首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analyses of Y chromosome haplotypes uniquely provide a paternal picture of evolutionary histories and offer a very useful contrast to studies based on maternally inherited mitochondrial DNA (mtDNA). Here we used a bioinformatic approach based on comparison of male and female sequence coverage to identify 4.7 Mb from the grey wolf (Canis lupis) Y chromosome, probably representing most of the male‐specific, nonampliconic sequence from the euchromatic part of the chromosome. We characterized this sequence and then identified ≈1,500 Y‐linked single nucleotide polymorphisms in a sample of 145 resequenced male wolves, including 75 Finnish wolf genomes newly sequenced in this study, and in 24 dogs and eight other canids. We found 53 Y chromosome haplotypes, of which 26 were seen in grey wolves, that clustered in four major haplogroups. All four haplogroups were represented in samples of Finnish wolves, showing that haplogroup lineages were not partitioned on a continental scale. However, regional population structure was indicated because individual haplotypes were never shared between geographically distant areas, and genetically similar haplotypes were only found within the same geographical region. The deepest split between grey wolf haplogroups was estimated to have occurred 125,000 years ago, which is considerably older than recent estimates of the time of divergence of wolf populations. The distribution of dogs in a phylogenetic tree of Y chromosome haplotypes supports multiple domestication events, or wolf paternal introgression, starting 29,000 years ago. We also addressed the disputed origin of a recently founded population of Scandinavian wolves and observed that founding as well as most recent immigrant haplotypes were present in the neighbouring Finnish population, but not in sequenced wolves from elsewhere in the world, or in dogs.  相似文献   

2.
High‐resolution, male‐inherited Y‐chromosomal markers are a useful tool for population genetic analyses of wildlife species, but to date have only been applied in this context to relatively few species besides humans. Using nine Y‐chromosomal STRs and three Y‐chromosomal single nucleotide polymorphism markers (Y‐SNPs), we studied whether male gene flow was important for the recent recovery of the brown bear (Ursus arctos) in Northern Europe, where the species declined dramatically in numbers and geographical distribution during the last centuries but is expanding now. We found 36 haplotypes in 443 male extant brown bears from Sweden, Norway, Finland and northwestern Russia. In 14 individuals from southern Norway from 1780 to 1920, we found two Y chromosome haplotypes present in the extant population as well as four Y chromosome haplotypes not present among the modern samples. Our results suggested major differences in genetic connectivity, diversity and structure between the eastern and the western populations in Northern Europe. In the west, our results indicated that the recovered population originated from only four male lineages, displaying pronounced spatial structuring suggestive of large‐scale population size increase under limited male gene flow within the western subpopulation. In the east, we found a contrasting pattern, with high haplotype diversity and admixture. This first population genetic analysis of male brown bears shows conclusively that male gene flow was not the main force of population recovery.  相似文献   

3.
In the past century the Italian wolf has been repeatedly indicated as a distinct subspecies, Canis lupus italicus, due to its unique morphology and its distinctive mtDNA control region (CR) monomorphism. However, recent studies on wolf x dog hybridization in Italy documented the presence of a second mtDNA CR haplotype (W16), previously found only in wolves from Eastern Europe, casting doubts on the genetic uniqueness of the Italian wolves. To test whether this second haplotype belongs to the Italian wolf population, we genotyped 92 wolf DNA samples from Italy, Slovenia, Greece and Bulgaria at four mtDNA regions (control-region, ATP6, COIII and ND4 genes) and at 39 autosomal microsatellites. Results confirm the presence of two mtDNA multi-fragment haplotypes (WH14 and WH19) in the Italian wolves, distinct from all the other European wolves. Network analyses of the multi-fragment mtDNA haplotypes identified two strongly differentiated clades, with the Italian wolf WH14 and WH19 multi-fragment haplotypes rooted together. Finally, Bayesian clustering clearly assigned all the wolves sampled in Italy to the Italian population, regardless of the two different multi-fragment haplotypes. These results demonstrate that the W16 CR haplotype is part of the genetic pool of the Italian wolf population, reconfirming its distinctiveness from other European wolves. Overall, considering the presence of unique mtDNA and Y-linked haplotypes, the sharply different frequencies of genome-wide autosomal alleles and the distinct morphological features of Italian wolves, we believe that this population should be considered a distinct subspecies.  相似文献   

4.
The identification of hybrids is often a subject of primary concern for the development of conservation and management strategies, but can be difficult when the hybridizing species are closely related and do not possess diagnostic genetic markers. However, the combined use of mitochondrial DNA (mtDNA), autosomal and Y chromosome genetic markers may allow the identification of hybrids and of the direction of hybridization. We used these three types of markers to genetically characterize one possible wolf-dog hybrid in the endangered Scandinavian wolf population. We first characterized the variability of mtDNA and Y chromosome markers in Scandinavian wolves as well as in neighboring wolf populations and in dogs. While the mtDNA data suggested that the target sample could correspond to a wolf, its Y chromosome type had not been observed before in Scandinavian wolves. We compared the genotype of the target sample at 18 autosomal microsatellite markers with those expected in pure specimens and in hybrids using assignment tests. The combined results led to the conclusion that the animal was a hybrid between a Scandinavian female wolf and a male dog. This finding confirms that inter-specific hybridization between wolves and dogs can occur in natural wolf populations. A possible correlation between hybridization and wolf population density and disturbance deserves further research.  相似文献   

5.
Numerous studies have been conducted to investigate genetic diversity, origins and domestication of donkey using autosomal microsatellites and the mitochondrial genome, whereas the male‐specific region of the Y chromosome of modern donkeys is largely uncharacterized. In the current study, 14 published equine Y chromosome‐specific microsatellites (Y‐STR) were investigated in 395 male donkey samples from China, Egypt, Spain and Peru using fluorescent labeled microsatellite markers. The results showed that seven Y‐STRs—EcaYP9, EcaYM2, EcaYE2, EcaYE3, EcaYNO1, EcaYNO2 and EcaYNO4—were male specific and polymorphic, showing two to eight alleles in the donkeys studied. A total of 21 haplotypes corresponding to three haplogroups were identified, indicating three independent patrilines in domestic donkey. These markers are useful for the study the Y‐chromosome diversity and population genetics of donkeys in Africa, Europe, South America and China.  相似文献   

6.
The grey wolf (Canis lupus) is an iconic large carnivore that has increasingly been recognized as an apex predator with intrinsic value and a keystone species. However, wolves have also long represented a primary source of human–carnivore conflict, which has led to long‐term persecution of wolves, resulting in a significant decrease in their numbers, genetic diversity and gene flow between populations. For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population genetic studies in Europe, covering major studies from the ‘pre‐genomic era’ and the first insights of the ‘genomics era’. We analyse, summarize and discuss findings derived from analyses of three compartments of the mammalian genome with different inheritance modes: maternal (mitochondrial DNA), paternal (Y chromosome) and biparental [autosomal microsatellites and single nucleotide polymorphisms (SNPs)]. To describe large‐scale trends and patterns of genetic variation in European wolf populations, we conducted a meta‐analysis based on the results of previous microsatellite studies and also included new data, covering all 19 European countries for which wolf genetic information is available: Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Germany, Belarus, Russia, Italy, Croatia, Bulgaria, Bosnia and Herzegovina, Greece, Spain and Portugal. We compared different indices of genetic diversity in wolf populations and found a significant spatial trend in heterozygosity across Europe from south‐west (lowest genetic diversity) to north‐east (highest). The range of spatial autocorrelation calculated on the basis of three characteristics of genetic diversity was 650?850 km, suggesting that the genetic diversity of a given wolf population can be influenced by populations up to 850 km away. As an important outcome of this synthesis, we discuss the most pressing issues threatening wolf populations in Europe, highlight important gaps in current knowledge, suggest solutions to overcome these limitations, and provide recommendations for science‐based wolf conservation and management at regional and Europe‐wide scales.  相似文献   

7.
We have identified a new T-->C transition on the human Y chromosome. C-allele chromosomes have been found only in a subset of the populations from Asia and northern Europe and reach their highest frequencies in Yakut, Buryats, and Finns. Examination of the microsatellite haplotypes of the C-allele chromosomes suggests that the mutation occurred recently in Asia. The Y chromosome thus provides both information about population relationships in Asia and evidence for a substantial paternal genetic contribution of Asians to northern European populations such as the Finns.  相似文献   

8.
Single nucleotide polymorphisms (SNPs) have the potential to become the genetic marker of choice in studies of the ecology and conservation of natural populations because of their capacity to access variability across the genome. In this study, we provide one of the first demonstrations of SNP discovery in a wild population in order to address typical issues of importance in ecology and conservation in the recolonized Scandinavian and neighbouring Finnish wolf Canis lupus populations. Using end sequence from BAC (bacterial artificial chromosome) clones specific for dogs, we designed assays for 24 SNP loci, 20 sites of which had previously been shown to be polymorphic in domestic dogs and four sites were newly identified as polymorphic in wolves. Of the 24 assayed loci, 22 SNPs were found to be variable within the Scandinavian population and, importantly, these were able to distinguish individual wolves from one another (unbiased probability of identity of 4.33 x 10(-8)), providing equivalent results to that derived from 12 variable microsatellites genotyped in the same population. An assignment test shows differentiation between the Scandinavian and neighbouring Finnish wolf populations, although not all known immigrants are accurately identified. An exploration of the misclassification rates in the identification of relationships shows that neither 22 SNP nor 20 microsatellite loci are able to discriminate across single order relationships. Despite the remaining obstacle of SNP discovery in nonmodel organisms, the use of SNPs in ecological and conservation studies is encouraged by the advent of large scale screening methods. Furthermore, the ability to amplify extremely small fragments makes SNPs of particular use for population monitoring, where faecal and other noninvasive samples are routinely used.  相似文献   

9.
There has been considerable discussion on the origin of the red wolf and eastern wolf and their evolution independent of the gray wolf. We analyzed mitochondrial DNA (mtDNA) and a Y‐chromosome intron sequence in combination with Y‐chromosome microsatellites from wolves and coyotes within the range of extensive wolf–coyote hybridization, that is, eastern North America. The detection of divergent Y‐chromosome haplotypes in the historic range of the eastern wolf is concordant with earlier mtDNA findings, and the absence of these haplotypes in western coyotes supports the existence of the North American evolved eastern wolf (Canis lycaon). Having haplotypes observed exclusively in eastern North America as a result of insufficient sampling in the historic range of the coyote or that these lineages subsequently went extinct in western geographies is unlikely given that eastern‐specific mtDNA and Y‐chromosome haplotypes represent lineages divergent from those observed in extant western coyotes. By combining Y‐chromosome and mtDNA distributional patterns, we identified hybrid genomes of eastern wolf, coyote, gray wolf, and potentially dog origin in Canis populations of central and eastern North America. The natural contemporary eastern Canis populations represent an important example of widespread introgression resulting in hybrid genomes across the original C. lycaon range that appears to be facilitated by the eastern wolf acting as a conduit for hybridization. Applying conventional taxonomic nomenclature and species‐based conservation initiatives, particularly in human‐modified landscapes, may be counterproductive to the effective management of these hybrids and fails to consider their evolutionary potential.  相似文献   

10.
Domesticated cattle were one of the cornerstones of European Neolithisation and are thought to have been introduced to Europe from areas of aurochs domestication in the Near East. This is consistent with mitochondrial DNA (mtDNA) data, where a clear separation exists between modern European cattle and ancient specimens of British aurochsen. However, we show that Y chromosome haplotypes of north European cattle breeds are more similar to haplotypes from ancient specimens of European aurochsen, than to contemporary cattle breeds from southern Europe and the Near East. There is a sharp north-south gradient across Europe among modern cattle breeds in the frequencies of two distinct Y chromosome haplotypes; the northern haplotype is found in 20 out of 21 European aurochsen or early domestic cattle dated 9500-1000 BC. This indicates that local hybridization with male aurochsen has left a paternal imprint on the genetic composition of modern central and north European breeds. Surreptitious mating between aurochs bulls and domestic cows may have been hard to avoid, or may have occurred intentionally to improve the breeding stock. Rather than originating from a few geographical areas only, as indicated by mtDNA, our data suggest that the origin of domestic cattle may be far more complex than previously thought.  相似文献   

11.
Five cattle Y‐specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2‐haplotypes were only present in African cattle. Network and correspondence analyses showed that this African‐specific subfamily clustered separately from the main Y2‐subfamily and the Y1 haplotypes. Within‐breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between‐breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub‐Saharan Africa (belonging to Y2‐haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y‐chromosome lineages (Y1 and Y2) in taurine cattle. However, Y‐specific microsatellites increased analytical resolution and allowed at least two different Y2‐haplotypic subfamilies to be distinguished, one of them restricted to the African continent.  相似文献   

12.
Continued gene flow is fundamental to the survival of small, isolated populations. However, geography and human intervention can often act contrary to this requirement. The Scandinavian wolf population is threatened with a loss of genetic variation yet limited in the accessibility to new immigrants by the geographical distance of this peninsular population from its nearest neighbouring population and by human reluctance to allow wolves in the northern reindeer-breeding areas. In this study, we describe the identification of immigrants into this population using autosomal microsatellites, and maternally inherited mtDNA. Samples of 14 wolves collected in the “dispersal corridor” in northern Sweden in 2002–2005 were compared with 185 resident Scandinavian wolves and 79 wolves from the neighbouring Finnish population. We identified four immigrant wolves, suggesting some westward migration, although only one of these is likely to still survive. The integration of such immigrants into the breeding population is necessary to assure the long-term survival of this isolated and inbred population and highlights the importance of genetics techniques to the management of threatened populations.  相似文献   

13.
Previous studies have investigated the human population history of eastern North America by examining mitochondrial DNA (mtDNA) variation among Native Americans, but these studies could only reconstruct maternal population history. To evaluate similarities and differences in the maternal and paternal population histories of this region, we obtained DNA samples from 605 individuals, representing 16 indigenous populations. After amplifying the amelogenin locus to identify males, we genotyped 8 binary polymorphisms and 10 microsatellites in the male-specific region of the Y chromosome. This analysis identified 6 haplogroups and 175 haplotypes. We found that sociocultural factors have played a more important role than language or geography in shaping the patterns of Y chromosome variation in eastern North America. Comparisons with previous mtDNA studies of the same samples demonstrate that male and female demographic histories differ substantially in this region. Postmarital residence patterns have strongly influenced genetic structure, with patrilocal and matrilocal populations showing different patterns of male and female gene flow. European contact also had a significant but sex-specific impact due to a high level of male-mediated European admixture. Finally, this study addresses long-standing questions about the history of Iroquoian populations by suggesting that the ancestral Iroquoian population lived in southeastern North America.  相似文献   

14.
Hybridization between wild species and their domestic counterparts may represent a major threat to natural populations. However, high genetic similarity between the hybridizing taxa makes the detection of hybrids a difficult task and may hinder attempts to assess the impact of hybridization in conservation biology. In this work, we used a combination of 42 autosomal microsatellites together with Y-chromosome microsatellite-defined haplotypes and mtDNA sequences to investigate the occurrence and dynamics of wolf-dog hybridization in the Iberian Peninsula. To do this, we applied a variety of Bayesian analyses and a parallel set of simulation studies to evaluate (i) the differences between Iberian wolves and dogs, (ii) the frequency and geographical distribution of hybridization and (iii) the directionality of hybridization. First, we show that Iberian wolves and dogs form two well-differentiated genetic entities, suggesting that introgressive hybridization is not a widespread phenomenon shaping both gene pools. Second, we found evidence for the existence of hybridization that is apparently restricted to more peripheral and recently expanded wolf populations. Third, we describe compelling evidence suggesting that the dynamics of hybridization in wolf populations is mediated by crosses between male dogs and female wolves. More importantly, the observation of a population showing the occurrence of a continuum of hybrid classes forming mixed packs may indicate that we have underestimated hybridization. If future studies confirm this pattern, then an intriguing avenue of research is to investigate how introgression from free-ranging domestic dogs is enabling wolf populations to adapt to the highly humanized habitats of southern Europe while still maintaining their genetic differentiation.  相似文献   

15.
《Mammalian Biology》2014,79(4):277-282
The Dinaric-Balkan grey wolf population used to be at a border between the large remaining Eastern European populations and the largely eradicated Western European populations. During the last few decades we have witnessed the Western European wolf population recovery. Substantial genetic variation has previously been reported in the Balkan wolf population, but rigorous genetic characterization has not been done for its central parts. The aims of this research were to determine genetic diversity based on mtDNA sequence variability, to infer possible population structuring, to find genetic signals of population expansions or bottlenecks and to evaluate phylogenetic position of the grey wolf population from the Central Balkans. Six haplotypes were detected, of which three have only been found in the Balkan region. These haplotypes belong to both haplogroups previously determined in Europe. Based on our mtDNA sequence analyses, the Dinaric-Balkan wolf population is vertically differentiated into “western” (Croatia/Bosnia and Herzegovina) and “eastern” (Serbia/Macedonia) subpopulations. None of the results support assumption of population expansion. Instead, significantly positive values for Tajima's D and Fu's Fs may suggest recent population bottleneck. Obtained data may be helpful in observation to which extent gene pool from the Balkans contribute to newly founded populations in Western Europe.  相似文献   

16.
The major histocompatibility complex (MHC) has an integral role in the immune system, and hence diversity at its genes may be of particular importance for the health of populations. In large populations, balancing selection maintains diversity in MHC genes, but theoretical expectations indicate that this form of selection is absent or inefficient in small populations. We examine the level of diversity at three MHC class II loci in the wolf population of Scandinavia, a population naturally recolonized with a genetic contribution from as few as three founders, and in four neighbouring wolf populations. In the Scandinavian wolf population, two alleles were found for each locus and the distribution of alleles is compatible with their linkage into two haplotypes. Changes in the level of heterozygosity over time since recolonization demonstrate the effects of the proposed arrival of an immigrant wolf. The maintenance of diversity is shown to be compatible with a neutral, random allocation of alleles, in conjunction with crossing between packs. A total of 15 DRB1, seven DQA and 10 DQB1 alleles are found in four neighbouring wolf populations, with substantial sharing across populations. Even in these larger populations, bottlenecks and fragmentation with consequent genetic drift are likely to have resulted in few indicators for balancing selection and significant differentiation of populations.  相似文献   

17.
The grey wolf (Canis lupus) was numerous on the Scandinavian peninsula in the early 19th century. However, as a result of intense persecution, the population declined dramatically and was virtually extinct from the peninsula by the 1960s. We examined historical patterns of genetic variability throughout the period of decline, from 1829 to 1979. Contemporary Finnish wolves, considered to be representative of a large eastern wolf population, were used for comparison. Mitochondrial DNA (mtDNA) variability among historical Scandinavian wolves was significantly lower than in Finland while Y chromosome variability was comparable between the two populations. This may suggest that long-distance migration from the east has been male-biased. Importantly though, as the historical population was significantly differentiated from contemporary Finnish wolves, the overall immigration rate to the Scandinavian peninsula appears to have been low. Levels of variability at autosomal microsatellite loci were high by the early 1800s but declined considerably towards the mid-20th century. At this time, approximately 40% of the allelic diversity and 30% of the heterozygosity had been lost. After 1940, however, there is evidence of several immigration events, coinciding with episodes of marked population increase in Russian Karelia and subsequent westwards migration.  相似文献   

18.
The Czechoslovakian Wolfdog is a unique dog breed that originated from hybridization between German Shepherds and wild Carpathian wolves in the 1950s as a military experiment. This breed was used for guarding the Czechoslovakian borders during the cold war and is currently kept by civilian breeders all round the world. The aim of our study was to characterize, for the first time, the genetic composition of this breed in relation to its known source populations. We sequenced the hypervariable part of the mtDNA control region and genotyped the Amelogenin gene, four sex-linked microsatellites and 39 autosomal microsatellites in 79 Czechoslovakian Wolfdogs, 20 German Shepherds and 28 Carpathian wolves. We performed a range of population genetic analyses based on both empirical and simulated data. Only two mtDNA and two Y-linked haplotypes were found in Czechoslovakian Wolfdogs. Both mtDNA haplotypes were of domestic origin, while only one of the Y-haplotypes was shared with German Shepherds and the other was unique to Czechoslovakian Wolfdogs. The observed inbreeding coefficient was low despite the small effective population size of the breed, possibly due to heterozygote advantages determined by introgression of wolf alleles. Moreover, Czechoslovakian Wolfdog genotypes were distinct from both parental populations, indicating the role of founder effect, drift and/or genetic hitchhiking. The results revealed the peculiar genetic composition of the Czechoslovakian Wolfdog, showing a limited introgression of wolf alleles within a higher proportion of the dog genome, consistent with the reiterated backcrossing used in the pedigree. Artificial selection aiming to keep wolf-like phenotypes but dog-like behavior resulted in a distinctive genetic composition of Czechoslovakian Wolfdogs, which provides a unique example to study the interactions between dog and wolf genomes.  相似文献   

19.
The domestic dog mitochondrial DNA (mtDNA)‐gene pool consists of a homogenous mix of haplogroups shared among all populations worldwide, indicating that the dog originated at a single time and place. However, one small haplogroup, subclade d1, found among North Scandinavian/Finnish spitz breeds at frequencies above 30%, has a clearly separate origin. We studied the genetic and geographical diversity for this phylogenetic group to investigate where and when it originated and whether through independent domestication of wolf or dog‐wolf crossbreeding. We analysed 582 bp of the mtDNA control region for 514 dogs of breeds earlier shown to harbour d1 and possibly related northern spitz breeds. Subclade d1 occurred almost exclusively among Swedish/Finnish Sami reindeer‐herding spitzes and some Swedish/Norwegian hunting spitzes, at a frequency of mostly 60–100%. Genetic diversity was low, with only four haplotypes: a central, most frequent, one surrounded by two haplotypes differing by an indel and one differing by a substitution. The substitution was found in a single lineage, as a heteroplasmic mix with the central haplotype. The data indicate that subclade d1 originated in northern Scandinavia, at most 480–3000 years ago and through dog‐wolf crossbreeding rather than a separate domestication event. The high frequency of d1 suggests that the dog‐wolf hybrid phenotype had a selective advantage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号