首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A protocol is described for the reconstitution of a transmembrane β-barrel protein domain, tOmpA, into lipid bicelles. tOmpA is the largest protein to be reconstituted in bicelles to date. Its insertion does not prevent bicelles from orienting with their plane either parallel or perpendicular to the magnetic field, depending on the absence or presence of paramagnetic ions. In the latter case, tOmpA is shown to align with the axis of the β-barrel parallel to the magnetic field, i.e. perpendicular to the plane of the bilayer, an orientation conforming to that in natural membranes and favourable to structural studies by solid-state NMR. Reconstitution into bicelles may offer an interesting approach for structural studies of membrane proteins in a medium resembling a biological membrane, using either NMR or other biophysical techniques. Our data suggest that alignment in the magnetic field of membrane proteins included into bicelles may be facilitated if the protein is folded as a β-barrel structure.  相似文献   

2.
The β-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane β-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5° tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to α-helical membrane proteins.  相似文献   

3.
Gram-negative bacteria consist of two independent membranes, the inner cytoplasmic membrane and the outer membrane. The outer membrane contains a number of β-barrel proteins such as OmpF, OmpC, OmpA, and OmpX. In this article, we explored to use the condensed Single Protein Production (cSPP) system for isotope labelling of OmpA and OmpX for NMR structural study, both of which are known to consist of eight β-strands forming a barrel in the outer membrane. Using a deletion strain lacking all major outer membrane proteins, both OmpA and OmpX were expressed well in a 20-fold cSPP system. We demonstrated that outer membrane fractions prepared from the cSPP system in M9 medium containing 15N–NH4Cl can be directly used for NMR structural study of the outer mebrane proteins without any further purification to get excellent [1H–15N]-TROSY spectra. This method would be quite valuable for the study of pure proteins in their native membrane environment without the need of purification and reconstitution.  相似文献   

4.
Attachment to host tissues is a critical step in the pathogenesis of most bacterial infections. Enterotoxigenic Escherichia coli (ETEC) remains one of the principal causes of infectious diarrhea in humans. The recent identification of additional ETEC surface molecules suggests that new targets may be exploited in vaccine development. The EtpA protein identified in ETEC H10407 is a large glycosylated adhesin secreted via the two-partner secretion system. EtpA requires its putative partner EtpB for translocation across the outer membrane (OM). We investigated the biochemical and electrophysiological properties of purified EtpB. We showed that EtpB is 65-kDa heat-modifiable protein localized to the OM. Electrophysiological experiments indicated that EtpB is able to form pores in planar lipid bilayer membranes with an asymmetric current, suggesting its functional asymmetry. The pore of EtpB frequently assumes an opened conformation and fluctuates between three well-defined conductance states. In silico analysis of the EtpB amino acid sequence and molecular modeling suggest that EtpB is similar to the well-known TpsB protein FhaC from Bordetella pertussis and has a C-terminal transmembrane β-barrel domain that is occluded by an N-terminal α-helix, an extracellular loop, and two periplasmic polypeptide-transport-associated (POTRA) domains. Together, these data confirm that EtpB is a pore-forming protein mainly folded into a β-barrel conformation and indicate that EtpB presents typical features of the OM TpsB proteins.  相似文献   

5.
BtuB is a large outer-membrane β-barrel protein that belongs to a class of active transport proteins that are TonB-dependent. These TonB-dependent transporters are based upon a 22-stranded antiparallel β-barrel, which is notably asymmetric in its length. Here, site-directed spin labeling and simulated annealing were used to locate the membrane lipid interface surrounding BtuB when reconstituted into phosphatidylcholine bilayers. Positions on the outer facing surface of the β-barrel and the periplasmic turns were spin-labeled and distances from the label to the membrane interface estimated by progressive power saturation of the electron paramagnetic resonance spectra. These distances were then used as atom-to-plane distance restraints in a simulated annealing routine, to dock the protein to two independent planes and produce a model representing the average position of the lipid phosphorus atoms at each interface. The model is in good agreement with the experimental data; however, BtuB is mismatched to the bilayer thickness and the resulting planes representing the bilayer interface are not parallel. In the model, the membrane thickness varies by 11 Å around the circumference of the protein, indicating that BtuB distorts the bilayer interface so that it is thinnest on the short side of the protein β-barrel.  相似文献   

6.
Membrane proteins are involved in numerous vital biological processes. To understand membrane protein functionality, accurate structural information is required. Usually, structure determination and dynamics of membrane proteins are studied in micelles using either solution state NMR or X‐ray crystallography. Even though invaluable information has been obtained by this approach, micelles are known to be far from ideal mimics of biological membranes often causing the loss or decrease of membrane protein activity. Recently, nanodiscs, which are composed of a lipid bilayer surrounded by apolipoproteins, have been introduced as a more physiological alternative than micelles for NMR investigations on membrane proteins. Here, we show that membrane protein bond orientations in nanodiscs can be obtained by measuring residual dipolar couplings (RDCs) with the outer membrane protein OmpX embedded in nanodiscs using Pf1 phage as an alignment medium. The presented collection of membrane protein RDCs in nanodiscs represents an important step toward more comprehensive structural and dynamical NMR‐based investigations of membrane proteins in a natural bilayer environment.  相似文献   

7.
The structures of three bacterial outer membrane proteins (OmpA, OmpX and PagP) have been determined by both X-ray diffraction and NMR. We have used multiple (7 × 15 ns) MD simulations to compare the conformational dynamics resulting from the X-ray versus the NMR structures, each protein being simulated in a lipid (DMPC) bilayer. Conformational drift was assessed via calculation of the root mean square deviation as a function of time. On this basis the ‘quality’ of the starting structure seems mainly to influence the simulation stability of the transmembrane β-barrel domain. Root mean square fluctuations were used to compare simulation mobility as a function of residue number. The resultant residue mobility profiles were qualitatively similar for the corresponding X-ray and NMR structure-based simulations. However, all three proteins were generally more mobile in the NMR-based than in the X-ray simulations. Principal components analysis was used to identify the dominant motions within each simulation. The first two eigenvectors (which account for >50% of the protein motion) reveal that such motions are concentrated in the extracellular loops and, in the case of PagP, in the N-terminal α-helix. Residue profiles of the magnitude of motions corresponding to the first two eigenvectors are similar for the corresponding X-ray and NMR simulations, but the directions of these motions correlate poorly reflecting incomplete sampling on a ∼10 ns timescale.  相似文献   

8.
Amphipathic polymers called amphipols provide a valuable alternative to detergents for keeping integral membrane proteins soluble in aqueous buffers. Here, we characterize spatial contacts of amphipol A8-35 with membrane proteins from two architectural classes: The 8-stranded β-barrel outer membrane protein OmpX and the α-helical protein bacteriorhodopsin. OmpX is well structured in A8-35, with its barrel adopting a fold closely similar to that in dihexanoylphosphocholine micelles. The accessibility of A8-35-trapped OmpX by a water-soluble paramagnetic molecule is highly similar to that in detergent micelles and resembles the accessibility in the natural membrane. For the α-helical protein bacteriorhodopsin, previously shown to keep its fold and function in amphipols, NMR data show that the imidazole protons of a polyhistidine tag at the N-terminus of the protein are exchange protected in the presence of detergent and lipid bilayer nanodiscs, but not in amphipols, indicating the absence of an interaction in the latter case. Overall, A8-35 exhibits protein interaction properties somewhat different from detergents and lipid bilayer nanodiscs, while maintaining the structure of solubilized integral membrane proteins.  相似文献   

9.
MexA, a periplasmic component of OprM-MexA-MexB tripartite multidrug efflux pump from Pseudomonas aeruginosa, is natively anchored via its fatty acid in the bacteria inner membrane protruding into the periplasm. We used supported lipid bilayer (SLB) to attach the protein to a single leaflet mimicking its perisplamic orientation. For that purpose, we studied the solubilization of DOPC lipid bilayer supported on silica surface with β-octyl glucoside (βOG). First we showed that SLBs resist to βOG concentrations that usually solubilize liposomes. Native form of MexA was directly inserted in the outer leaflet at (βOG concentrations in a range of 20–25 mM). Second, observations by cryo-electron microscopy (cryoEM) revealed a dense protein layer attached to the surface corresponding to a 13-nm layer of MexA proteins. Analysis of protein densities allows proposing a schematic organization of native MexA inserted in lipid membrane. This structural organization provides further insights with respect to the partially solved structure of the soluble form. Presented at the joint biannual meeting of the SFB-GEIMM-GRIP, Anglet France, 14–19 October, 2006.  相似文献   

10.
Aromatic amino acids of membrane proteins are enriched at the lipid-water interface. The role of tryptophan on the folding and stability of an integral membrane protein is investigated with ultraviolet resonance Raman and fluorescence spectroscopy. We investigate a model system, the β-barrel outer membrane protein A (OmpA), and focus on interfacial tryptophan residues oriented toward the lipid bilayer (trp-7, trp-170, or trp-15) or the interior of the β-barrel pore (trp-102). OmpA mutants with a single tryptophan residue at a nonnative position 170 (Trp-170) or a native position 7 (Trp-7) exhibit the greatest stability, with Gibbs free energies of unfolding in the absence of denaturant of 9.4 and 6.7 kcal/mol, respectively. These mutants are more stable than the tryptophan-free OmpA mutant, which exhibits a free energy of unfolding of 2.6 kcal/mol. Ultraviolet resonance Raman spectra of Trp-170 and Trp-7 reveal evolution of a hydrogen bond in a nonpolar environment during the folding reaction, evidenced by systematic shifts in hydrophobicity and hydrogen bond markers. These observations suggest that the hydrogen bond acceptor is the lipid acyl carbonyl group, and this interaction contributes significantly to membrane protein stabilization. Other spectral changes are observed for a tryptophan residue at position 15, and these modifications are attributed to development of a tryptophan-lipid cation-π interaction that is more stabilizing than an intraprotein hydrogen bond by ∼2 kcal/mol. As expected, there is no evidence for lipid-protein interactions for the tryptophan residue oriented toward the interior of the β-barrel pore. These results highlight the significance of lipid-protein interactions, and indicate that the bilayer provides more than a hydrophobic environment for membrane protein folding. Instead, a paradigm of lipid-assisted membrane protein folding and stabilization must be adopted.  相似文献   

11.
A set of 49 protein nanopore-lipid bilayer systems was explored by means of coarse-grained molecular-dynamics simulations to study the interactions between nanopores and the lipid bilayers in which they are embedded. The seven nanopore species investigated represent the two main structural classes of membrane proteins (α-helical and β-barrel), and the seven different bilayer systems range in thickness from ∼28 to ∼43 Å. The study focuses on the local effects of hydrophobic mismatch between the nanopore and the lipid bilayer. The effects of nanopore insertion on lipid bilayer thickness, the dependence between hydrophobic thickness and the observed nanopore tilt angle, and the local distribution of lipid types around a nanopore in mixed-lipid bilayers are all analyzed. Different behavior for nanopores of similar hydrophobic length but different geometry is observed. The local lipid bilayer perturbation caused by the inserted nanopores suggests possible mechanisms for both lipid bilayer-induced protein sorting and protein-induced lipid sorting. A correlation between smaller lipid bilayer thickness (larger hydrophobic mismatch) and larger nanopore tilt angle is observed and, in the case of larger hydrophobic mismatches, the simulated tilt angle distribution seems to broaden. Furthermore, both nanopore size and key residue types (e.g., tryptophan) seem to influence the level of protein tilt, emphasizing the reciprocal nature of nanopore-lipid bilayer interactions.  相似文献   

12.
The atomic structure of OmpX, the smallest member of the bacterial outer membrane protein family, has been previously established by X-ray crystallography and NMR spectroscopy. In apparent conflict with electrophysiological studies, the lumen of its transmembrane β-barrel appears too tightly packed with amino acid side chains to let any solute flow through. In the present study, high-resolution solution NMR spectra were obtained of OmpX kept water-soluble by either amphipol A8-35 or the detergent dihexanoylphosphatidylcholine. Hydrogen/deuterium exchange measurements performed after prolonged equilibration show that, whatever the surfactant used, some of the amide protons of the membrane-spanning region exchange much more readily than others, which likely reflects the dynamics of the barrel.  相似文献   

13.
Experimental and computer-assisted studies of the ability of the Agrobacterium virulence protein VirE2 to interact with an artificial bilayer lipid membrane were carried out. The lipid mixture of 63.5% diphytanoyl phosphatidylcholine, 30% diphytanoyl phosphatidylethanolamine, and 6.5% diphytanoyl phosphatidylglycerol proved to be optimal for preparation of membranes that were stable for 20 min. When a field of 10 to 50 mV was applied, the conductance of the planar bilayer lipid membranes upon introduction of the recombinant protein VirE2 abruptly increased, indicating possible formation of single long-living (1.5–5 s) pores. No proteins homologous to the protein VirE2 from Agrobacterium tumefaciens (no. P08062) were found in the SWISS-PROT or NCBI databases. Fifteen β-sheets and 12α-helices were predicted for the protein VirE2 using PROFsec. Computer-aided methods were used to build model structures consisting of two and four VirE2 proteins. It has been shown for the first time that pores with the channel diameters of 2.2 or 4 nm can be formed in a model structure consisting of two or four VirE2 molecules, respectively, which is located in the bilayer membrane. The ends of a motile interdomain loop exposed in the channel formed by two proteins narrow the channel bore to 0.7 nm.  相似文献   

14.
PmOmpA is a two-domain outer membrane protein from Pasteurella multocida. The N-terminal domain of PmOmpA is a homologue of the transmembrane β-barrel domain of OmpA from Escherichia coli, whilst the C-terminal domain of PmOmpA is a homologue of the extra-membrane Neisseria meningitidis RmpM C-terminal domain. This enables a model of a complete two domain PmOmpA to be constructed and its conformational dynamics explored via MD simulations of the protein embedded within two different phospholipid bilayers (DMPC and DMPE). The conformational stability of the transmembrane β-barrel is similar to that of a homology model of OprF from Pseudomonas aeruginosa in bilayer simulations. There is a degree of water penetration into the interior of the β-barrel, suggestive of a possible transmembrane pore. Although the PmOmpA model is stable over 20 ns simulations, retaining its secondary structure and fold integrity throughout, substantial flexibility is observed in a short linker region between the N- and the C-terminal domains. At low ionic strength, the C-terminal domain moves to interact electrostatically with the lipid bilayer headgroups. This study demonstrates that computational approaches may be applied to more complex, multi-domain outer membrane proteins, rather than just to transmembrane β-barrels, opening the possibility of in silico proteomics approaches to such proteins.  相似文献   

15.
The beta-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane beta-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5 degrees tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to alpha-helical membrane proteins.  相似文献   

16.
Aggregation of transmembrane proteins is important for many biological processes, such as protein sorting and cell signaling, and also for in vitro processes such as two-dimensional crystallization. We have used large-scale simulations to study the lateral organization and dynamics of lipid bilayers containing multiple inserted proteins. Using coarse-grained molecular dynamics simulations, we have studied model membranes comprising ∼7000 lipids and 16 identical copies of model cylindrical proteins of either α-helical or β-barrel types. Through variation of the lipid tail length and hence the degree of hydrophobic mismatch, our simulations display levels of protein aggregation ranging from negligible to extensive. The nature and extent of aggregation are shown to be influenced by membrane curvature and the shape or orientation of the protein. Interestingly, a model β-barrel protein aggregates to form one-dimensional strings within the bilayer plane, whereas a model α-helical bundle forms two-dimensional clusters. Overall, it is clear that the nature and extent of membrane protein aggregation is dependent on several aspects of the proteins and lipids, including hydrophobic mismatch, protein class and shape, and membrane curvature.  相似文献   

17.
AF2241 is a hypothetical protein from Archaeoglobus fulgidus and it belongs to the PFam domain of unknown function 369 (DUF369). NMR structural determination reveals that AF2241 adopts a cyclophilin-like fold, with a β-barrel core composed of eight β-strands, one α-helix, and one 310 helix located at each end of the barrel. The protein displays a high structural similarity to TM1367, another member of DUF369 whose structure has been determined recently by X-ray crystallography. Structural similarity search shows that AF2241 also has a high similarity to human cyclophilin A, however, sequence alignment and electrostatic potential analysis reveal that the residues in the PPIase catalytic site of human cyclophilin A are not conserved in AF2241 or TM1367. Instead, a putative active site of AF2241 maps to a negatively charged pocket composed of 9 conserved residues. Our results suggest that although AF2241 adopts the same fold as the human cyclophilin A, it may have distinct biological function. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Mahalakshmi R  Marassi FM 《Biochemistry》2008,47(25):6531-6538
The solid-state NMR orientation-dependent frequencies measured for membrane proteins in macroscopically oriented lipid bilayers provide precise orientation restraints for structure determination in membranes. Here we show that this information can also be used to supplement crystallographic structural data to establish the orientation of a membrane protein in the membrane. This is achieved by incorporating a few orientation restraints, measured for the Escherichia coli outer membrane protein OmpX in magnetically oriented lipid bilayers (bicelles), in a simulated annealing calculation with the coordinates of the OmpX crystal structure. The (1)H-(15)N dipolar couplings measured for the seven Phe residues of OmpX in oriented bilayers can be assigned by back-calculation of the NMR spectrum from the crystal structure and are sufficient to establish the three-dimensional orientation of the protein in the membrane, while the (15)N chemical shifts provide a measure of cross-validation for the analysis. In C14 lipid bilayers, OmpX adopts a transmembrane orientation with a 7 degrees tilt of its beta-barrel axis relative to the membrane normal, matching the hydrophobic thickness of the barrel with that of the membrane.  相似文献   

19.
The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways.  相似文献   

20.
PagP is a bacterial outer membrane protein consisting of an 8 stranded transmembrane β-barrel and an N-terminal α-helix. It is an enzyme which catalyses transfer of a palmitoyl chain from a phospholipid to lipid A. Molecular dynamics simulations have been used to compare the dynamic behaviour in simulations starting from two different structures (X-ray vs. NMR) and in six different environments (detergent micelles formed by dodecyl phosphocholine and by octyl glucoside, vs. four species of phospholipid bilayer). Analysis of interactions between the protein and its environment reveals the role played by the N-terminal α-helix, which interacts with the lipid headgroups to lock the PagP molecule into the bilayer. The PagP β-barrel adopts a tilted orientation in lipid bilayers, facilitating access of lipid tails into the mouth of the central binding pocket. In simulations starting from the X-ray structure in lipid bilayer, the L1 and L2 loops move towards one another, leading to the formation of a putative active site by residues H33, D76 and S77 coming closer together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号