首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ski4::Tn917lac insertion mutation in Bacillus subtilis was isolated in a screen for mutations that cause a defect in sporulation but that are suppressed by the presence or overexpression of the histidine protein kinase encoded by kinA (spoIIJ). ski4::Tn917lac caused a small defect in sporulation, but in combination with a null mutation in kinA, it caused a much more severe defect. The insertion mutation was in an 87-amino-acid open reading frame (orf87 bofA) that controls the activation of a sigma factor, sigma K, at intermediate times during sporulation. The ski4 mutation caused the premature expression of cotA, a gene controlled by sigma K. An independent mutation that causes the premature activation of sigma K also caused a synthetic (synergistic) sporulation phenotype in combination with a null mutation in kinA, indicating that the defect was due to altered timing of gene expression directed by sigma K. Expression of ski4 was shown to be controlled by the sporulation-specific sigma factor sigma E.  相似文献   

2.
3.
Determination of left-right axis is a precocious embryonic event, and all phenotypic anomalies resulting from disruption of the normal lateralization process are collectively referred to as the lateralization defect. A transgenic mouse with lateralization defect and hepatic, kidney, and pancreatic anomalies has resulted from disruption of the inv gene by insertion of a transgene. The human ortholog is thus a good candidate for lateralization defect in humans, in particular in cases with associated hepatic anomalies. Here, we have identified, mapped, and characterized the INV human gene and screened a series of heterotaxic patients (with or without biliary anomalies) for mutation in this gene. In a German family of Turkish origin, we have found that all available affected and unaffected individuals are heterozygous for a mutation in the splicing donor site of intron 12 in the INV gene resulting in two different aberrant splicing isoforms. This can be explained either by a randomization of lateralization defects or, as suggested earlier, di- or trigenic inheritance, although we have been unable to detect, in this family, a mutation in genes known to be involved in the human lateralization defect ( LEFTY1, LEFTY2, ACVR2B, NODAL, ZIC3, and CFC1). In contrast to the mouse, the affected individuals have no biliary anomalies, and the absence of mutation in a series of seven cases with lateralization defect and biliary anomalies demonstrates that INV is not frequently involved in such a phenotype in humans.  相似文献   

4.
5.
Tibial muscular dystrophy (TMD) is an autosomal dominant late-onset distal myopathy linked to chromosome 2q31. The linked region includes the giant TTN gene, which encodes the central sarcomeric protein, titin. We have previously shown a secondary calpain-3 defect to be associated with TMD, which further underscored that titin is the candidate. We now report the first mutations in TTN to cause a human skeletal-muscle disease, TMD. In Mex6, the last exon of TTN, a unique 11-bp deletion/insertion mutation, changing four amino acid residues, completely cosegregated with all tested 81 Finnish patients with TMD in 12 unrelated families. The mutation was not found in 216 Finnish control samples. In a French family with TMD, a Leu-->Pro mutation at position 293,357 in Mex6 was discovered. Mex6 is adjacent to the known calpain-3 binding site Mex5 of M-line titin. Immunohistochemical analysis using two exon-specific antibodies directed to the M-line region of titin demonstrated the specific loss of carboxy-terminal titin epitopes in the TMD muscle samples that we studied, thus implicating a functional defect of the M-line titin in the genesis of the TMD disease phenotype.  相似文献   

6.
The yeast G alpha subunit, Gpa1p, plays a negative role in the pheromone response pathway. The gpa1Val50 mutant was previously shown to have a growth defect, consistent with the GTPase defect predicted for this mutation, and greatly reduced mating. Various explanations for the mating defect have been proposed. One approach to analyze the gpa1Val50 mating defect involved epistasis analysis. The low mating of the gpa1Val50 mutant was independent of the pheromone receptor; therefore, it results from intracellular activation of the pathway, consistent with a GTPase defect. This result suggests that gpa1Val50 mating occurs through the default rather than the chemotropic pathway involved in pheromone response. We therefore tested the effect of a spa2 mutation on gpa1Val50 mating, because Spa2p has been implicated in the default pathway. The spa2 mutation greatly reduced the mating of the gpa1Val50 mutant, suggesting that gpa1Val50 mating occurs predominantly through the default pathway. In a second approach to investigate the gpa1Val50 phenotypes, suppressors of the gpa1Val50 mating defect were isolated. Two suppressor genes corresponded to SON1/UFD5 and SEN3, which are implicated in ubiquitin-mediated proteolysis. On the basis of these results, we suggest that a positive component of the default mating pathway is subject to ubiquitin-mediated degradation.  相似文献   

7.
8.
9.
With the advent of high-throughput DNA sequencing, it is now straightforward and inexpensive to generate high-density small nucleotide polymorphism (SNP) maps. Here we combined high-throughput sequencing with bulk segregant analysis to expedite mutation mapping. The general map location of a mutation can be identified by a single backcross to a strain enriched in SNPs compared to a standard wild-type strain. Bulk segregant analysis simultaneously increases the likelihood of determining the precise nature of the mutation. We present here a high-density SNP map between Neurospora crassa Mauriceville-1-c (FGSC2225) and OR74A (FGSC2489), the strains most typically used by Neurospora researchers to carry out mapping crosses. We further have demonstrated the utility of the Mauriceville sequence and our approach by mapping the mutation responsible for the only existing temperature-sensitive (ts) cell cycle mutation in Neurospora, nuclear division cycle-1 (ndc-1). The single T-to-C point mutation maps to the gene encoding ornithine decarboxylase (ODC), spe-1 (NCU01271), and changes a Phe to a Ser residue within a highly conserved motif next to the catalytic site of the enzyme. By growth on spermidine and complementation with a wild-type spe-1 gene, we showed that the defect in spe-1 is responsible for the ts ndc-1 mutation. Based on our results, we propose changing ndc-1 to spe-1(ndc), which reflects that this mutation results in an ODC with a specific nuclear division defect.  相似文献   

10.
G. R. Fabian  S. M. Hess    A. K. Hopper 《Genetics》1990,124(3):497-504
We define a new gene, SRD1, involved in the processing of pre-rRNA to mature rRNA. The SRD1 gene was identified by selecting for second-site suppressors of the previously described rrp1-1 mutation. The rrp1-1 mutation causes temperature-sensitive growth, a conditional defect in processing of 27S pre-rRNA to mature 25S rRNA, and a nonconditional increase in sensitivity to several aminoglycoside antibiotics. All srd1 alleles identified are recessive and apparently specific to the rrp1-1 mutation. Although a mutation of SRD1 suppresses the pre-rRNA processing defect, drug sensitivity and thermolethality of a point mutation of RRP1, it is unable to suppress a rrp1-disruption allele. We suggest that the SRD1 gene product either interacts with or regulates the RRP1 product.  相似文献   

11.
K. A. Hudak  J. M. Lopes    S. A. Henry 《Genetics》1994,136(2):475-483
Three mutants were identified in a genetic screen using an INO1-lacZ fusion to detect altered INO1 regulation in Saccharomyces cerevisiae. These strains harbor mutations that render the cell unable to fully repress expression of INO1, the structural gene for inositol-1-phosphate synthase. The Cpe(-) (constitutive phospholipid gene expression) phenotype associated with these mutations segregated 2:2, indicating that it was the result of a single gene mutation. The mutations were shown to be recessive and allelic. A strain carrying the tightest of the three alleles was examined in detail and was found to express the set of co-regulated phospholipid structural genes (INO1, CHO1, CHO2 and OPI3) constitutively. The Cpe(-) mutants also exhibited a pleiotropic defect in sporulation. The mutations were mapped to the right arm of chromosome XV, close to the centromere, where it was discovered that they were allelic to the previously identified regulatory mutation sin3 (sdi1, ume4, rpd1, gam2). A sin3 null mutation failed to complement the mutation conferring the Cpe(-) phenotype. A mutant harboring a sin3 null allele exhibited the same altered INO1 expression pattern observed in strains carrying the Cpe(-) mutations isolated in this study.  相似文献   

12.
Leber's hereditary optic neuropathy (LHON) is a form of blindness caused by mitochondrial DNA (mtDNA) mutations in complex I genes. We report an extensive biochemical analysis of the mitochondrial defects in lymphoblasts and transmitochondrial cybrids harboring the three most common LHON mutations: 3460A, 11778A, and 14484C. Respiration studies revealed that the 3460A mutation reduced the maximal respiration rate 20-28%, the 11778A mutation 30-36%, and the 14484C mutation 10-15%. The respiration defects of the 3460A and 11778A mutations transferred in cybrid experiments linking these defects to the mtDNA. Complex I enzymatic assays revealed that the 3460A mutation resulted in a 79% reduction in specific activity and the 11778A mutation resulted in a 20% reduction, while the 14484C mutation did not affect the complex I activity. The enzyme defect of the 3460A mutation transferred with the mtDNA in cybrids. Overall, these data support the conclusion that the 3460A and 11778A mutants result in complex I defects and that the 14484C mutation causes a much milder biochemical defect. These studies represent the first direct comparison of oxidative phosphorylation defects among all of the primary LHON mtDNA mutations, thus permitting insight into the underlying pathophysiological mechanism of the disease.  相似文献   

13.
J Kim  Y Lee  C Kim    C Park 《Journal of bacteriology》1992,174(16):5219-5227
Ribose-binding protein (RBP) is an exported protein of Escherichia coli that functions in the periplasm. The export of RBP involves the secretion machinery of the cell, consisting of a cytoplasmic protein, SecA, and the integral membrane translocation complex, including SecE and SecY. SecB protein, a chaperone known to mediate the export of some periplasmic and outer membrane proteins, was previously reported not to be involved in RBP translocation even though small amounts of in vitro complexes between SecB and RBP have been detected. In our investigation, it was shown that a dependence on SecB could be demonstrated under conditions in which export was compromised. Species of RBP which carry two mutations, one in the leader that blocks export and a second in the mature protein which partially suppresses the export defect, were shown to be affected by SecB for efficient translocation. Five different changes which suppress the effect of the signal sequence mutation -17LP are all located in the N domain of the tertiary structure of RBP. All species of RBP show similar interaction with SecB. Furthermore, a leaky mutation, -14AE, generated by site-specific mutagenesis causes reduced export in the absence of SecB. These results indicate that SecB can interact with RBP during secretion, although it is not absolutely required under normal circumstances.  相似文献   

14.
A nonpathogenic mutant of Erwinia carotovora obtained by Mu d1 mutagenesis was defective in the ability to utilize several carbon sources. The basis of the mutation was analyzed biochemically and shown to be a defect in the ability to form UDP glucose-pyrophosphorylase. The nonpathogenic phenotype of the mutant was caused by its sensitivity to galactose.  相似文献   

15.
We identify Osh3p, one of seven yeast oxysterol-binding protein (OSBP) homologs, by its protein-protein interactions with a DEAD-box RNA helicase, Rok1p. The ROK1 gene was initially identified by its ability on a high-copy number plasmid to suppress the nuclear fusion defect caused by the kem1 null mutation. Our results show that OSH3 also affects nuclear fusion in a kem1-specific manner; the nuclear fusion defect of kem1 was intensified by the multicopy expression of OSH3. The Osh3p synthesis was highly induced by alpha-mating pheromone. We also found that OSH3 overexpression promoted filamentation growth of the Sigma1278b wild-type strain and suppressed the filamentation growth defect of the ste12 mutation. These results lead us to a new understanding of cellular functions of the yeast OSBPs.  相似文献   

16.
Four Australian aboriginal children were found to have nephrogenic diabetes insipidus. They are the sons of 3 sisters who were shown to have a urinary concentrating defect uncorrected by vasopressin. An extensive genealogy did not reveal any caucasian genetic influence suggesting that a new genetic mutation was responsible.  相似文献   

17.
Patients with peroxisome biogenesis disorders (PBD) can be identified by detection of peroxisomes in their fibroblasts, by means of immunocytochemical staining using an anti-catalase antibody. We report here data on three PBD patients with newly identified mutations (del550C and del642G) in the PEX2 gene which encodes a 35-kDa peroxisomal membrane protein containing two membrane-spanning and a C-terminal cysteine-rich region. Some of the fibroblasts from the patient with the del642G mutation contained numerous catalase-containing particles, whereas no fibroblasts containing such particles were found in the patient with the del550C mutation. We confirmed that the del642G mutation caused a partial defect in peroxisome synthesis and import by expression of the mutated PEX2 into PEX2-defective CHO mutant cells. We propose that the two putative membrane-spanning segments in Pex2p are important domains for peroxisome assembly and import and that a defect in one of these domains severely affects PBD patients. Furthermore, a defect in the C-terminal portion of Pex2p exposed to the cytosol containing a RING finger motif caused the mild phenotype, residual enzyme activities, and mosaic detectable peroxisomes in fibroblasts from the patient.  相似文献   

18.
Mutants of Escherichia coli K-12 deficient in adenyl cyclase (cya) and catabolite activator protein (crp) have been shown to grow more slowly than their parent strains in glucose-minimal medium. Their growth rate decreased markedly with increasing pH between 6 and 7.8. We have shown that this pH sensitivity is a direct consequence of the cya mutation, because a mutation to pH resistance also restored ability to ferment a variety of sugars. The proton motive force-dependent uptake of proline and glutamate was also reduced and sensitive to pH in the cya mutant. The membrane-bound ATPase activity was normal. The rate of oxygen uptake by cells, although reduced, was pH insensitive. We suggest several explanations for this phenotype, including a possible defect in energy transduction.  相似文献   

19.
20.
Dual oxidases generate the hydrogen peroxide needed by thyroid peroxidase for the incorporation of iodine into thyroglobulin, an essential step in thyroid hormone synthesis. Mutations in the human dual oxidase 2 gene, DUOX2, have been shown to underlie several cases of congenital hypothyroidism. We report here the first mouse Duox2 mutation, which provides a new genetic model for studying the specific function of DUOX2 in the thyroid gland and in other organ systems where it is hypothesized to play a role. We mapped the new spontaneous mouse mutation to chromosome 2 and identified it as a T>G base pair change in exon 16 of Duox2. The mutation changes a highly conserved valine to glycine at amino acid position 674 (V674G) and was named "thyroid dyshormonogenesis" (symbol thyd) to signify a defect in thyroid hormone synthesis. Thyroid glands of mutant mice are goitrous and contain few normal follicles, and anterior pituitaries are dysplastic. Serum T(4) in homozygotes is about one-tenth the level of controls and is accompanied by a more than 100-fold increase in TSH. The weight of adult mutant mice is approximately half that of littermate controls, and serum IGF-I is reduced. The cochleae of mutant mice exhibit abnormalities characteristic of hypothyroidism, including a delayed formation of the inner sulcus and tunnel of Corti and an abnormally thickened tectorial membrane. Hearing thresholds of adult mutant mice are on average 50-60 decibels (dB) above those of controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号