首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The ligand binding domain of the low density lipoprotein (LDL) receptor contains seven imperfect repeats of a 40-amino acid cysteine-rich sequence. Each repeat contains clustered negative charges that have been postulated as ligand-binding sites. The adjacent region of the protein, the growth factor homology region, contains three cysteine-rich repeats (A-C) whose sequence differs from those in the ligand binding domain. To dissect the contribution of these different cysteine-rich repeats to ligand binding, we used oligonucleotide-directed mutagenesis to alter expressible cDNAs for the human LDL receptor which were then introduced into monkey COS cells by transfection. We measured the ability of the mutant receptors to bind LDL, which contains a single protein ligand for the receptor (apoB-100), and beta-migrating very low density lipoprotein (beta-VLDL), which contains apoB-100 plus multiple copies of another ligand (apoE). The results show that repeat 1 is not required for binding of either ligand. Repeats 2 plus 3 and repeats 6 plus 7 are required for maximal binding of LDL, but not beta-VLDL. Repeat 5 is required for binding of both ligands. Repeat A in the growth factor homology region is required for binding of LDL, but not beta-VLDL. Repeat B is not required for ligand binding. These results support a model for the LDL receptor in which various repeats play additive roles in ligand binding, each repeat making a separate contribution to the binding event.  相似文献   

3.
All five functional domains of the low-density lipoprotein (LDL) receptor were assembled in their modern form more than 450 million years ago, as revealed from the cloning and sequencing of an LDL receptor cDNA fromChiloscyllium plagiosum (banded cat shark). The shark LDL receptor has the same overall architecture as the mammalian and amphibian counterparts. Each of the seven cysteine-rich repeats in the ligand binding domain resembles its counterpart in the human LDL receptor more than it does the other repeats in the shark receptor as suggested by the presence of unique signature sequences, indicating that these repeats had already acquired their independent structures by the time of shark development. Furthermore, amino acid sequences of the entire ligand binding domain of shark LDL receptor show 35% identity over a stretch of 294 residues with aLymnaea stagnalis G-protein-linked receptor (LSGLR). The region of homology between these unrelated proteins includes conservation of most of the unique characteristics of the cysteine-rich repeats of LDL receptor at the expected positions in LSGLR. The results presented are consistent with the hypothesis that all seven repeats in the ligand binding domain of LDL receptor may have been lifted directly from an ancestral gene instead of being evolutionary duplications of a single repeat recruited by the primitive LDL receptor from another gene.The nucleotide sequence reported will appear in GenBank under accession number L36118  相似文献   

4.
Lipoprotein-mediated delivery of lipids in mammals involves endocytic receptors of the low density lipoprotein (LDL) receptor (LDLR) family. In contrast, in insects, the lipoprotein, lipophorin (Lp), functions as a reusable lipid shuttle in lipid delivery, and these animals, therefore, were not supposed to use endocytic receptors. However, recent data indicate additional endocytic uptake of Lp, mediated by a Lp receptor (LpR) of the LDLR family. The two N-terminal domains of LDLR family members are involved in ligand binding and dissociation, respectively, and are composed of a mosaic of multiple repeats. The three C-terminal domains, viz., the optional O-linked glycosylation domain, the transmembrane domain, and the intracellular domain, are of a non-repetitive sequence. The present classification of newly discovered LDLR family members, including the LpRs, bears no relevance to physiological function. Therefore, as a novel approach, the C-terminal domains of LDLR family members across the entire animal kingdom were used to perform a sequence comparison analysis in combination with a phylogenetic tree analysis. The LpRs appeared to segregate into a specific group distinct from the groups encompassing the other family members, and each of the three C-terminal domains of the insect receptors is composed of unique set of sequence motifs. Based on conservation of sequence motifs and organization of these motifs in the domains, LpR resembles most the groups of the LDLRs, very low density lipoprotein (VLDL) receptors, and vitellogenin receptors. However, in sequence aspects in which LpR deviates from these three receptor groups, it most notably resembles LDLR-related protein-2, or megalin. These features might explain the functional differences disclosed between insect and mammalian lipoprotein receptors.  相似文献   

5.
The receptor for yolk lipoprotein deposition in the chicken oocyte.   总被引:5,自引:0,他引:5  
The final rapid growth phase of the chicken oocyte is characterized by massive uptake of hepatically synthesized yolk precursor proteins from the plasma. The two major yolk-forming components, very low density lipoprotein (VLDL) and vitellogenin (VTG), have been shown to interact with a 95-kDa protein present in detergent extracts of ovarian membranes; this protein is absent in hens of a mutant nonlaying chicken strain (Nimpf, J., Radosavljevic, M., and Schneider, W. J. (1989) J. Biol. Chem. 264, 1393-1398). Here, we have purified the 95-kDa protein by ligand and immunoaffinity chromatography and demonstrated its role in receptor-mediated endocytosis by ultrastructural immunolocalization, structural, and functional studies. The receptor was visualized exclusively in the oocyte proper and was absent from somatic cells, in agreement with the previously reported expression of two different lipoprotein receptors in somatic cells and oocytes, respectively, of laying hens (Hayashi, K., Nimpf, J., and Schneider, W. J. (1989) J. Biol. Chem. 264, 3131-3139). Amino acid sequences of tryptic fragments of the oocyte receptor were obtained, and its kinship to somatic low density lipoprotein receptors was confirmed through the demonstration of sequence conservation in three characteristic domains. In particular, the chicken receptor's internalization sequence, Phe-Asp-Asn-Pro-Val-Tyr, is identical with that in low density lipoprotein receptors from mammals as well as Xenopus laevis. The ligand-binding properties, specificity, and kinetic parameters of the oocyte receptor were characterized in filtration assays employing pure ligands and receptor. In conjunction with ligand-blotting experiments following limited protease digestion of the receptor, the binding assay data suggest that VTG recognizes a substructure of the VLDL-binding site. These studies establish that a cell-specific receptor mediates the endocytosis of VTG and VLDL into growing chicken oocytes and thus possibly plays a key role in control of oocyte growth.  相似文献   

6.
We have studied function and structure of the low density lipoprotein (LDL) receptors in a monensin-resistant (Monr-31) mutant isolated from Chinese hamster ovary (CHO) cells. To assay the ability of the receptor to bind LDL, we employed three methods, 125I-LDL binding to the cells at 4 degrees C, 125I-LDL binding to the receptor-phospholipid complex (Schneider, W.J., Goldstein, J.L., and Brown, M.S. (1980) J. Biol. Chem. 255, 11442-11447), and ligand blotting (Daniel, T.O., Schneider, W.J., Goldstein, J.L., and Brown, M.S. (1983) J. Biol. Chem. 258, 4606-4611). The LDL receptor number was similar in both CHO and Monr-31, but the binding affinity was reduced in the mutant. The semi-quantitative immunoblotting assay with an antibody directed against the COOH-terminal 14 amino acids and the ligand-blotting assay with LDL also showed that the relative steady-state level of the receptor in Monr-31 was comparable to that in CHO, whereas the binding capacity of the receptor in Monr-31 was lower than that in CHO. The precursor and degradation forms of the LDL receptors produced in the mutant cells were similar in size to those in the parental cells, but the apparent molecular mass of the mature receptor protein in sodium dodecyl sulfate-polyacrylamide gels was reduced about 5000 daltons in the mutant. These results suggest a structural change at the NH2-terminal LDL binding domain. Tests of the effects of tunicamycin, endo-alpha-N-acetylgalactosaminidase (O-glycanase), and sialidase (neuraminidase) on the molecular size of the mature receptors indicated that the reduced size of the receptor in the mutant cells resulted from altered oligosaccharide chain(s) linked to serine/threonine residues in the binding domain. We compared the molecular sizes and binding activity of human LDL receptors in several clones derived from CHO and Monr-31 cells which were transfected with human LDL receptor cDNA. The human LDL receptors produced in the transfected clones of Monr-31 were also smaller in molecular size and lower in binding capacity than those produced in the transfected clones of CHO. These results suggest that both structural and functional alteration of the LDL receptor of Monr-31 is not caused by a mutation in the structural gene of the LDL receptor but by altered processing or maturation of the receptor. The correlation of the decrease in molecular size and reduced binding capacity of the LDL receptor is discussed.  相似文献   

7.
Seven imperfect repeats of a 40-amino acid cysteine-rich sequence constitute the ligand binding domain of the low density lipoprotein (LDL) receptor. To assess the contribution of each repeat, three site-directed mutations were made individually in each repeat: 1) deletion of the repeat, 2) substitution of a conserved isoleucine with aspartic acid, and 3) substitution of a conserved aspartic acid with tyrosine. cDNAs containing these mutations were transfected into simian COS cells and assayed for their ability to bind LDL, which contains a 500-kDa protein ligand (apoB-100), and beta-migrating very low density lipoprotein (beta-VLDL), which contains multiple copies of a 33-kDa ligand (apoE). The results showed that binding of the two ligands required different combinations of repeats. LDL binding required repeats 3-7; deletion of any one of these repeats markedly reduced LDL binding. In contrast, beta-migrating very low density lipoprotein binding was insensitive to the loss of any single repeat with the important exception of repeat 5, whose loss reduced binding by 60%. The same effects were obtained when each of the repeats was altered by either of the two substitution mutations. The current findings suggest that a multiplicity of cysteine-rich repeats may allow a single protein to bind several different protein ligands by employing different combinations of repeats.  相似文献   

8.
An ultracentrifugation assay has been developed to measure low density lipoprotein (LDL) receptor activity in membranes prepared from cultured human fibroblasts. The binding site for 125I-labeled LDL in isolated membranes reflected the properties of the LDL receptor previously demonstrated in intact fibroblasts. It exhibited high affinity (Kd approximately 4 microgram of LDL protein/ml), specificity (LDL approximately 400-fold more effective than high density lipoprotein in competing with 125I-LDL for the binding site), dependence on calcium, and susceptibility to destruction by pronase. The number of LDL receptors detected in the in vitro membrane binding assay was similar to the number detected in intact cells. The number of receptors was reduced in membranes from fibroblasts that were grown in the presence of 25-hydroxycholesterol plus cholesterol and in fibroblast membranes from a subject with homozygous familial hypercholesterolemia, two situations in which the number of LDL receptors in intact fibroblasts is known to be reduced. The availability of a membrane binding assay that faithfully reflects the properties of the physiologic LDL receptor of intact cells should permit the characterization of this receptor in organs from intact humans and animals.  相似文献   

9.
A novel member of the low density lipoprotein (LDL) receptor family was identified, which is expressed in locust oocytes, fat body, brain, and midgut. This receptor appeared to be a homolog of the mammalian very low density lipoprotein receptor as it contains eight cysteine-rich repeats in its putative ligand-binding domain. When transiently expressed in COS-7 or stably expressed in LDL receptor-deficient CHO cells, the receptor mediates endocytic uptake of high density lipophorin (HDLp), an abundant lipoprotein in the circulatory compartment of insects. Moreover, in the latter cell line, we demonstrated that an excess of unlabeled HDLp competed with fluorescent labeled HDLp for uptake whereas an excess of human LDL did not affect uptake. Expression of the receptor mRNA in fat body cells is down-regulated during adult development, which is consistent with the previously reported down-regulation of receptor-mediated endocytosis of lipophorins in fat body tissue (Dantuma, N. P., M.A.P. Pijnenburg, J. H. B. Diederen, and D. J. Van der Horst. 1997. J. Lipid Res. 38: 254-265). The expression of this receptor in various tissues that internalize circulating lipophorins and its capability to mediate endocytosis of HDLp indicate that this novel member of the LDL receptor family may function as an endocytic lipophorin receptor in vivo.  相似文献   

10.
11.
12.
Rapid internalization of the cell surface low density lipoprotein (LDL) receptor requires the first 22 amino acids of the cytoplasmic domain (residues 790-811), which must include an aromatic residue at position 807. In the human LDL receptor, this position is part of a tetrameric sequence, NPVY. A similar tetramer, NPXY (where X stands for any amino acid), is conserved in LDL receptors from six species (including Xenopus laevis) and in two members of the LDL receptor gene family, human LDL receptor-related protein and rat GP330. To determine whether the NPXY sequence is necessary for coated pit-mediated internalization, we used oligonucleotide-directed mutagenesis to substitute alanines for individual amino acids in the cytoplasmic tail of the human LDL receptor. Substitution of alanine for Asn804, Pro805, or Tyr807 (but not Val806) markedly reduced internalization. Only one other amino acid in the cytoplasmic 22-mer (Phe802) was important for internalization. A review of published data revealed NPXY sequences in cytoplasmic domains of at least 10 other cell surface proteins, including tyrosine kinase-linked receptors of the epidermal growth factor and insulin receptor family, the beta-subunits of three integrin receptors, and the amyloid A4 precursor protein. This occurrence is much more frequent than would be expected by chance alone. The possibility of a conditional role for the NPXY sequence in ligand-independent internalization of these proteins is discussed.  相似文献   

13.
This study characterizes the interactions of various rat and human lipoproteins with the lipoprotein cell surface receptors of rat and human cells. Iodinated rat very low density lipoproteins (VLDL), rat chylomicron remnants, rat low density lipoproteins (LDL), and rat high density lipoproteins containing predominantly apoprotein E (HDL1) bound to high affinity cell surface receptors of cultured rat fibroblasts and smooth muscle cells. Rat VLDL and chylomicron remnants were most avidly bound; the B-containing LDL and the E-containing HDL1 displayed lesser but similar binding. Rat HDL (d = 1.125 to 1.21) exhibited weak receptor binding; however, after recentrifugation to remove apoprotein E, they were devoid of binding activity. Competitive binding studies at 4 degrees C confirmed these results for normal lipoproteins and indicated that VLDL (B-VLDL), LDL, and HDLc (cholesterol-rich HDL1) isolated from hypercholesterolemic rats had increased affinity for the rat receptors compared with their normal counterparts, the most pronounced change being in the LDL. The cell surface receptor pathway in rat fibroblasts and smooth muscle cells resembled the system described for human fibroblasts as follows: 1) lipoproteins containing either the B or E apoproteins interacted with the receptors; 2) receptor binding activity was abolished by acetoacetylation or reductive methylation of a limited number of lysine residues of the lipoproteins; 3) receptor binding initiated the process of internalization and degradation of the apo-B- and apo-E-containing lipoproteins; 4) the lipoprotein cholesterol was re-esterified as determined by [14C]oleate incorporation into the cellular cholesteryl esters; and 5) receptor-mediated uptake (receptor number) was lipoprotein cholesterol. An important difference between rat and human fibroblasts was the inability of human LDL to interact with the cell surface receptors of rat fibroblasts. Rat lipoproteins did, however, react with human fibroblasts. Furthermore, the rat VLDL were the most avidly bound of the rat lipoproteins to rat fibroblasts. When the direct binding of 125I-VLDL was subjected to Scatchard analysis, the very high affinity of rat VLDL was apparent (Kd = 1 X 10(-11) M). Moreover, compared with data for rat LDL, the data suggested each VLDL particle bound to four to nine lipoprotein receptors. This multiple receptor binding could explain the enhanced binding affinity of the rat VLDL. The Scatchard plot of rat 125I-VLDL revealed a biphasic binding curve in rat and human fibroblast cells and in rat smooth muscle cells, suggesting two populations of rat VLDL. These results indicate that rat cells have a receptor pathway similar to, but not identical with, the LDL pathway of human cells. Since human LDL bind poorly to rat cell receptors on cultured rat fibroblasts and smooth muscle cells, metabolic studies using human lipoproteins in rats must be interpreted cautiously.  相似文献   

14.
The relationship between the cholesteryl ester content of normal human very low density lipoprotein (VLDL) and its ability to bind to apolipoprotein E (apoE), heparin, and the low density lipoprotein (LDL) receptor have been compared. Plasma VLDL were separated by heparin affinity chromatography into two fractions: one with apoE and one without. Both fractions had the same cholesteryl ester content relative to apolipoprotein B (apoB). LDL, on the other hand, had a greater cholesteryl ester content. VLDL were modified by lipolysis to express the ability to bind apoE (Ishikawa, Y., Fielding, C. J., and Fielding, P. E. (1988) J. Biol. Chem. 263, 2744-2749). Lipolyzed VLDL with or without apoE were compared for their ability to bind to heparin or the up-regulated fibroblast LDL receptor. Lipolyzed VLDL bound with the same affinity to the receptor whether or not the particles contained apoE. ApoB, not apoE, appears then to be the important ligand for normal VLDL. On the other hand, modified VLDL without apoE, even though binding to the LDL receptor, did not bind to heparin. These data suggest that apoE mediates heparin binding in normal VLDL, that apoB mediates receptor binding, and that the cholesteryl ester content of VLDL is not a factor in the induction of the ability to bind apoE.  相似文献   

15.
Certain individuals with familial hypercholesterolemia (FH) produce mutant forms of the low density lipoprotein (LDL) receptor that fail to move from the endoplasmic reticulum to the Golgi complex. Here, we describe the cloning and expression of one such mutant allele, FH 429. The mutation causes a substitution of a Val for a Gly at residue 544. When recreated in an expressible cDNA, this substitution gives rise to an LDL receptor that is not transported to the cell surface and is rapidly degraded. Three previously mapped transport-deficient alleles of the LDL receptor were traced to the cysteine-rich repeats of the protein, suggesting that the generation of non-disulfide-bonded (free) cysteines might cause the block in transport. The FH 429 mutation is not located in a cysteine-rich region, however. We have attempted to test the role of cysteine by expressing mutant cDNAs that encode proteins blocked in transport and predicted to contain free cysteines. The results suggest that free cysteines are not obligatory for the blocked intracellular movement of mutant LDL receptors.  相似文献   

16.
Previous results have demonstrated that liver membranes possess two distinct lipoprotein receptors: a low density lipoprotein (LDL) receptor that binds lipoproteins containing either apolipoprotein (apo-) B or apo-E, and an apo-E-specific receptor that binds apo-E-containing lipoproteins, but not the apo-B-containing LDL. This study reports the isolation and purification of apo-B,E(LDL) and apo-E receptors from canine and human liver membranes. The receptors were solubilized with the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate and were partially purified by DEAE-cellulose chromatography. The apo-B,E(LDL) receptor was isolated by affinity chromatography on LDL-Sepharose. The apo-E receptor, which did not bind to the LDL-Sepharose column, was then purified by using an HDLc (cholesterol-induced high density lipoprotein)-Sepharose affinity column and an immunoaffinity column. Characterization of the receptors revealed that the hepatic apo-B,E(LDL) receptor is similar to the extrahepatic LDL receptor with an apparent Mr = 130,000 on non-reducing sodium dodecyl sulfate-polyacrylamide gels. The apo-E receptor was found to be distinct from the apo-B,E(LDL) receptor, with an apparent Mr = 56,000. The purified apo-E receptor displayed Ca2+-dependent binding to apo-E-containing lipoproteins and did not bind to LDL or chemically modified apo-E HDLc. Antibodies raised against the apo-B,E(LDL) receptor cross-reacted with the apo-E receptor. However, an antibody prepared against the apo-E receptor did not react with the apo-B,E(LDL) receptor. The apo-E receptor also differed from the apo-B,E(LDL) receptor in amino acid composition, indicating that the apo-E receptor and the apo-B,E(LDL) receptor are two distinct proteins. Immunoblot characterization with anti-apo-E receptor immunoglobulin G indicated that the apo-E receptor is present in the hepatic membranes of man, dogs, rats, and mice and is localized to the rat liver parenchymal cells.  相似文献   

17.
M S Brown  J L Goldstein 《Cell》1975,6(3):307-316
A specific receptor on the surface of cultured human fibroblasts binds plasma low density lipoprotein (LDL) with high affinity, and thereby initiates a cellular process by which the LDL is internalized and degraded within lysosomes and its cholesterol component is made available for cellular membrane synthesis. Current studies demonstrate that the activity of this LDL receptor is under feedback regulation. Prior incubation of fibroblast monolayers with cholesterol, 25-hydroxycholesterol, or LDL progressively reduced the ability of the cells to bind 125I-labeled LDL at the high affinity site. A series of kinetic studies indicated that this reduction in binding was due to a decrease in the number of LDL receptors. From measurements of the rate of decline in 125I-LDL binding activity after administration of cycloheximide, the LDL receptor was calculated to have a half-life of about 25 hr. LDL appeared to reduce 125I-LDL-binding activity by suppressing the synthesis of receptor molecules. Thus cultured human fibroblasts regulate their intracellular cholesterol content by regulating the activity of the LDL receptor, which in turn controls the rate of cellular entry of cholesterol derived from plasma LDL contained within the culture medium.  相似文献   

18.
Genomic DNA encompassing the terminal exons of the gene for the low density lipoprotein (LDL) receptor was isolated from J.D., a patient with familial hypercholesterolemia whose receptor fails to cluster in coated pits. The DNA sequence revealed a substitution of a cysteine codon for a tyrosine codon at residue 807 in the cytoplasmic domain of the receptor. We reproduced this substitution through oligonucleotide-directed mutagenesis of the normal human receptor cDNA. Upon transfection into receptor-deficient hamster cells, the cDNA specified a receptor that bound LDL normally, but entered the cell slowly. Electron microscopy showed that this receptor was distributed diffusely over the cell surface, whereas the receptor produced by the normal cDNA was concentrated in coated pits. These results support the hypothesis that cytoplasmic domains direct receptors to coated pits, thereby determining the high rate of receptor internalization in animal cells.  相似文献   

19.
LDL receptors, expressed in cultured fibroblasts from patients homozygous for the FH Afrikaner-1 (FH1) mutation (Asp206 to Glu), are transported from the endoplasmic reticulum (ER) to the Golgi apparatus more slowly than in normal cells. In the present study, binding characteristics of FH1 cells for lipoprotein ligands (LDL and beta VLDL) and for receptor-specific monoclonal antibodies pointed to the existence of two surface forms of the same mutant receptor. One of these forms bound lipoproteins with normal high affinity whereas another did not. Binding studies of transfected hamster cells expressing only the mutant human gene confirmed the single-gene origin of the different forms. The existence of functionally distinct forms of the receptor protein was supported by the observation that only lipoprotein-binding receptor molecules were trapped intracellularly and degraded following ammonium chloride treatment of cells in the presence of ligand. The lipoprotein-binding receptor population was indistinguishable from normal receptors with respect to its affinity for LDL and beta VLDL, uptake and degradation of lipoprotein, and receptor recycling. Ligand blotting versus immunoblotting of receptors revealed normal-sized mutant receptors that were not recognized by lipoprotein ligand. Despite these differences, both mutant forms of the receptor were degraded at rates similar to those of normal receptors. We propose that the single amino acid substitution in this receptor interferes with the folding and/or posttranslational processing of precursor molecules in such a way that receptors adopt alternative stable structures.  相似文献   

20.
The role of the cellular receptor for the low-density lipoproteins (LDL) in cholesterol transport was initially defined through the study of nonhepatic cells in vitro. Since the liver is central in plasma lipoprotein metabolism, an investigation of hepatic lipoprotein receptors is important for understanding normal lipoprotein transport. Utilizing human hepatic and fibroblast membranes, the characteristics of receptors for LDL from hepatic and nonhepatic tissues were directly compared. Human hepatic membranes reversibly bound LDL within 5 min. Although both fibroblast and hepatic membranes saturably bound LDL at 37 degrees C, the fibroblast LDL receptor affinity (Kd = 2.5 X 10(-8) M) and number (5.5 X 10(12) sites/mg membrane protein) were greater than the hepatic receptor affinity (Kd = 10.8 X 10(-8) M) and number (0.5 X 10(12) sites/mg membrane protein). In contrast to the fibroblast LDL receptor which was unable to bind LDL in the presence of EDTA, the hepatic LDL receptor binding of LDL was only partially blocked by EDTA. The binding of LDL to its hepatic receptor is highly temperature-dependent, and studies utilizing both radiolabeled LDL and colloidal gold-labeled LDL indicate that little, if any, binding of LDL hepatic membranes occur at 0-4 degrees C. The hepatic membrane receptor(s) (Mr approximately equal to 270 000 and 330 000) differ from that of the fibroblast LDL receptor (Mr approximately equal to 130 000) and these proteins are present in hepatic membranes from a patient lacking the fibroblast LDL receptor. These data indicate that an expressed hepatic LDL receptor has unique properties different from those of the fibroblast LDL receptor and that the expressed protein(s) is genetically distinct from the fibroblast receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号