of E-series and selected prostaglandins of other classes on adenylyl cyclase activity in Chinese hamster ovary (CHO) cells expressing an endogenous prostanoid receptor and to compare these responses with those from immortalized human non-pigmented ciliary epithelial (NPE) cells containing the EP2 receptor. 11-deoxy-PGE2 was the most potent of the 16 prostanoid agonists tested for stimulating cAMP formation with a potency (EC50) value of 26 +/- 6 nM in the CHO cells. The endogenous ligand, PGE2, exhibited potencies of 40 +/- 7 nM (n = 24) in the CHO cells and 67 +/- 9 nM (n = 46) in the NPE cells. The EP2 receptor agonist, butaprost, produced an EC50 value of 212 +/- 58 nM (n = 4) in the NPE cells while being inactive (EC50 > 10,000 nM, n = 6) in the CHO cells. The EP4 receptor selective antagonists, AH22921 and AH23848B, at a concentration of 30 microM, caused a 2.2 +/- 0.5 (n = 4) and 8.2 +/- 2.7 (n = 4) fold rightward shift in the PGE2 concentration-response curves in the CHO cells, yielding apparent pKb values of 4.6 +/- 0.6 and 5.3 +/- 0.2 (n = 4), respectively. AH22921 and AH23848B were non-competitive antagonists at the CHO cell EP4 receptor, but did not shift the PGE2 concentration-response curves in the NPE cells containing the EP2 receptor. These studies have characterized the functional prostaglandin receptors in CHO cells pharmacologically and shown them to be consistent with the EP4 subtype.  相似文献   

11.
Lubiprostone, a bicyclic fatty acid derivative and member of a new class of compounds called prostones, locally activates ClC-2 Cl(-) channels without activation of prostaglandin receptors. The present study was specifically designed to test and compare lubiprostone and prostaglandin effects at the cellular level using human uterine smooth muscle cells. Effects on [Ca(2+)](i), membrane potential and [cAMP](i) in human uterine smooth muscle cells were measured. 10 nM lubiprostone significantly decreased [Ca(2+)](i) from 188 to 27 nM, which was unaffected by 100 nM SC-51322, a prostaglandin EP receptor antagonist. In contrast 10nM PGE(2) and PGE(1) both increased [Ca(2+)](i) 3-5-fold which was blocked by SC-51322. Similarly, lubiprostone and prostaglandins had opposite/different effects on membrane potential and [cAMP](i). Lubiprostone caused SC-51322-insensitive membrane hyperpolarization and no effect on [cAMP](i). PGE(2) and PGE(1) both caused SC-51322-sensitive membrane depolarization and increased [cAMP](i). Lubiprostone has fundamentally different cellular effects from prostaglandins that are not mediated by EP receptors.  相似文献   

12.
13.
Osteocytes embedded in the matrix of bone are thought to be mechanosensory cells that translate mechanical strain into biochemical signals that regulate bone modeling and remodeling. We have shown previously that fluid flow shear stress dramatically induces prostaglandin release and COX-2 mRNA expression in osteocyte-like MLO-Y4 cells, and that prostaglandin E2 (PGE2) released by these cells functions in an autocrine manner to regulate gap junction function and connexin 43 (Cx43) expression. Here we show that fluid flow regulates gap junctions through the PGE2 receptor EP2 activation of cAMP-dependent protein kinase A (PKA) signaling. The expression of the EP2 receptor, but not the subtypes EP1,EP3, and EP4, increased in response to fluid flow. Application of PGE2 or conditioned medium from fluid flow-treated cells to non-stressed MLO-Y4 cells increased expression of the EP2 receptor. The EP2 receptor antagonist, AH6809, suppressed the stimulatory effects of PGE2 and fluid flow-conditioned medium on the expression of the EP2 receptor, on Cx43 protein expression, and on gap junction-mediated intercellular coupling. In contrast, the EP2 receptor agonist butaprost, not the E1/E3 receptor agonist sulprostone, stimulated the expression of Cx43 and gap junction function. Fluid flow conditioned medium and PGE2 stimulated cAMP production and PKA activity suggesting that PGE2 released by mechanically stimulated cells is responsible for the activation of cAMP and PKA. The adenylate cyclase activators, forskolin and 8-bromo-cAMP, enhanced intercellular connectivity, the number of functional gap junctions, and Cx43 protein expression, whereas the PKA inhibitor, H89, inhibited the stimulatory effect of PGE2 on gap junctions. These studies suggest that the EP2 receptor mediates the effects of autocrine PGE2 on the osteocyte gap junction in response to fluid flow-induced shear stress. These data support the hypothesis that the EP2 receptor, cAMP, and PKA are critical components of the signaling cascade between mechanical strain and gap junction-mediated communication between osteocytes.  相似文献   

14.
Activation of the prostaglandin E(2) (PGE(2)) EP(4) receptor, a G-protein-coupled receptor (GPCR), results in increases in intracellular cyclic AMP (cAMP) levels via stimulation of adenylate cyclase. Here we describe the in vitro pharmacological characterization of a novel EP(4) receptor antagonist, CJ-042794 (4-{(1S)-1-[({5-chloro-2-[(4-fluorophenyl)oxy]phenyl}carbonyl)amino]ethyl}benzoic acid). CJ-042794 inhibited [(3)H]-PGE(2) binding to the human EP(4) receptor with a mean pK(i) of 8.5, a binding affinity that was at least 200-fold more selective for the human EP(4) receptor than other human EP receptor subtypes (EP(1), EP(2), and EP(3)). CJ-042794 did not exhibit any remarkable binding to 65 additional proteins, including GPCRs, enzymes, and ion channels, suggesting that CJ-042794 is highly selective for the EP(4) receptor. CJ-042794 competitively inhibited PGE(2)-evoked elevations of intracellular cAMP levels in HEK293 cells overexpressing human EP(4) receptor with a mean pA(2) value of 8.6. PGE(2) inhibited the lipopolysaccharide (LPS)-induced production of tumor necrosis factor alpha (TNFalpha) in human whole blood (HWB); CJ-042794 reversed the inhibitory effects of PGE(2) on LPS-induced TNFalpha production in a concentration-dependent manner. These results suggest that CJ-042794, a novel, potent, and selective EP(4) receptor antagonist, has excellent pharmacological properties that make it a useful tool for exploring the physiological role of EP(4) receptors.  相似文献   

15.
When murine peritoneal macrophages were stimulated for 30 min with arachidonic acid, the growth-associated immediate early gene c-fos was induced in a concentration-dependent manner as assessed by Northern blot analysis. The arachidonic acid-induced c-fos mRNA expression was inhibited by a cyclooxygenase inhibitor, indomethacin, but not by a lipoxygenase inhibitor, nordihydroguaiaretic acid. Macrophages produced prostaglandin (PG) E(2) from arachidonic acid as determined by an enzyme immunoassay. Northern blot analysis revealed the expression of PGE receptor EP2 and EP4 subtypes, but not EP1 and EP3 in murine macrophages. PGE(2) brought about a marked elevation of cAMP, and c-fos mRNA expression was increased by PGE(2) and dibutyryl cAMP in these cells. These results suggest that arachidonic acid is transformed to PGE(2), which then binds to EP2 and EP4 receptors to increase intracellular cAMP and c-fos mRNA expression. Furthermore, the induction of c-fos by arachidonic acid, PGE(2), and cAMP was suppressed by pretreatment with interleukin (IL)-4. We also showed that the tyrosine phosphorylation of a Janus kinase, JAK3, is enhanced by IL-4 treatment, suggesting that the PGE(2)-mediated c-fos mRNA induction is inhibited by IL-4 through the tyrosine phosphorylation of JAK3.  相似文献   

16.
Bone marrow stromal cells regulate marrow haematopoiesis by secreting growth factors such as macrophage colony stimulating factor (M-CSF) that regulates the proliferation, differentiation and several functions of cells of the mononuclear-phagocytic lineage. By using a specific ELISA we found that their constitutive secretion of M-CSF is enhanced by tumour necrosis factor-alpha (TNF-alpha). The lipid mediator prostaglandin E2 (PGE2) markedly reduces in a time- and dose-dependent manner the constitutive and TNF-alpha-induced M-CSF synthesis by bone marrow stromal cells. In contrast, other lipid mediators such as 12-HETE, 15-HETE, leukotriene B4, leukotriene C4 and lipoxin A4 have no effect. EP2/EP4 selective agonists (11-deoxy PGE1 and 1-OH PGE1) and EP2 agonist (19-OH PGE2) inhibit M-CSF synthesis by bone marrow stromal cells while an EP1/EP3 agonist (sulprostone) has no effect. Stimulation with PGE2 induces an increase of intracellular cAMP levels in bone marrow stromal cells. cAMP elevating agents (forskolin and cholera toxin) mimic the PGE2-induced inhibition of M-CSF production. In conclusion, PGE2 is a potent regulator of M-CSF production by human bone marrow stromal cells, its effects being mediated via cAMP and PGE receptor EP2/EP4 subtypes.  相似文献   

17.
A functional cDNA clone for mouse EP3 subtype of prostaglandin (PG) E receptor was isolated from a mouse cDNA library using polymerase chain reaction based on the sequence of the human thromboxane A2 receptor and cross-hybridization screening. The mouse EP3 receptor consists of 365 amino acid residues with putative seven-transmembrane domains. The sequence revealed significant homology to the human thromboxane A2 receptor. Ligand binding studies using membranes of COS cells transfected with the cDNA revealed specific [3H]PGE2 binding. The binding was displaced with unlabeled PGs in the order of PGE2 = PGE1 greater than iloprost greater than PGF2 alpha greater than PGD2. The EP3-selective agonists, M&B 28,767 or GR 63799X, potently competed for the [3H]PGE2 binding, but no competition was found with EP1- or EP2-selective ligands. PGE2 and M&B 28,767 decreased forskolin-induced cAMP formation in a concentration-dependent manner in Chinese hamster ovary cells permanently expressing the cDNA. Northern blot analysis demonstrated that the EP3 mRNA is expressed abundantly in kidney, uterus, and mastocytoma P-815 cells and in a lesser amount in brain, thymus, lung, heart, stomach, and spleen.  相似文献   

18.
Upon induction of cyclooxygenase-2 (COX-2), neonatal ventricular myocytes (VMs) mainly synthesize prostaglandin E2 (PGE2). The biological effects of PGE2 are mediated through four different G protein-coupled receptor (GPCR) subtypes (EP(1-4)). We have previously shown that PGE2 stimulates cAMP production and induces hypertrophy of VMs. Because the EP4 receptor is coupled to adenylate cyclase and increases in cAMP, we hypothesized that PGE2 induces hypertrophic growth of cardiac myocytes through a signaling cascade that involves EP4-cAMP and activation of protein kinase A (PKA). To test this, we used primary cultures of VMs and measured [3H]leucine incorporation into total protein. An EP4 antagonist was able to partially block PGE2 induction of protein synthesis and prevent PGE2-dependent increases in cell surface area and activity of the atrial natriuretic factor promoter, which are two other indicators of hypertrophic growth. Surprisingly, a PKA inhibitor had no effect. In other cell types, G protein-coupled receptor activation has been shown to transactivate the epidermal growth factor receptor (EGFR) and result in p42/44 mitogen-activated protein kinase (MAPK) activation and cell growth. Immunoprecipitation of myocyte lysates demonstrated that the EGFR was rapidly phosphorylated by PGE2 in VMs, and the EP4 antagonist blocked this. In addition, the selective EGFR inhibitor AG-1478 completely blocked PGE2-induced protein synthesis. We also found that PGE2 rapidly phosphorylated p42/44 MAPK, which was inhibited by the EP4 antagonist and by AG-1478. Finally, the p42/44 MAPK inhibitor PD-98053 (25 micromol/l) blocked PGE2-induced protein synthesis. Altogether, we believe these are the first data to suggest that PGE2 induces protein synthesis in cardiac myocytes in part via activation of the EP4 receptor and subsequent activation of p42/44 MAPK. Activation of p42/44 MAPK is independent of the common cAMP-PKA pathway and involves EP4-dependent transactivation of EGFR.  相似文献   

19.
Assessing the regulation of macrophage receptors for prostaglandin (PGE2) is essential to understanding the control which that potent lipid mediator has in modulating macrophage activities. The purpose of this study was to assess the differential mRNA expression of PGE2 receptor subtypes (EP) during macrophage exposure to activating and transducing agents. RAW 264.7 macrophages constitutively expressed mRNA for EP2,EP3 and EP4 receptor subtypes. Messenger RNA for EP4 was expressed at a much higher level when compared to EP2 in unstimulated macrophages as assessed by kinetic quantitative RT-PCR. When macrophages were stimulated with LPS, EP2 m RNA levels were 12-fold higher when compared to unstimulated macrophages, while EP4 m RNA remained unchanged. Conversely, mRNA levels of both EP2 and EP4 receptors were lower after macrophages were treated with IFN-gamma. Messenger RNA levels of both receptors were lower in macrophages after treatment with PGE2 or dibutyryl (db) cAMP Addition of the PKA inhibitor H89 reversed the effects of PGE2 and dbcAMP to varying degrees. Proteosome and p38 MAP kinase inhibitors blocked the LPS-stimulated increase in EP2 mRNA levels. Those inhibitors had no effect on EP4 mRNA.Thus, activating agents such as LPS and IFN-gamma may differentially regulate mRNAfor PGE2 receptor types in macrophages but the ligand and its associated signal transducing factors probably have similar regulatory effects.  相似文献   

20.
The prostaglandin-evoked cAMP production was studied in human neuroblastoma SK-N-BE(2)C cells during neuronal differentiation induced by all-trans retinoic acid. The incubation with 5 microM all-trans retinoic acid for 4-6 days promoted neurite outgrowth of cells. After differentiation, prostaglandin E(2) (PGE(2))-induced cAMP production was dramatically increased, whereas forskolin- and AlF-induced cAMP productions were not changed. The increase reached maximum after 4-days of incubation with all-trans retinoic acid. The differentiation caused an increase in the maximal response and a decrease in the half-maximal effective concentration of the PGE(2)-induced cAMP production. In addition, the binding of [(3)H]PGE(2) to membrane receptors was enhanced in differentiated cells. However, the order of potency of the various prostaglandins (PGE(1) = PGE(2) > PGD(2) = PGF(2alpha) = PGI(2)) in cAMP production did not change during the differentiation, suggesting that mainly E-prostanoid (EP) receptors were involved. Butaprost, an EP(2) receptor specific agonist, increased the cAMP level in a concentration dependent manner and had a similar potentiating effect on cAMP production as PGE(2) upon differentiation. Northern blot analysis using the human cDNA probes shows that the EP(2) mRNA level was about seven times higher in differentiated cells, while the dopamine beta-hydroxylase (DBH) mRNA completely disappeared. Our results, thus, suggest that elevated gene expression of the prostanoid EP(2) receptor results in an increase in the PGE(2)-evoked cAMP production in SK-N-BE(2)C cells during neuronal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号