首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Maximin-4 is a 27-residue cationic antimicrobial peptide exhibiting selectivity for bacterial cells. As part of the innate defense system in the Chinese red-belly toad, its mode of action is thought to be ion channel or pore formation and dissipation of the electrochemical gradient across the pathogenic cell membrane. Here we present the high-resolution structure of maximin-4 in two different membrane mimetics, sodium dodecyl sulfate micelles and 50% methanol, as determined by 1H solution NMR spectroscopy. In both environments, the peptide chain adopts a helix–break–helix conformation following a highly disordered N-terminal segment. Despite the similarities in the overall topology of the two structures, major differences are observed in terms of the interactions stabilizing the kink region and the arrangement of the four lysine residues. This has a marked influence on the shape and charge distribution of the molecule and may have implications for the bacterial selectivity of the peptide. The solution NMR results are complemented by CD spectroscopy and solid-state NMR experiments in lipid bilayers, both confirming the predominantly helical conformation of the peptide. As a first step in elucidating the membrane interactions of maximin-4, our study contributes to a better understanding of the mode of action of antimicrobial peptides and the factors governing their selectivity.  相似文献   

2.
Oriented circular dichroism (OCD) was used to characterize and compare in a quantitative manner the secondary structure and concentration dependent realignment of the antimicrobial peptides PGLa and MSI-103, and of the structurally related cell-penetrating peptide MAP in aligned phospholipid bilayers. All these peptides adopt an amphiphilic α-helical conformation, and from solid-state NMR analysis they are known to bind to membranes in two distinct orientations depending on their concentration. At low peptide/lipid (P/L) ratio the helices are aligned parallel to membrane surface (S-state), but with increasing concentration they realign to a tilted orientation (T-state), getting immersed into the membrane with an oblique angle supposedly as a result of dimer-formation. In macroscopically aligned liquid crystalline 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers the two limiting states are represented by distinct OCD spectra, and all spectra at intermediate peptide concentrations can be described by a linear combination of these two line shapes. The corresponding fraction of molecules occupying the T-state was determined by fitting the intermediate spectra with a superposition of the two extreme line shapes. By plotting this fraction versus 1/(P/L), the threshold P/L* ratio for realignment was extracted for each of the three related peptides. Despite their structural similarity distinctly different thresholds were obtained, namely for MSI-103 realignment starts already at a low P/L of ∼1:236, for a MAP derivative (using a nonaggregating analog containing a D-amino acid) the transition begins at P/L ∼1:156, whereas PGLa needs the highest concentration to flip into T-state at P/L ∼1:85. Analysis of the original MAP sequence (containing only L-amino acids) gave OCD spectra compatible with β-pleated conformation, suggesting that this peptide starts to aggregate with increasing concentration, unlike the other helical peptides. All these changes in peptide conformation and membrane alignment observed here by OCD seem to be functionally relevant, as they can be correlated with the membrane perturbing activities of the three antimicrobial and cell-penetrating sequences.  相似文献   

3.
Structure and membrane interaction of a 31 amino acid residue fragment of the membrane bound FKBP-like protein twisted dwarf 1 (TWD1) from Arabidopsis thaliana was investigated by solid-state NMR spectroscopy. The studied peptide TWD1(335–365) contained the putative membrane anchor of the protein (residues 339–357) that was previously predicted by sequence hydrophobicity analysis. The TWD1 peptide was synthesized by standard solid phase peptide synthesis and contained three uniformly 13C- and 15N-labelled residues (Phe 340, Val 350, Ala 364). The peptide was incorporated into either multilamellar vesicles or oriented planar membranes composed of an equimolar ternary phospholipid mixture (POPC, POPE, POPG), where the POPC was sn-1 chain-deuterated. 31P NMR spectra of the membrane in the absence and in the presence of the peptide showed axially symmetric powder patterns indicative of a lamellar bilayer phase. Further, the addition of peptide caused a decrease in the lipid hydrocarbon chain order as indicated by reduced quadrupolar splittings in the 2H NMR spectra of the POPC in the membrane. The conformation of TWD1(335–365) was investigated by 13C cross-polarization magic-angle spinning NMR spectroscopy. At a temperature of −30°C all peptide signals were resolved and could be fully assigned in two-dimensional proton-driven 13C spin diffusion and 13C single quantum/double quantum correlation experiments. The isotropic chemical shift values for Phe 340 and Val 350 exhibited the signature of a regular α-helix. Chemical shifts typical for a random coil conformation were observed for Ala 364 located close to the C-terminus of the peptide. Static 15N NMR spectra of TWD1(335–365) in mechanically aligned lipid bilayers demonstrated that the helical segment of TWD1(335–365) adopts an orientation perpendicular to the membrane normal. At 30°C, the peptide undergoes intermediate time scale motions. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

4.
The dorsal glands of Australian tree frogs from the Litoria species contain a diversity of antibiotic peptides that forms part of the defence system of the animal. Here, the antibiotic activity and structure of maculatin 1.1, a 21 amino acid peptide from Litoria genimaculata, are compared. The activity data on maculatin 1.1 and a series of its analogues imply that the mechanism of action of maculatin 1.1 involves binding to, and subsequent lysis of, the bacterial cell membrane. The structure of maculatin 1.1 was determined using NMR spectroscopy in a trifluoroethanol/water mixture and when incorporated into dodecylphosphocholine micelles. Under both conditions, the peptide adopts a very similar conformation, i.e. a helical structure with a central kink in the vicinity of Pro15. The kink allows the peptide to adopt a well-defined amphipathic conformation along its entire length. The similar structures determined under both solvent conditions imply that structures of membrane-interacting peptides in trifluoroethanol/water mixtures are representative of those adopted in a membrane environment, e.g. when incorporated into micelles. The synthetic Ala15 analogue of maculatin 1.1 has markedly reduced activity and its NMR-derived structure is a well-defined helix, which lacks the central kink and flexibility of the parent molecule. It is concluded that the kink is important for full biological activity of the peptide, probably because it allows maximum amphipathicity of the peptide to facilitate interaction with the membrane. The structure of maculatin 1.1 is compared with a related peptide, caerin 1.1 [Wong, H., Bowie, J.H. and Carver, J.A. (1997) Eur. J. Biochem. 247, 545-557], which has an additional central proline residue and enhanced central flexibility compared with maculatin 1.1. The role of central flexibility within antibiotic peptides in their interaction with bacterial membranes is discussed.  相似文献   

5.
The α-helix is one of the most common secondary structure elements adopted by proteins and is commonly stabilized in synthetic peptides via the formation of a covalent side-chain to side-chain lactam bridge. In this study, we explored the application of various side-chain to side-chain lactam bridges to helix stabilization of kisspeptin analogues, an interesting candidate for ligand-based drug discovery with potential as anti-metastatic agents. We successfully synthesised a series of Asp/Lys, Lys/Asp, Glu/Lys and Lys/Glu lactams, finding peptide (1) cyclo(4,8)Tyr-Asn-Trp-Glu-Ala-Phe-Gly-Lys-Arg-Phe-NH2, to exhibit characteristic α-helical activity in aqueous buffer, in comparison to the linear native peptide, which showed no helical character.  相似文献   

6.
A number of peptide hormones have been shown to contain amphipathic helical segments capable of binding to phospholipids. This conformational feature has been associated with increased biological activity of these hormones. We demonstrate, however, that two calcitonin analogs, [Gly8,Ala16]-des-Leu19 salmon calcitonin and des-1-amino-[Ala1,7,Gly8]-des-Leu19 salmon calcitonin have minimal interactions with phospholipids. Neither of these peptides acquire any increased helical content in the presence of dimyristoylphosphatidylglycerol and these peptides have only weak effects in altering the phase transition properties of this lipid. Therefore, although the presence of a phospholipid-induced amphipathic helical sequence may enhance the biological activity, it is not required for activity.  相似文献   

7.
Summary The preparation of Nα-trityl-amino acids is described. Several derivatives of trifunctional amino acids carrying acid-and base-labile side-chain protecting groups and the trityl group at the Nα position are prepared for first time. The incorporation of Nα-trityl-amino acids into peptide sequences using solid-phase protocols was achieved. The use of the trityl group for the protection of the α-amino group in conjunction with base-labile side-chain protecting groups constitutes a new method for the assembly of peptides in mild conditions.  相似文献   

8.
The complementary fragments of human Hb α, α1–30, and α31–141 are spliced together by V8 protease in the presence of 30%n-propanol to generate the full-length molecule (Hb α-semisynthetic reaction). Unlike the other protease-catalyzed protein/peptide splicing reactions of fragment complementing systems, the enzymic condensation of nonassociating segments of Hb α is facilitated by the organic cosolvent induced α-helical conformation of product acting as the “molecular trap” of the splicing reaction. The segments α24–30 and α31–40 are the shortest complementary segments that can be spliced by V8 protease. In the present study, the chemistry of the contiguous segment (product) α24–40 has been manipulated by engineering the amino acid replacements to the positions α27 and α31 to delineate the structural basis of the molecular trap. The location of Glu27 and Arg31 residues in the contiguous segment α24–40 (as well as in other larger segments) is ideal to generate (i, i+4) side-chain carboxylate-guanidino interaction in its α-helical conformation. The amino acid residue replacement studies have confirmed that the side chains at α27 and α31 facilitate the semisynthetic reaction. The relative influence of the substitute at these sites on the splicing reaction depends on the chemical nature of the side chain and the location. The γ-carboxylate guanidino side-chain interaction appears to contribute up to a maximum of 85% of the thermodynamic stability of the molecular trap. The studies also demonstrate that the thermodynamic stability of the molecular trap is determined by two interdependent conformational aspects of the peptide. One is an amino acid-sequence-specific event that facilitates the induction of an α-helical conformation to the contiguous segment in the presence of organic cosolvent that imparts some amount of protease resistance to Glu30-Arg31 peptide bond. The second structural aspect is a site-specific event, ani, i+4 side-chain interaction in the α-helical conformation of the peptide which imparts an additional thermodynamic stability to the molecular trap. The results suggest that conformationally driven “molecular traps” of protease-mediated ligation reactions of peptides could be designed into products to facilitate the modular assembly of peptides/proteins.  相似文献   

9.
The complementary fragments of human Hb α, α1–30, and α31–141 are spliced together by V8 protease in the presence of 30%n-propanol to generate the full-length molecule (Hb α-semisynthetic reaction). Unlike the other protease-catalyzed protein/peptide splicing reactions of fragment complementing systems, the enzymic condensation of nonassociating segments of Hb α is facilitated by the organic cosolvent induced α-helical conformation of product acting as the “molecular trap” of the splicing reaction. The segments α24–30 and α31–40 are the shortest complementary segments that can be spliced by V8 protease. In the present study, the chemistry of the contiguous segment (product) α24–40 has been manipulated by engineering the amino acid replacements to the positions α27 and α31 to delineate the structural basis of the molecular trap. The location of Glu27 and Arg31 residues in the contiguous segment α24–40 (as well as in other larger segments) is ideal to generate (i, i+4) side-chain carboxylate-guanidino interaction in its α-helical conformation. The amino acid residue replacement studies have confirmed that the side chains at α27 and α31 facilitate the semisynthetic reaction. The relative influence of the substitute at these sites on the splicing reaction depends on the chemical nature of the side chain and the location. The γ-carboxylate guanidino side-chain interaction appears to contribute up to a maximum of 85% of the thermodynamic stability of the molecular trap. The studies also demonstrate that the thermodynamic stability of the molecular trap is determined by two interdependent conformational aspects of the peptide. One is an amino acid-sequence-specific event that facilitates the induction of an α-helical conformation to the contiguous segment in the presence of organic cosolvent that imparts some amount of protease resistance to Glu30-Arg31 peptide bond. The second structural aspect is a site-specific event, ani, i+4 side-chain interaction in the α-helical conformation of the peptide which imparts an additional thermodynamic stability to the molecular trap. The results suggest that conformationally driven “molecular traps” of protease-mediated ligation reactions of peptides could be designed into products to facilitate the modular assembly of peptides/proteins.  相似文献   

10.
Summary α-conotoxin EI is an 18-residue peptide (RDOCCYHPTCNMSNPQIC; 4–10, 5–18) isolated from the venom ofConus ermineus, the only fish-hunting cone snail of the Atlantic Ocean. This peptide targets specifically the nicotinic acetylcholine receptor (nAChR) found in mammalian skeletal muscle and the electric organTorpedo, showing a novel selectivity profile when compared to other α-conotoxins. The 3D structure of EI has been determined by 2D-NMR methods in combination with dynamical simulated annealing protocols. A total of 133 NOE-derived distances were used to produce 13 structures with minimum energy that complied with the NOE restraints. The structure of EI is characterized by a helical loop between THr9 and Met12 that is stabilized by the Cys4-Cys10 disulfide bond and turns involving Cys4-Cys5 and Asn14-Pro15. Other regions of the peptide appear to be flexible. The overall fold of EI is similar to that of other α4/7-conotoxins (PnIA/B, MII, EpI). However, unlike these other α4/7-conotoxins, EI targets the muscular type nAChR. The differences in selectivity can be attributed to differences in the surface charge distribution among these α4/7-conotoxins. The implications for binding of EI to the muscular nAChR are discussed with respect to the current NMR structure of EI. Supplementary material available:1H resonance assignments of α-conotoxin EI.  相似文献   

11.
Characteristic motifs have been identified in natural channel forming peptides though critical roles of such motifs are not well understood. In this paper, the helix‐kink motif found in peptaibols was embedded into the α-aminoisobutyric acid (Aib) rich template to explore its roles in peptide structure and ion channel functions. According to circular dichroism studies and single channel measurements, the motif reduced helical contents of peptide whereas ion channel forming was facilitated and conductance value was increased.  相似文献   

12.
Conformational energy computations of the monopeptides from three achiral α,α-dialkylated glycyl residues with acyclic side chains (namely α,α-dimethyl-; α,α-diethyl-; and α, α-di-n-propylglycines) are reported as a function of the relevant N-Cα-C′ bond angle. In parallel, experimental studies were performed in the solid state (infrared absorption and X-ray diffraction) and in solution (infrared absorption and proton magnetic resonance) on the corresponding protected homo-peptide series (the former series to the dodecamer, the other two series to the pentamers). The results obtained unequivocally indicate that the preference from a helical to a fully extended conformation increases as side-chain bulkiness increases. The longest homo-peptides from α,α-dimethylglycine form stable 310-helices. A picture of the mode of self-association of the helical structures has also been determined. The results of the theoretical analyses fit well with the experimentally observed conformational properties in the solid state and in chloroform solution.  相似文献   

13.
The amphipathic α-helix is a recognised structural motif that is shared by membrane-associating proteins and peptides of diverse function. The aim of this paper is to determine the orientation of an α-helical amphipathic peptide on the bilayer surface. We use five amphipathic 18-residue peptide analogues of a class A amphipathic peptide that is known to associate with a bilayer surface. Tyrosine and tryptophan are used as spectroscopic probes to sense local environments in the peptide in solution and when bound to the surface of unilamellar phosphatidylcholine vesicles. In a series of peptides, tryptophan is moved progressively along the sequence from the nonpolar face (positions 3, 7, 4) to the polar face of the peptide (positions 2, 12). The local environment of the tryptophan residue at each position is determined using fluorescence spectroscopy employing quantum yield, and the wavelength of the emission maximum as indicators of micropolarity. The exposure of the tryptophan residues at each site is assessed by acrylamide quenching. On association with vesicles, the tryptophan residues at positions 3, 7 and 14 are in nonpolar water-shielded environments, and the tryptophan at position 12 is in an exposed polar environment. The tryptophan at position 2, which is located near the bilayer-water interface, exhibits intermediate behaviour. Analysis of the second-derivative absorption spectrum confirmed that the tyrosine residue at position 7 is in a nonpolar water-shielded environment in the peptide-lipid complex. We conclude that these class A amphipathic peptides lie parallel to the lipid surface and penetrate no deeper than the ester linkages of the phospholipids. Received: 8 April 1998 / Revised version: 6 July 1998 / Accepted: 7 August 1998  相似文献   

14.
A key feature in Parkinson’s disease is the deposition of Lewy bodies. The major protein component of these intracellular deposits is the 140-amino acid protein α-synuclein that is widely distributed throughout the brain. α-synuclein was identified in presynaptic terminals and in synaptosomal preparations. The protein is remarkable for its structural variability. It is almost unstructured as a monomer in aqueous solution. Self-aggregation leads to a variety of β-structures, while membrane association may result in the formation of an amphipathic helical structure. The present article strives to give an overview of what is currently known on the interaction of α-synuclein with lipid membranes, including synthetic lipid bilayers, membraneous cell fractions, synaptic vesicles and intact cells. Manifestations of a functional relevance of the α-synuclein–lipid interaction will be discussed and the potential pathogenicity of oligomeric α-synuclein aggregates will be briefly reviewed.  相似文献   

15.
Summary Novel endomorphin-2 analogs containing the unusual amphiphilic amino acid (R)- and (S)-α-hydroxymethyltyrosine in position 1 and (R)- and (S)-α-hydroxymethylphenylalanine in the positions 3 and 4 were synthesized via the solid-phase method. The binding characteristics of the synthetic analogs may suggest that α-hydroxymethyl substitution of amino acid residues influences the conformation of a peptide much more than simply increasing the local amphiphilic character of the peptide.  相似文献   

16.
The amino acid Aib predisposes a peptide to be helical with context‐dependent preference for either 310‐ or α‐ or a mixed helical conformation. Short peptides also show an inherent tendency to be unfolded. To characterize helical and unfolded states adopted by water‐soluble Aib‐containing peptides, the conformational preference of Ac‐Ala‐Aib‐Ala‐Lys‐Ala‐Aib‐Lys‐Ala‐Lys‐Ala‐Aib‐Tyr‐NH2 was determined by CD, NMR and MD simulations as a function of temperature. Temperature‐dependent CD data indicated the contribution of two major components, each an admixture of helical and extended/polyproline II structures. Both right‐ and left‐handed helical conformations were detected from deconvolution of CD data and 13C NMR experiments. The presence of a helical backbone, more pronounced at the N‐terminal, and a temperature‐induced shift in α‐helix/310‐helix equilibrium, more pronounced at the C‐terminal, emerged from NMR data. Starting from polyproline II, the N‐terminal of the peptide folded into a helical backbone in MD simulations within 5 ns at 60°C. Longer simulations showed a mixed‐helical backbone to be stable over the entire peptide at 5°C while at 60°C the mixed‐helix was either stable at the N‐terminus or occurred in short stretches through out the peptide, along with a significant population of polyproline II. Our results point towards conformational heterogeneity of water‐soluble Aib‐based peptide helices and the associated subtleties. The problem of analyzing CD and NMR data of both left‐ and right‐handed helices are discussed, especially the validity of the ellipticity ratio [θ]222/[θ]207, as a reporter of α‐/310‐ population ratio, in right‐ and left‐handed helical mixtures. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
KL4, which has demonstrated success in the treatment of respiratory distress, is a synthetic helical, amphipathic peptide mimetic of lung surfactant protein B. The unusual periodicity of charged residues within KL4 and its relatively high hydrophobicity distinguish it from canonical amphipathic helical peptides. Here we utilized site specific spin labeling of both lipids and the peptide coupled with EPR spectroscopy to discern the effects of KL4 on lipid dynamics, the residue specific dynamics of hydrophobic regions within KL4, and the partitioning depths of specific KL4 residues into the DPPC/POPG and POPC/POPG lipid bilayers under physiologically relevant conditions. KL4 induces alterations in acyl chain dynamics in a lipid-dependent manner, with the peptide partitioning more deeply into DPPC-rich bilayers. Combined with an earlier NMR study of changes in lipid dynamics on addition of KL4 (V.C. Antharam et al., 2009), we are able to distinguish how KL4 affects both collective bilayer motions and intramolecular acyl chain dynamics in a lipid-dependent manner. EPR power saturation results for spin labeled lipids demonstrate that KL4 also alters the accessibility profiles of paramagnetic colliders in a lipid-dependent manner. Measurements of dynamics and depth parameters for individual spin-labeled residues within KL4 are consistent with a model where the peptide partitions deeply into the lipid bilayers but lies parallel to the bilayer interface in both lipid environments; the depth of partitioning is dependent on the degree of lipid acyl chain saturation within the bilayer.  相似文献   

18.
The spider peptide GsMTx4, at saturating concentration of 5 μM, is an effective and specific inhibitor for stretch-activated mechanosensitive (MS) channels found in a variety of eukaryotic cells. Although the structure of the peptide has been solved, the mode of action remains to be determined. Because of its amphipathic structure, the peptide is proposed to interact with lipids at the boundaries of the MS channel proteins. In addition, GsMTx4 has antimicrobial effects, inhibiting growth of several species of bacteria in the range of 5–64 μM. Previous studies on prokaryotic MS channels, which serve as model systems to explore the principle of MS channel gating, have shown that various amphipathic compounds acting at the protein–lipid interface affect MS channel gating. We have therefore analyzed the effect of different concentrations of extracellular GsMTx4 on MS channels of small conductance, MscS and MscK, in the cytoplasmic membrane of wild-type E. coli spheroplasts using the patch-clamp technique. Our study shows that the peptide GsMTx4 exhibits a biphasic response in which peptide concentration determines inhibition or potentiation of activity in prokaryotic MS channels. At low peptide concentrations of 2 and 4 μM the gating of the prokaryotic MS channels was hampered, manifested by a decrease in pressure sensitivity. In contrast, application of peptide at concentrations of 12 and 20 μM facilitated prokaryotic MS channel opening by increasing the pressure sensitivity.  相似文献   

19.
Class A amphipathic helical peptides have been shown to mimic apolipoprotein A-I, the major protein component of high density lipoproteins and have been shown to inhibit atherosclerosis in several dyslipidemic mouse models. Previously we reported the NMR structure of Ac-18A-NH2, the base-line model class A amphipathic helical peptide in a 50% (v/v) trifluoroethanol-d3/water mixture, a membrane-mimic environment (Mishra, V. K., Palgunachari, M. N., Anantharamaiah, G. M., Jones, M. K., Segrest, J. P., and Krishna, N. R. (2001) Peptides 22, 567-573). The peptide Ac-18A-NH2 forms discoidal nascent high density lipoprotein-like particles with 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Because subtle structural changes in the peptide.lipid complexes have been shown to be responsible for their antiatherogenic properties, we undertook high resolution NMR studies to deduce detailed structure of recombinant peptide.1,2-dimyristoyl-sn-glycero-3-phosphocholine complexes. The peptide adopts a well defined amphipathic alpha helical structure in association with the lipid at a 1:1 peptide:lipid weight ratio. Nuclear Overhauser effect spectroscopy revealed a number of intermolecular close contacts between the aromatic residues in the hydrophobic face of the helix and the lipid acyl chain protons. The pattern of observed peptide-lipid nuclear Overhauser effects is consistent with a parallel orientation of the amphipathic alpha helix, with respect to the plane of the lipid bilayer, on the edge of the disc (the belt model). Based on the results of chemical cross-linking and molecular modeling, we propose that peptide helices are arranged in a head to tail fashion to cover the edge of the disc. This arrangement of peptides is also consistent with the pKa values of the Lys residues determined previously. Taken together, these results provide for the first time a high resolution structural view of the peptide.lipid discoidal complexes formed by a class A amphipathic alpha helical peptide.  相似文献   

20.
The peptide 4F is known to have potent anti-atherogenic activity. 4F is an 18 residue peptide that has a sequence capable of forming a class A amphipathic helix. Several other class A amphipathic helical, 18 residue peptides with the same polar face but with increasing Phe residues on the nonpolar face have been synthesized with varying degrees of biological activity. In this work we compared the properties of the original 2F peptide, modeled on the consensus sequence of the amphipathic helical segments of the apolipoprotein A-I with the peptide 4F that has two Leu residues replaced with Phe. We demonstrate that the more biologically active 4F peptide has the greatest affinity for binding to several molecular species of oxidized lipids. Lipoprotein particles can be formed by solubilizing 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) with peptides. These solubilized lipoprotein particles extract oxidized lipid from liposomes of POPC containing 5 mol% of oxidized lipid. The peptides with the strongest anti-atherogenic activity interact most strongly with the oxidized lipid. The results show that there is a correlation between the biological potency of these peptides and their ability to interact with certain specific cytotoxic lipids, suggesting that this interaction may contribute favourably to their biological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号