首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we report the cellular arachidonate (AA)-releasing function of group IIF secretory phospholipase A(2) (sPLA(2)-IIF), a sPLA(2) enzyme uniquely containing a longer C-terminal extension. sPLA(2)-IIF increased spontaneous and stimulus-dependent release of AA, which was supplied to downstream cyclooxygenases and 5-lipoxygenase for eicosanoid production. sPLA(2)-IIF also enhanced interleukin 1-stimulated expression of cyclooxygenase-2 and microsomal prostaglandin E synthase. AA release by sPLA(2)-IIF was facilitated by oxidative modification of cellular membranes. Cellular actions of sPLA(2)-IIF occurred independently of the heparan sulfate proteoglycan glypican, which acts as a functional adaptor for other group II subfamily sPLA(2)s. Confocal microscopy revealed the location of sPLA(2)-IIF on the plasma membrane. The unique C-terminal extension was crucial for its plasma membrane localization and optimal cellular functions. sPLA(2)-IIF expression was increased in various tissues from lipopolysaccharide-treated mice and in ears of mice with experimental atopic dermatitis. In human rheumatoid arthritic joints, sPLA(2)-IIF was detected in synovial lining cells, capillary endothelial cells, and plasma cells. These results suggest that sPLA(2)-IIF is a potent regulator of AA metabolism and participates in the inflammatory process under certain conditions.  相似文献   

2.
3.
4.
The differential activation of different members of the phospholipase A(2) (PLA(2)) superfamily and their regulation are important as one or more of them regulates the production of eicosanoids and others may contribute to the formation of other lipid mediators. We previously reported the existence of two forms of secretory or sPLA(2) in mouse keratinocytes, namely type I and type II sPLA(2). We show here that mouse keratinocyte sPLA(2)s were potently activated by protease treatment and inhibited by protease inhibitors. We also observed that G protein effectors induced substantial release of oleic acid (OA) from prelabeled mouse keratinocytes. A G(i)/G(0) protein activator significantly enhanced the hydrolysis of OA and this increase was not responsive to either pertussis toxin or cholera toxin treatment. Although there was a significant negative correlation between intracellular cAMP levels and OA hydrolysis, experimentally increasing cAMP with forskolin treatment had no effect on sPLA(2) activity. Arachidonic acid but not its metabolites was also shown to marginally activate keratinocyte sPLA(2) by 1.5-fold. These results lead to the conclusion that mouse keratinocyte sPLA(2)s can be regulated primarily by proteolytic activation and a G protein pathway.  相似文献   

5.
This study tested the hypothesis that certain secretory phospholipase A(2) (sPLA(2)) isotypes act in a cytokine-like fashion through cell surface receptors to influence mast cell survival. Initial experiments revealed that sPLA(2) activity and sPLA(2) receptor expression are increased, and mast cells lost their capacity to maintain membrane asymmetry upon cytokine depletion. Groups IB and III, but not group IIA PLA(2), prevented the loss of membrane asymmetry. Similarly, group IB prevented nucleosomal DNA fragmentation in mast cells. Providing putative products of sPLA(2) hydrolysis to cytokine-depleted mast cells did not influence survival. Furthermore, catalytic inactivation of sPLA(2) did not alter its capacity to prevent apoptosis. Inhibition of protein synthesis using cycloheximide or actinomycin reversed the antiapoptotic effect of sPLA(2). Additionally, both wild-type and catalytically inactive group IB PLA(2) induced IL-3 synthesis in mast cells. However, adding IL-3-neutralizing Ab did not change Annexin V(FITC) binding and only partially inhibited thymidine incorporation in sPLA(2)-supplemented mast cells. In contrast, IL-3-neutralizing Ab inhibited both Annexin V(FITC) binding and thymidine incorporation in mast cells maintained with IL-3. sPLA(2) enhanced phosphoinositide 3'-kinase activity, and a specific inhibitor of phosphoinositide 3'-kinase reversed the antiapoptotic effects of sPLA(2). Likewise, sPLA(2) increased the degradation of I-kappaBalpha, and specific inhibitors of nuclear factor kappa activation (NF-kappaB) reversed the antiapoptotic effects of sPLA(2). Together, these experiments reveal that certain isotypes of sPLA(2) enhance the survival of mast cells in a cytokine-like fashion by activating antiapoptotic signaling pathways independent of IL-3 and probably via sPLA(2) receptors rather than sPLA(2) catalytic products.  相似文献   

6.
Accumulating evidence has suggested that cytosolic phospholipase A(2) (cPLA(2)) and several secretory PLA(2) (sPLA(2)) isozymes are signaling PLA(2)s that are functionally coupled with downstream cyclooxygenase (COX) isozymes for prostaglandin (PG) biosynthesis. Arachidonic acid (AA) released by cPLA(2) and sPLA(2)s is supplied to both COX-1 and COX-2 in the immediate, and predominantly to COX-2 in the delayed, PG-biosynthetic responses. Vimentin, an intermediate filament component, acts as a functional perinuclear adapter for cPLA(2), in which the C2 domain of cPLA(2) associates with the head domain of vimentin in a Ca(2+)-sensitive manner. The heparin-binding signaling sPLA(2)-IIA, IID and V bind the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan glypican, which plays a role in sorting of these isozymes into caveolae and perinuclear compartments. Phospholipid scramblase, which facilitates transbilayer movement of anionic phospholipids, renders the cellular membranes more susceptible to signaling sPLA(2)s. There is functional cooperation between cPLA(2) and signaling sPLA(2)s in that prior activation of cPLA(2) is required for the signaling sPLA(2)s to act properly. cPLA(2)-derived AA is oxidized by 12/15-lipoxygenase, the products of which not only augment the induction of sPLA(2) expression, but also cause membrane perturbation, leading to increased cellular susceptibility to the signaling sPLA(2)s. sPLA(2)-X, a heparin-non-binding sPLA(2) isozyme, is capable of releasing AA from intact cells in the absence of cofactors. This property is attributed to its ability to avidly hydrolyze zwitterionic phosphatidylcholine, a major phospholipid in the outer plasma membrane. sPLA(2)-V can also utilize this route in several cell types. Taken together, the AA-releasing function of sPLA(2)s depends on the presence of regulatory cofactors and interfacial binding to membrane phospholipids, which differ according to cell type, stimuli, secretory processes, and subcellular distributions.  相似文献   

7.
Given the potent hydrolyzing activity toward phosphatidylcholine, group X secretory phospholipase A(2) (sPLA(2)-X) elicits a marked release of arachidonic acid linked to the potent production of lipid mediators in various cell types. We have recently shown that sPLA(2)-X can also act as a ligand for mouse phospholipase A(2) receptor (PLA(2)R). Here, we found that sPLA(2)-X was internalized and degraded via binding to PLA(2)R associated with the diminished prostaglandin E(2) (PGE(2)) formation in PLA(2)R-expressing Chinese hamster ovary (CHO) cells compared to CHO cells. Indirect immunocytochemical analysis revealed that internalized sPLA(2)-X was co-localized with PLA(2)R in the punctate structures in PLA(2)R-expressing CHO cells. Moreover, in mouse osteoblastic MC3T3-E(1) cells that endogenously express the PLA(2)R, the internalized sPLA(2)-X was localized in lysosomes. These findings demonstrate that PLA(2)R acts as a clearance receptor for sPLA(2)-X to suppress its strong enzymatic activity.  相似文献   

8.
Phospholipase A(2) receptor (PLA(2)R) mediates various biological responses elicited by group IB secretory phospholipase A(2) (sPLA(2)-IB). The recently cloned group X sPLA(2) (sPLA(2)-X) possesses several structural features characteristic of sPLA(2)-IB. Here, we detected a specific binding site of sPLA(2)-X in mouse osteoblastic MC3T3-E(1) cells. Cross-linking experiments demonstrated its molecular weight (180 kDa) to be similar to that of PLA(2)R. In fact, sPLA(2)-X was found to bind the recombinant PLA(2)R expressed in COS-7 cells, and its specific binding detected in mouse lung membranes was abolished by the deficiency of PLA(2)R. These findings demonstrate sPLA(2)-X to be one of the high-affinity ligands for mouse PLA(2)R.  相似文献   

9.
Human group III secreted phospholipase A(2) (sPLA(2)-III) consists of a central group III sPLA(2) domain flanked by unique N- and C-terminal domains. We found that the sPLA(2) domain alone was sufficient for its catalytic activity and for its prostaglandin E(2) (PGE(2))-generating functions in various cell types. In several if not all cell types, the N- and C-terminal domains of sPLA(2)-III were proteolytically removed, leading to the production of the form containing only the sPLA(2) domain, which could be further N-glycosylated at two consensus sites. Immunohistochemistry demonstrated that sPLA(2)-III was preferentially expressed in the microvascular endothelium in human tissues with inflammation, ischemic injury, and cancer. In support of this, sPLA(2)-III was induced in cultured microvascular endothelial cells after stimulation with proinflammatory cytokines. Expression of sPLA(2)-III was also associated with various tumor cells, and colorectal cancer cells transfected with sPLA(2)-III exhibited enhanced PGE(2) production and cell proliferation, which required sPLA(2)-III catalytic activity. When implanted into nude mice, the sPLA(2)-III-transfected cells formed larger solid tumors with increased angiogenesis compared with control cells. Moreover, small interfering RNA for sPLA(2)-III significantly reduced PGE(2) production and proliferation of colorectal cancer cells. Taken together, these results reveal unique cell type-specific processing and N-glycosylation of sPLA(2)-III and the potential role of this enzyme in cancer development by stimulating tumor cell growth and angiogenesis.  相似文献   

10.
The immunochemical relationship between rat pancreatic phospholipase A2 and rat splenic phospholipase A2 was examined with the use of anti-rat pancreatic phospholipase A2 antibody as a probe. The immunoelectrophoretic patterns showed that the antibody cross-reacted with the splenic enzyme. The immuno-crossreactivity was also shown by counter immunoelectrophoresis. The splenic phospholipase A2, whether it was purified from the cytosolic fraction or the microsomal fraction, formed an immunoprecipitin band with the anti-pancreatic phospholipase A2 antibody. The antibody was shown to inhibit the activity of the pancreatic phospholipase A2 as well as that of the splenic phospholipase A2.  相似文献   

11.
12.
Calcium-independent phospholipase A(2): structure and function   总被引:4,自引:0,他引:4  
The classical Ca(2+)-independent phospholipase A(2) enzyme, now known as Group VIA PLA(2), was initially purified and characterized from the P388D(1) macrophage-like cell line. The corresponding cDNA was subsequently cloned from a variety of sources, and it is now known that multiple splice variants of the enzyme are expressed, some of which may act as negative regulators of the active enzyme. Group VIA PLA(2) has a consensus lipase motif (GTSTG) containing the catalytic serine, is 85-88 kDa, and exists in an aggregated form. The enzyme contains multiple ankyrin repeats, which may play a role in oligomerization. The Group VIA enzyme exhibits lysophospholipase activity as well as phospholipase A(2) activity, and it is capable of hydrolyzing a wide variety of phospholipid substrates. A major function of Group VIA PLA(2) is to mediate phospholipid remodeling, but the enzyme may play other roles as well. Other Ca(2+)-independent PLA(2) enzymes have more recently been identified, and it may be possible to discriminate between the various Ca(2+)-independent PLA(2) enzymes based on sequence or inhibitor-sensitivity. However, the physiological functions of the newly identified enzymes have yet to be elucidated.  相似文献   

13.
Expression and function of phospholipase A(2) in brain   总被引:2,自引:0,他引:2  
Phospholipase A(2) (PLA(2)) appears to play a fundamental role in cell injury in the central nervous system. We have investigated PLA(2) expression in the astrocytoma cell line 1231N1, and found that GIVA, GIVB, GIVC and GVI PLA(2) messages are expressed. PLA(2) activity is increased by inflammatory/injury stimuli such as interleukin-1beta and lipopolysaccharide in these cells but with very different time courses. The arachidonic acid liberated is converted to prostaglandin E(2), possibly by cyclooxygenase-2, which is induced by inflammatory stimuli. This cell system emerges as a model to study injury/inflammation-related activation of the new PLA(2) forms GIVB and GIVC.  相似文献   

14.
PGE2 levels are altered in human epidermisafter in vivo wounding; however, mechanisms modulatingPGE2 production in activated keratinocytes are unclear. Inprevious studies, we showed that PGE2 is a growth-promotingautacoid in human primary keratinocyte cultures, and its production ismodulated by plating density, suggesting that regulatedPGE2 synthesis is an important component of wound healing.Here, we examine the role of phospholipase A2 (PLA2) and cyclooxygenase (COX) enzymes in modulation ofPGE2 production. We report that the increasedPGE2 production that occurs in keratinocytes grown innonconfluent conditions is also observed after in vitro wounding,indicating that similar mechanisms are involved. This increase wasassociated with coordinate upregulation of both COX-2 and secretoryPLA2 (sPLA2) proteins. IncreasedsPLA2 activity was also observed. By RT-PCR, we identifiedthe presence of type IIA and type V sPLA2, along with theM-type sPLA2 receptor. Thus the coordinate expression ofsPLA2 and COX-2 may be responsible for the increasedprostaglandin synthesis in activated keratinocytes during wound repair.

  相似文献   

15.
The acidic isoform of phospholipase A(2) from Naja mossambica mossambica was activated by treatment with a molar equivalent of oleoyl imidazolide. Modification of the protein was accompanied by 50% quenching of tryptophan fluorescence and a significant red shift. The (3)H(9,10) labeled oleoyl residue was co-eluted with the enzyme during gel filtration in the presence of 20% 1-propanol or excess albumin, both of which remove free oleic acid from the enzyme. In contrast, the adduct was labile as to electrophoresis on SDS-PAGE and acid or alkali urea PAGE. The formation of a covalently linked adduct was demonstrated by electrospray mass spectrometry in the presence of 2% formic acid. No such adduct was formed by the phospholipase A(2) isoform from Naja naja atra, which differs in sequence from the N. mossambica mossambica isoform by seven residues including 2 histidine residues and 1 lysine residue. We conclude that oleoyl imidazolide activates the N. mossambica mossambica enzyme by forming an acyl adduct which is unstable as to protein denaturation. The magnitude of tryptophan fluorescence quenching indicates that the site of acylation lies in the sequence WWHF.  相似文献   

16.
Phospholipase A2 proteins are major regulators of the arachidonic acid cascade and are involved in various cellular responses. Previously, we reported that group IB PLA2 proteins stimulate MMP-2 activation and subsequent cell migration. Here, we describe a novel mechanism whereby sPLA2-induced proMMP-2 activation is regulated by intracellular cAMP in HT1080 cells, although sPLA2 itself had no effect on the regulation of cAMP levels. Exogenous dibutyryl cAMP (a cAMP analogue) strongly inhibited proMMP-2 activation, and cAMP elevating agents, namely, cholera toxin (a Gs activator) and forskolin (an adenylyl cyclase activator), abrogated basal and sPLA2-induced proMMP-2 activation. We also found that the down-regulation of TIMP-2 expression and extracellular signal-regulated kinase (ERK)1/2 activation by sPLA2 were blocked by increasing the intracellular cAMP level. Taken together, our data indicate that sPLA2-induced proMMP-2 activation is influenced by intracellular cAMP levels via the modulations of TIMP-2 expression and ERK1/2 activation.  相似文献   

17.
Stable expression of human groups IIA and X secreted phospholipases A(2) (hGIIA and hGX) in CHO-K1 and HEK293 cells leads to serum- and interleukin-1beta-promoted arachidonate release. Using mutant CHO-K1 cell lines, it is shown that this arachidonate release does not require heparan sulfate proteoglycan- or glycosylphosphatidylinositol-anchored proteins. It is shown that the potent secreted phospholipase A(2) inhibitor Me-Indoxam is cell-impermeable. By use of Me-Indoxam and the cell-impermeable, secreted phospholipase A(2) trapping agent heparin, it is shown that hGIIA liberates free arachidonate prior to secretion from the cell. With hGX-transfected CHO-K1 cells, arachidonate release occurs before and after enzyme secretion, whereas all of the arachidonate release from HEK293 cells occurs prior to enzyme secretion. Immunocytochemical studies by confocal laser and electron microscopies show localization of hGIIA to the cell surface and Golgi compartment. Additional results show that the interleukin-1beta-dependent release of arachidonate is promoted by secreted phospholipase A(2) expression and is completely dependent on cytosolic (group IVA) phospholipase A(2). These results along with additional data resolve the paradox that efficient arachidonic acid release occurs with hGIIA-transfected cells, and yet exogenously added hGIIA is poorly able to liberate arachidonic acid from mammalian cells.  相似文献   

18.
Although it has been proposed that arachidonate release by several secretory phospholipase A2 (sPLA2) isozymes is modulated by cytosolic PLA2 (cPLA2), the cellular component(s) that intermediates between these two signaling PLA2s remains unknown. Here we provide evidence that 12- or 15-lipoxygenase (12/15-LOX), which lies downstream of cPLA2, plays a pivotal role in cytokine-induced gene expression and function of sPLA2-IIA. The sPLA2-IIA expression and associated PGE2 generation induced by cytokines in rat fibroblastic 3Y1 cells were markedly attenuated by antioxidants that possess 12/15-LOX inhibitory activity. 3Y1 cells expressed 12/15-LOX endogenously, and forcible overexpression of 12/15-LOX in these cells greatly enhanced cytokine-induced expression of sPLA2-IIA, with a concomitant increase in delayed PG generation. Moreover, studies using 293 cells stably transfected with sPLA2-IIA revealed that stimulus-dependent hydrolysis of membrane phospholipids by sPLA2-IIA was enhanced by overexpression of 12/15-LOX. These results indicate that the product(s) generated by the cPLA2-12/15-LOX pathway following cell activation may play two roles: enhancement of sPLA2-IIA gene expression and membrane sensitization that leads to accelerated sPLA2-IIA-mediated hydrolysis.  相似文献   

19.
Recently, we purified to homogeneity and characterized a low-molecular-weight calcium-dependent phospholipase A2 (PLA2) from developing elm seed endosperm. This represented the first purified and characterized PLA2 from a plant tissue. The full sequences of two distinct but homologous rice (Oryza sativa) cDNAs are given here. These encode mature proteins of 119 amino acids (PLA2-I, preceded by a 19 amino acid signal peptide) and 128 amino acids (PLA2-II, preceded by a 25 amino acid signal peptide), and were derived from four expressed sequence tag (EST) clones. Both proteins were homologous to the N-terminal amino acid sequence of the elm PLA2. They contained twelve conserved cysteine residues and sequences that are likely to represent the Ca2+-binding loop and active-site motif, which are characteristic of animal secretory PLA2s. A soluble PLA2 activity was purified 145 000-fold from green rice shoots. This had the same biochemical characteristics as the elm and animal secretory PLA2s. The purified rice PLA2 consisted of two proteins, with a molecular weight of 12 440 and 12 920, that had identical N-terminal amino acid sequences. This sequence was different from but homologous to the PLA2-I and PLA2-II sequences. Taken together, the results suggest that at least three different low-molecular-weight PLA2s are expressed in green rice shoots. Southern blot analysis suggested that multiple copies of such genes are likely to occur in the rice and in other plant genomes.  相似文献   

20.
Although the expression of the prototypic secretory phospholipase A(2) (sPLA(2)), group IIA (sPLA(2)-IIA), is known to be up-regulated during inflammation, it remains uncertain if other sPLA(2) enzymes display similar or distinct profiles of induction under pathological conditions. In this study, we investigated the expression of several sPLA(2)s in rodent inflammation models. In lipopolysaccharide (LPS)-treated mice, the expression of sPLA(2)-V, and to a lesser extent that of sPLA(2)-IID, -IIE, and -IIF, were increased, whereas that of sPLA(2)-X was rather constant, in distinct tissues. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema, in which the expression of sPLA(2)-IID, -IIF and -V was increased, was significantly reduced by YM-26734, a competitive sPLA(2)-IIA inhibitor that turned out to inhibit sPLA(2)-IID, -IIE, -V and -X as well. In contrast, sPLA(2)-IIA was dominant in carageenin-induced pleurisy in rats, where the accumulation of exudate fluids and leukocytes was significantly ameliorated by YM-26734. These results indicate that distinct sPLA(2)s can participate in inflammatory diseases according to tissues, animal species, and types of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号