首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analogs of the H-Tyr-Asp-Pro-Ala-Pro-OH pentapeptide with d-amino acid residues either in differing or in all of the positions of the sequences were prepared and their oostatic potency was compared with that of the parent pentapeptide. The d-amino acid residue containing analogs exhibited an equal or even higher oostatic effect in the flesh fly Neobellieria bullata than the parent peptide. Contrary to the rapid incorporation of radioactivity from the labeled H-Tyr-Asp-[3H]Pro-Ala-Pro-OH pentapeptide into the ovaries of N. bullata in vitro, the radioactivity incorporation from the labeled pentapeptides with either d-aspartic acid or d-alanine was significantly delayed. As compared to the parent pentapeptide, also the degradation of both the d-amino acid-containing analogs mentioned above proceeded at a significantly lower rate. The decreased intake of radioactivity, the lower degradation and finally also the high oostatic effect may be ascribed to the decreased enzymatic degradation of the peptide bonds neighboring the d-amino acid residues in the corresponding peptides. The introduction of the non-coded d-amino acids thus enhances the oostatic effect in N. bullata owing to the prolonged half-life of the corresponding pentapeptides, which can thus affect more ovarian cells.  相似文献   

2.
Biofilms of sulfate reducing bacteria (SRB) are often responsible for Microbiologically Influenced Corrosion (MIC) that is a major problem in the oil and gas industry as well as water utilities and other industries. This work was inspired by recent reports that some d-amino acids may be useful in the control of microbial biofilms. A d-amino acid mixture with equimolar d-tyrosine, d-methionine, d-tryptophan and d-leucine was tested in this work for their enhancement of a biocide cocktail containing tetrakis (hydroxymethyl) phosphonium sulfate (THPS) and ethylenediamine-N,N’-disuccinic acid (EDDS). Desulfovibrio vulgaris (ATCC 7757) was cultured in ATCC 1249 medium. Its biofilm was grown on C1018 carbon steel coupons. Experimental results indicated that the triple biocide cocktail consisting of 30 ppm THPS, 500 ppm EDDS and 6.6 ppm d-amino acid mixture (with equimolar d-tyrosine, d-methionine, d-tryptophan and d-leucine) was far more effective than THPS and EDDS alone and their binary combination. The triple biocide cocktail effectively prevented SRB biofilm establishment and removed the established SRB biofilm. The d-amino acid mixture alone did not show significant effects in the two tasks even at 660 ppm.  相似文献   

3.
Inactivation ofd-amino acid oxidase occured by different mechanisms. The enzyme showed a rapid loss of activity in the presence of micromolar amounts of Cu2+ and Hg2+. It was also sensitive to oxidative inactivation by Fe2+ and H2O2 when both reagents were added in millimolar amounts. When oxidatively inactivatedd-amino acid oxidase and a corresponding non-treated control were modified with the sulfhydryl-modifying, fluorescent reagent monobromobimane and subsequently digested with endoproteinase Glu-C, Cys-298 was identified to be a target for oxidative modification according to differences in the known peptide profile of fluorescence intensity. Another reason for the observed loss of enzyme activity in crude extracts was the specific proteolytic digestion ofd-amino acid oxidase, which was dependent on the growth phase of the cells used. This cleavage was catalyzed by a serine-type proteinase and was the introductory step for the further complete degradation of the enzyme. In addition, a coenriched 50-kDa protein, identified as NADPH-specific glutamate dehydrogenase, significantly decreased the stability of thed-amino acid oxidase activity. Treatment of apo-d-amino acid oxidase fromT. variabilis with monobromobimane resulted in a significantly increased fluorescence of two peptides, neither of which contained any cysteine residue. Thus, an involvement of cysteine residues in binding the FAD coenzyme should be excluded.  相似文献   

4.
Thed-alanine:d-alanine-ligase-related enzymes can have three preferential substrate specificities. Usually, these enzymes synthesized-alanyl-d-alanine. In vancomycin-resistant Gram-positive bacteria, structurally related enzymes synthesized-alanyl-d-lactate or Dalanyl-d-serine. The sequence of internal fragments of eight structurald-alanine:d-alanine ligase genes from enterococci has been determined. Alignment of the deduced amino acid sequences with those of other related enzymes from Gram-negative and Gram-positive bacteria revealed the presence of four distinct sequence patterns in the putative substrate-binding sites, each correlating with specificity to a particular substrate (d-alanine:d-lactate ligases exhibited two patterns). Phylogenetic analysis showed different clusters. The enterococcal subtree was largely superimposable on that derived from 16S rRNA sequences. In lactic acid bacteria, structural divergence due to differences in substrate specificity was observed. Glycopeptide resistance proteins VanA and VanB, the VanC-type ligases, and Dd1A and DdlB from enteric bacteria andHaemophilus influenzae constituted separate clusters. Correspondence to: P. Courvalin  相似文献   

5.
The ability of Aspergillus fumigatus l-amino acid oxidase (l-aao) to cause the resolution of racemic mixtures of dl-amino acids was investigated with dl-alanine, dl-phenylalanine, dl-tyrosine, and dl-aspartic acid. A chiral column, Crownpak CR+ was used for the analysis of the amino acids. The enzyme was able to cause the resolution of the three dl-amino acids resulting in the production of optically pure d-alanine (100% resolution), d-phenylalanine (80.2%), and d-tyrosine (84.1%), respectively. The optically pure d-amino acids have many uses and thus can be exploited industrially. This is the first report of the use of A. fumigatus l-amino acid oxidase for racemic resolution of dl-amino acids.  相似文献   

6.
Park TJ  Kim JS  Ahn HC  Kim Y 《Biophysical journal》2011,(5):1193-1201
Lactophoricin (LPcin-I) is an antimicrobial, amphiphatic, cationic peptide with 23-amino acid residues isolated from bovine milk. Its analogous peptide, LPcin-II, lacks six N-terminal amino acids compared to LPcin-I. Interestingly, LPcin-II does not display any antimicrobial activity, whereas LPcin-I inhibits the growth of both Gram-negative and Gram-positive bacteria without exhibiting any hemolytic activity. Uniformly 15N-labeled LPcin peptides were prepared by the recombinant expression of fusion proteins in Escherichia coli, and their properties were characterized by electrospray ionization mass spectrometry, circular dichroism spectroscopy, and antimicrobial activity tests. To understand the structure-activity relationship of these two peptides, they were studied in model membrane environments by a combination of solution and solid-state NMR spectroscopy. We determined the tertiary structure of LPcin-I and LPcin-II in the presence of dodecylphosphorylcholine micelles by solution NMR spectroscopy. Magnetically aligned unflipped bicelle samples were used to investigate the structure and topology of LPcin-I and LPcin-II by solid-state NMR spectroscopy.  相似文献   

7.
The d-enantiomers of proteinogenic amino acids fulfill essential functions in bacteria, fungi and animals. Just in the plant kingdom, the metabolism and role of d-amino acids (d-AAs) still remains unclear, although plants have to cope with significant amounts of these compounds from microbial decay in the rhizosphere. To fill this gap of knowledge, we tested the inhibitory effects of d-AAs on plant growth and established a method to quantitate 16 out of 19 proteinogenic amino acids and their d-enantiomers in plant tissue extracts. Therefore, the amino acids in the extracts were derivatized with Marfey’s reagent and separated by HPLC–MS. We used two ecotypes (Col-0 and C24) and a mutant (lht1) of the model plant Arabidopsis thaliana to determine the influence and fate of exogenously applied d-AAs. All of them were found in high concentrations in the plant extracts after application, even in lht1, which points to additional transporters facilitating the import of d-AAs. The addition of particular amino acids (d-Trp, d-Phe, d-Met and d-His) led to the accumulation of the corresponding l-amino acid. In almost all cases, the application of a d-AA resulted in the accumulation of d-Ala and d-Glu. The presented results indicate that soil borne d-AAs can actively be taken up and metabolized via central metabolic routes.  相似文献   

8.
A screening of soil samples for d-amino acid oxidase (d-AAO) activity led to the isolation and identification of the gram-positive bacterium Arthrobacter protophormiae. After purification of the wild-type d-AAO, the gene sequence was determined and designated dao. An alignment of the deduced primary structure with eukaryotic d-AAOs and d-aspartate oxidases showed that the d-AAO from A. protophormiae contains five of six conserved regions; the C-terminal type 1 peroxisomal targeting signal that is typical for d-AAOs from eukaryotic origin is missing. The dao gene was cloned and expressed in Escherichia coli. The purified recombinant d-AAO had a specific activity of 180 U mg protein−1 for d-methionine and was slightly inhibited in the presence of l-methionine. Mainly, basic and hydrophobic d-amino acids were oxidized by the strictly enantioselective enzyme. After a high cell density fermentation, 2.29 × 106 U of d-AAO were obtained from 15 l of fermentation broth.  相似文献   

9.
Peng  Jinxiu  Qiu  Shuai  Jia  Fengjing  Zhang  Lishi  He  Yuhang  Zhang  Fangfang  Sun  Mengmeng  Deng  Yabo  Guo  Yifei  Xu  Zhaoqing  Liang  Xiaolei  Yan  Wenjin  Wang  Kairong 《Amino acids》2021,53(1):23-32

Protonectin was a typical amphiphilic antimicrobial peptide with potent antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, when its eleventh amino acid in the sequence was substituted by phenylalanine, the analog named phe-Prt showed potent antimicrobial activity against Gram-positive bacteria, but no antimicrobial activity against Gram-negative bacteria, indicating a significant selectivity between Gram-positive bacteria and Gram-negative bacteria. However, when Gram-negative bacteria were incubated with EDTA, the bacteria were susceptible to phe-Prt. Next, the binding effect of phe-Prt with LPS was determined. Our result showed that LPS could hamper the bactericidal activity of phe-Prt against Gram-positive bacteria. The result of zeta potential assay further confirmed the binding effect of phe-Prt with LPS for it could neutralize the surface charge of E. coli and LPS. Then, the effect of phe-Prt on the integrity of outer membrane of Gram-negative bacteria was determined. Our results showed that phe-Prt had a much weaker disturbance to the outer membrane of Gram-negative bacteria than the parent peptide protonectin. In summary, the introduction of l-phenylalanine into the sequence of antimicrobial peptide protonectin made phe-Prt show significant selectivity against Gram-positive bacteria, which could partly be attributed to the delay effect of LPS for phe-Prt to access to cell membrane. Although further study is still needed to clarify the exact mechanism of selectivity, the present study provided a strategy to develop antimicrobial peptides with selectivity toward Gram-positive and Gram-negative bacteria.

  相似文献   

10.
11.
l-2-Aminobutyric acid can be synthesized in a transamination reaction from l-threonine and l-aspartic acid as substrates by the action of threonine deaminase and aromatic aminotransferase, but the by-product l-alanine was produced simultaneously. A small amount of l-alanine increased the complexity of the l-2-aminobutyric acid recovery process because of their extreme similarity in physical and chemical properties. Acetolactate synthase has been introduced to remove the pyruvate intermediate for reducing the l-alanine concentration partially. To eliminate the remnant l-alanine, alanine racemase of Bacillus subtilis in combination with d-amino acid oxidase of Rhodotorula gracilis or Trigonopsis variabilis respectively was introduced into the reaction system for the l-2-aminobutyric acid synthesis. l-Alanine could be completely removed by the action of alanine racemase of B. subtilis and d-amino acid oxidase of R. gracilis; thereby, high-purity l-2-aminobutyric acid was achieved. The results revealed that alanine racemase could discriminate effectively between l-alanine and l-2-aminobutyric acid, and selectively catalyzed l-alanine to d-alanine reversibly. d-Amino acid oxidase then catalyzed d-alanine to pyruvate stereoselectively. Furthermore, this method was also successfully used to remove the by-product l-alanine in the production of other neutral amino acids such as l-tertiary leucine and l-valine, suggesting that multienzymatic whole-cell catalysis can be employed to provide high purity products.  相似文献   

12.
Two major azoverdins were isolated from the cultures of Azomonas macrocytogenes ATCC 12334 grown in irondeficient medium. Their structures have been established using fast atom bombardment-mass spectroscopy, homonuclear and heteronuclear two-dimensional 15N, 13C and 1H NMR, and circular dichroism techniques. These siderophores are chromopeptides possessing at the N-terminal end of their peptide chain the chromophore derived from 2,3-diamino-6,7-dihydroxyquinoline common to pyoverdins. The linear peptide chain (l)-Hse-(d)-AcOHOrn-(d)-Ser-(l)-AcOHOrn-(d)-Hse-(l)-CTHPMD has at its C-terminal end a new natural amino acid which is the result of the condensation of 1 mol of homoserine and 1 mol of 2,4-diaminobutyric acid forming a cyclic amidine belonging to the tetrahydropyrimidine family: 2-homoseryl-4-carboxyl-3,4,5,6-tetrahydropyrimidine. The azoverdins differ only by a substitutent bound to the nitrogen on C-3 of the chromophore: azoverdin, the most abundant one, possesses a succinamide moiety, whereas azoverdin A bears a succinic acid moiety. 15N-labelled azoverdin afforded readily, after the complete assignment of the 15N spectrum of the siderophore, a sequence determination of the peptidic part of the molecule and gave evidence for the presence of two tetrahydropyrimidine groups on the molecule: one on the chromophore and the second at the C-terminal end of the siderophore.  相似文献   

13.
Helicobacter pylori is a microaerophilic bacterium, associated with gastric inflammation and peptic ulcers. d-Amino acid dehydrogenase is a flavoenzyme that digests free neutral d-amino acids yielding corresponding 2-oxo acids and hydrogen. We sequenced the H. pylori NCTC 11637 d-amino acid dehydrogenase gene, dadA. The primary structure deduced from the gene showed low similarity with other bacterial d-amino acid dehydrogenases. We purified the enzyme to homogeneity from recombinant Escherichia coli cells by cloning dadA. The recombinant protein, DadA, with 44 kDa molecular mass, possessed FAD as cofactor, and showed the highest activity to d-proline. The enzyme mediated electron transport from d-proline to coenzyme Q1, thus distinguishing it from d-amino acid oxidase. The apparent K m and V max values were 40.2 mM and 25.0 μmol min−1 mg−1, respectively, for dehydrogenation of d-proline, and were 8.2 μM and 12.3 μmol min−1 mg−1, respectively, for reduction of Q1. The respective pH and temperature optima were 8.0 and 37°C. Enzyme activity was inhibited markedly by benzoate, and moderately by SH reagents. DadA showed more similarity with mammalian d-amino acid oxidase than other bacterial d-amino acid dehydrogenases in some enzymatic characteristics. Electron transport from d-proline to a c-type cytochrome was suggested spectrophotometrically.  相似文献   

14.
Microbial production of d-hexosaminate was examined by means of oxidative fermentation with acetic acid bacteria. In most strains of acetic acid bacteria, membrane-bound d-glucosamine dehydrogenase (synonymous with an alternative d-glucose dehydrogenase distinct from quinoprotein d-glucose dehydrogenase) oxidized d-hexosamines to the corresponding d-hexosaminates in a stoichiometric manner. Conversion of d-hexosamines to the corresponding d-hexosaminates was observed with growing cells of acetic acid bacteria, and d-hexosaminate was stably accumulated in the culture medium even though d-hexosamine was exhausted. Since the enzyme responsible is located on the outer surface of the cytoplasmic membrane, and the enzyme activity is linked to the respiratory chain of the organisms, resting cells, dried cells, and immobilized cells of acetic acid bacteria were effective catalysts for d-hexosaminate production. d-Mannosaminate and d-galactosaminate were also prepared for the first time by means of oxidative fermentation, and three different d-hexosaminates were isolated from unreacted substrate by a chromatographic separation. In this paper, d-hexosaminate production by oxidative fermentation carried out mainly with Gluconobacter frateurii IFO 3264 is exemplified as a typical example.  相似文献   

15.
Many antimicrobial peptides from amphibian skin have been purified and structurally characterized and may be developed as therapeutic agents. Here we describe the antibacterial properties and membrane interaction of chensinin-1, a cationic arginine/histidine-rich antimicrobial peptide, from the skin secretions of Rana chensinensis. The amino acid composition, sequence, and atypical structure of chensinin-1 differ from other known antimicrobial peptides from amphibian skin. Chensinin-1 exhibited selective antimicrobial activity against Gram-positive bacteria, was inactive against Gram-negative bacteria, and had no hemolytic activity on human erythrocytes. The CD spectra for chensinin-1 indicated that the peptide adopted an aperiodic structure in water and a conformational structure with 20?% β-strands, 8?% α-helices, and the remaining majority of random coils in the trifluoroethanol or SDS solutions. Time-kill kinetics against Gram-positive Bacillus cereus demonstrated that chensinin-1 was rapidly bactericidal at 2× MIC and PAE was found to be >5?h. Chensinin-1 caused rapid and large dye leakage from negatively charged model vesicles. Furthermore, membrane permeation assays on intact B. cereus indicated that chensinin-1 induced membrane depolarization in less than 1?min and followed to damage the integrity of the cytoplasmic membrane and resulted in efflux of molecules from cytoplasma. Hence, the primary target of chensinin-1 action was the cytoplasmic membrane of bacteria. Chensinin-1 was unable to overcome bacterial resistance imposed by the lipopolysaccharide leaflet, the major constituent of the outer membrane of Gram-negative bacteria. Lipopolysaccharide induced oligomerization of chensinin-1, thus preventing its translocation across the outer membrane.  相似文献   

16.

Antilipopolysaccharide factors (ALFs) are important effectors of innate immunity in crustaceans with broad spectrum antimicrobial activity. Present study deals with the molecular and functional characterization of a 98-amino acid ALF isoform from, crucifix crab, Charybdis feriatus termed as Cf-ALF2. The ALF isoform Cf-ALF2 exhibits characteristic features of an AMP including a cationic net charge of + 9 and a total hydrophobic ratio of 34%. Recombinant peptide rCf-ALF2 showed remarkable antimicrobial activity against Gram-negative and Gram-positive bacteria especially against Staphylococcus aureus (minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 5 µM) and Escherichia coli (MIC 10 µM and MBC 20 µM). Using scanning electron microscopy, bacterial membrane blebbing, disruption, and cell content leakage were observed in peptide treated E. coli. The recombinant peptide was found to be non-hemolytic and non-cytotoxic in NCI-H460 cell line at the highest tested concentration (20 µM). Thus, this study identified a novel isoform of ALF from C. feriatus and revealed the potent antimicrobial property of the recombinant peptide Cf-ALF2 and the future prospects of using the peptide for therapeutic applications in the future.

  相似文献   

17.
Three novel antimicrobial peptides (AMPs), named panurgines (PNGs), were isolated from the venom of the wild bee Panurgus calcaratus. The dodecapeptide of the sequence LNWGAILKHIIK-NH2 (PNG-1) belongs to the category of α-helical amphipathic AMPs. The other two cyclic peptides containing 25 amino acid residues and two intramolecular disulfide bridges of the pattern Cys8–Cys23 and Cys11–Cys19 have almost identical sequence established as LDVKKIICVACKIXPNPACKKICPK-OH (X=K, PNG-K and X=R, PNG-R). All three peptides exhibited antimicrobial activity against Gram-positive bacteria and Gram-negative bacteria, antifungal activity, and low hemolytic activity against human erythrocytes. We prepared a series of PNG-1 analogs to study the effects of cationicity, amphipathicity, and hydrophobicity on the biological activity. Several of them exhibited improved antimicrobial potency, particularly those with increased net positive charge. The linear analogs of PNG-K and PNG-R having all Cys residues substituted by α-amino butyric acid were inactive, thus indicating the importance of disulfide bridges for the antimicrobial activity. However, the linear PNG-K with all four cysteine residues unpaired, exhibited antimicrobial activity. PNG-1 and its analogs induced a significant leakage of fluorescent dye entrapped in bacterial membrane-mimicking large unilamellar vesicles as well as in vesicles mimicking eukaryotic cell membrane. On the other hand, PNG-K and PNG-R exhibited dye-leakage activity only from vesicles mimicking bacterial cell membrane.  相似文献   

18.
To facilitate the easier production of d-amino acids using N-carbamyl-d-amino acid amidohydrolase (DCase) in an immobilized form, we improved the enzymatic thermostability of highly soluble DCase-M3 of Ralstonia pickettii using directed mutagenesis. Six novel mutation sites were identified in this study, apart from several thermostability-related amino acid sites reported previously. The most thermostable mutant, in which the 12th amino acid had been changed from glutamine to leucine, showed a 7 °C increase in thermostability. Comparative characterization of the parental and mutant DCases showed that although there was a slight reduction in the oxidative stability of the mutants, their kinetic properties and high solubility were not affected. The mutated enzymes are expected to be applied to the development of a fully enzymatic process for the industrial production of d-amino acids.  相似文献   

19.
Utilization of d-amino acids being substrates of d-amino acid dehydrogenase of Salmonella typhimurium was examined. The experiments were done with wild type strains and the mutants dadA missing the enzyme activity and dadR in which its synthesis is released from catabolite repression. Growth on d-tryptophan, d-histidine and d-methionine used as precursors of the l-amino acids was faster when the respective auxotrophs carried dadR mutations. The dadR mutants grew faster when d-or l-alanine was present as a sole source of nitrogen. Experiments with d-amino acid dehydrogenase in vitro provided evidence that d-tryptophan is its substrate with a very low affinity to the dehydrogenase.  相似文献   

20.
Combinatorial search of the antimicrobial peptide R7SLCLLHCRLK from flesh fruit fly yielded a substantially more active peptide of the sequence KLKL5KLK-NH2 that had signal sequence character as revealed by Neural-network survey. Bioinformatics survey of KLKLnKLK revealed a sigmoidal relationship between SSP and the intervening Leu stretch. Synthetic enantiomeric KLKLnKLK peptides inhibited Escherichia coli signal peptidase-I, in vitro, in correlation with their SSPs; KLKL6(7)KLK exterted maximum inhibition. Both (l)-and (d)-forms were bactericidal to Gram-positive and Gram-negative bacteria. However, the protease-resistant (d)-KLKL6KLK-NH2 proved more potent than (d)-KLKL6KLK-NH2 at inhibiting the bacterial protein secretion prior to inducing bacterial lysis. Kinetic analyses of the interaction of these peptides with the signal peptidase-I revealed competitive inhibition with Ki of 10 μM and 35 μM for the (d)- and (l)-forms, respectively. The left and right-handed helicity of the respective peptides assessed by CD concurs with their probable interaction at the active site of signal peptidase-I. Tasawar Khan is deceased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号