首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Acetyltransferase (NAT) is an enzyme whose rhythmic activity in the pineal gland and retina is responsible for circadian rhythms in melatonin. The NAT activity rhythm has circadian properties such as persistence in constant conditions and precise control by light and dark. Experiments are reported in which chicks (Gallus domesticus), raised for 3 weeks in 12 h of light alternating with 12 h of dark (LD12:12), were exposed to 1-3 days of light-dark treatments during which NAT activity was measured in their pineal glands. (a) In LD12:12, NAT activity rose from less than 4.5 nmol/pineal gland/h during the light-time to 25-50 nmol/pineal gland/h in the dark-time. Constant light (LL) attenuated the amplitude of the NAT activity rhythm to 26-45% of the NAT activity cycle in LD12:12 during the first 24 h. (b) The timing of the increase in NAT activity was reset by the first full LD12:12 cycle following a 12-h phase shift of the LD12:12 cycle (a procedure that reversed the times of light and dark by imposition of either 24 h of light or dark). This result satisfies one of the criteria for NAT to be considered part of a circadian driving oscillator. (c) In less than 24-h cycles [2 h of light in alternation with 2 h of dark (LD2:2), 4 h of light in alternation with 4 h of dark (LD4:4), and 6 h of light in alternation with 6 h of dark (LD6:6)], NAT activity rose in the dark during the chicks' previously scheduled dark-time but not the previously scheduled light-time of LD12:12. In a cycle where 8 h of light alternated with 8 h of dark (LD8:8), NAT activity rose in both 8-h dark periods, even though the second one fell in the light-time of the prior LD12:12 schedule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
N-Acetyltransferase (NAT) is an enzyme whose rhythmic activity in the pineal gland and retina is thought to be responsible for melatonin circadian rhythms. The enzyme has circadian properties--its rhythm persists in constant conditions, and it is precisely controlled by light and dark. Experiments are reported in which 4-h light or dark pulses were imposed on chicks (Gallus domesticus) over a 24-h period. Pineal NAT profiles were measured during and subsequent to the pulses. The phase of the NAT cycle following pulses was plotted to obtain phase-response curves. Light pulses produced a maximum phase shift (advance of 5 h) 8 h after the expected time of lights-out; dark pulses produced a maximum phase shift (advance of 4 h) 3 h after the expected time of lights-out. Maximum phase delays (-2 h) occurred 1-2 h after the expected lights-out for light pulses and 8 h after expected lights-on for dark pulses.  相似文献   

3.
Summary The rhythm in melatonin production in the rat is driven by a circadian rhythm in the pineal N-acetyltransferase (NAT) activity. Rats adapted to an artificial lighting regime of 12 h of light and 12 h of darkness per day were exposed to an 8-h advance of the light-dark regime accomplished by the shortening of one dark period; the effect of melatonin, triazolam and fluoxetine, together with 5-hydroxytryptophan, on the reentrainment of the NAT rhythm was studied.In control rats, the NAT rhythm was abolished during the first 3 cycles following the advance shift. It reappeared during the 4th cycle; however, the phase relationship between the evening rise in activity and the morning decline was still compressed.Melatonin accelerated the NAT rhythm reentrainment. In rats treated chronically with melatonin at the new dark onset, the rhythm had already reappeared during the 3rd cycle, in the middle of the advanced night, and during the 4th cycle, the phase relationship between the evening onset and the morning decline of the NAT activity was the same as before the advance shift. In rats treated chronically with melatonin at the old dark onset or in those treated with melatonin 8 h, 5 h and 2 h after the new dark onset during the 1st, 2nd and 3rd cycle, respectively, following the advance shift, the NAT rhythm reappeared during the 3rd cycle as well but in the last third of the advanced night only.Neither triazolam nor fluoxetine together with 5-hydroxytryptophan administered around the new dark onset facilitated NAT rhythm reentrainment after the 8-h advance of the light-dark cycle.Abbreviations NAT N-acetyltransferase - LD cycle light-dark cycle - CT circadian time - LD xy light dark cycle comprising x h of light and y h of darkness  相似文献   

4.
Summary N-acetyltransferase (NAT) activity in pineal glands exhibits a circadian rhythm with peak activity occurring in the dark-time. We previously showed that inGallus domesticus chicks pretreated with LD12:12, NAT activity was increased by dark exposure (peak dark sensitivity occurred during the expected dark-time) or decreased by light at night (peak light sensitivity occurred early in the night during the time of dark sensitivity). In this study we mapped dark sensitivity vs time (for NAT activity increase in response to 2 h dark pulses), and light sensitivity vs time (for NAT activity decrease in response to 10 min or 30 min light pulses) over a cycle for 3-week old chicks,Gallus domesticus, pretreated with long (LD16:8) or short photoperiod (LD8:16). Sensitivity to light was increased in the second 8 h after L/D by LD8:16. Sensitivity to dark was increased in the first 8 h after L/D by LD16:8.Abbreviations LD16:8 a light-dark cycle consisting of 16 h of light alternating with 8 h of dark - LD8:16 a light-dark cycle consisting of 8 h of light alternating with 16 h of dark - DD constant dark - LL constant light - L/D lights-off - D/L lights-on - NAT pineal serotonin N-acetyltransferase - NAT activity is given in nmoles/pineal gland/h - chick used here to denote a young bird of either sex of the speciesGallus domesticus from hatching to three weeks of age  相似文献   

5.
Adult male albino rats were acclimated to constant light (light:dark-LD-24:0) or to darkness interrupted with brief periods of light at 6 h intervals (LD 1/4:5 3/4 X 4) concurrently with rats maintained in a LD 14:10 photoperiodic cycle. The activity and rhythmicity of pineal serotonin N-acetyltransferase (NAT) was examined at regular intervals for 24 hours in rats maintained in the experimental photoperiods and compared to pineal NAT activity and rhythmicity in rats maintained in the LD 14:10 photoperiod. The results indicate that constant light is capable of depressing nocturnal levels of rat pineal NAT and obliterating the pineal NAT rhythm. Likewise, rats subjected to darkness interrupted with brief periods of light at 6 h intervals experienced a similar response in pineal NAT activity to animals subjected to constant light, i.e., pineal NAT activity was persistently low and the rhythmicity was obliterated. The results are discussed relative to the hypothesis that the pineal NAT activity responds to an endogenous rhythm in photoperiodic time measurement. The evidence herein suggests that the time of occurrence of environmental light in the photoperiod is more important in determining pineal NAT activity and/or rhythmicity than is the total amount of darkness or the dark to light ratio to which animals may be subjected.  相似文献   

6.
In retinas and pineal glands of rat, rabbit and hen, activities of the penultimate (and key regulatory) enzyme in melatonin biosynthesis, serotonin N-acetyltransferase (NAT), display distinct diurnal variations, with high and low values during dark and light phase of a 12-h dark: 12-h light illumination cycle. Two-hour incubation (during daytime hours in light) of isolated pineal glands of the studied vertebrates, or the retinas, with 50 microM forskolin (plus 100 microM 3-isobutyl-1-methylxanthine, IBMX-a phosphodiesterase inhibitor), and 1 mM dibutyryl-cAMP, markedly increased the tissue NAT activity. The same procedures significantly enhanced the enzyme activity of rat retina in light, however, only during nighttime hours. The forskolin (+ IBMX)-induced increase of NAT activity in rat retina was significantly lower in a calcium-free medium, and substantially enhanced when calcium concentration was raised from 1.3 mM to 3.9 mM. Treatment of rats with IBMX or aminophylline, and rabbits with aminophylline, increased NAT activity in their pineal glands irrespective of the time of the day, whereas both phosphodiesterase inhibitors significantly increased the enzyme activity of rat retina only when injected during the subjective dark hours. It is concluded that, by analogy to vertebrate pineal gland, in vertebrate retina an increase of NAT activity (and consequently melatonin formation), stimulated both physiologically (i. e. at night), or pharmacologically, involves a cAMP- and calcium dependent process of the enzyme induction.  相似文献   

7.
Retinal circadian rhythms are driven by an intrinsic oscillator, using chemical signals such as melatonin, secreted by photoreceptor cells. The purpose of the present work was to identify the origin of serotonin, the precursor of melatonin, in the retina of adult rat, where no immunoreactivity for serotonin or tryptophan hydroxylase had ever been detected. To demonstrate local synthesis of serotonin in the rat retina, substrates of tryptophan hydroxylase, the first limiting enzyme in the serotonin pathway, have been used. Tryptophan, in the presence of an inhibitor of aromatic amino acid decarboxylase, enhanced 5-hydroxytryptophan levels, whereas alpha-methyltryptophan, a competitive substrate inhibitor, was hydroxylated into alpha-methyl-5-hydroxytryptophan. Tryptophan hydroxylase substrate concentration was higher in the dark period than in the light period, and formation of hydroxylated compounds was increased. The presence of tryptophan hydroxylase mRNA in the rat retina was confirmed by RT-PCR. Taken together, the results support the local synthesis of serotonin by tryptophan hydroxylation, this metabolic pathway being required more critically when 5-HT is used for melatonin synthesis.  相似文献   

8.
Retinas of rats, rabbits, chicks and carp possess enzymes, i.e. serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT), which convert serotonin (5-HT) to melatonin, NAT activity and melatonin levels, but not HIOMT activity, show distinct circadian rhythms, with peak values occurring during the dark (night) phase of the 12 h light-dark cycle. Exposure of the animals to light at night inhibited the night-stimulated NAT activity. Treatment of rats and rabbits with the dopaminergic agonist, apomorphine, inhibited the retinal NAT activity. Dopamine levels in the rabbit retina showed diurnal variations, with higher contents seen during the light phase of both the 12 h light-dark cycle with lights on between 06:00–18:00, and that with reversed periods of illumination (lights on between 18:00–06:00). Melatonin potently inhibited the electrically-evoked calcium-dependent release of [3H]dopamine from pieces of retina from both albino and pigmented rabbits. Our results indicate that the light-regulated melatonin-generating system does operate in the vertebrate retina. The present data, together with other findings, suggest that in the retina there is an antagonistic interplay between melatonin and dopamine. Thus, melatonin inhibits dopamine synthesis in, and release from, the retinal dopaminergic cells, whilst dopamine inhibits the night (dark)-stimulated melatonin formation by decreasing NAT activity. Since light increases metabolic activity of the retinal dopaminergic cells (it enhances the amine synthesis, levels and release), it seems likely that the retinal dopamine plays a role of a “light” messenger in the inhibition of melatonin synthesis. It is suggested that an interplay between melatonin and dopamine in the retina is responsible for regulation of those retinal events which follow circadian rhythmicity, and/or are dependent on light-dark conditions.  相似文献   

9.
Methotrexate at 1 microM stimulated increase of serotonin N-acetyltransferase (NAT) activity in chick pineal glands cultured under each of three conditions of illumination. The peak of the circadian rhythm in NAT activity and the "spike" in content of cyclic GMP were both advanced in pineal glands cultured in the dark from midphotoperiod. In contrast, the time of peak NAT activity in glands cultured in the dark from late photoperiod was unaffected. In addition, methotrexate did not affect times of reaching maximum NAT activities in glands cultured from midphotoperiod in the light or under diurnal illumination. Doubling the concentration of methotrexate also eliminated the lag phase in increase of NAT activity in glands cultured in the dark. However, at a concentration of 5 microM methotrexate the curve depicting increase of NAT activity was biphasic, and neither time nor level of peak NAT activity differed from those of control glands. Results of attempts to demonstrate persistent effects of exposure to methotrexate were inconclusive.  相似文献   

10.
The aim of the current investigation was to study the effect of lithium on circadian rhythms of pineal - testicular hormones by quantitations of pineal and serum serotonin, N-acetylserotonin and melatonin, and serum testosterone at four time points (06.00, 12.00, 18.00 and 24.00) of a 24-hr period under normal photoperiod (L:D), reversed photoperiod (D:L), constant light (L:L) and constant dark phase (D:D) in rats. Circadian rhythms were observed in pineal hormones in all the combinations of photoperiodic regimens, except in constant light, and in testosterone levels in all the photoperiodic combinations. Pineal and serum N-acetylserotonin and melatonin levels were higher than serotonin at night (24.00 hr), in natural L:D cycle, in reversed L:D cycle or similar to normal L:D cycle in constant dark phase, without any change in constant light. In contrast, testosterone level was higher in light phase (12.00 hr through 18.00 hr) than in the dark phase (24.00 hr through 06.00 hr) in normal L:D cycle, in reversed L:D cycle, similar to normal L:D cycle in constant dark (D:D), and reversed to that of the normal L:D cycle in constant light (L:L). Lithium treatment (2 mEq/kg body weight daily for 15 days) suppressed the magnitude of circadian rhythms of pineal and serum serotonin, N-acetylserotonin and melatonin, and testosterone levels by decreasing their levels at four time points of a 24-hr period in natural L:D or reversed D:L cycle and in constant dark (D:D). Pineal indoleamine levels were reduced after lithium treatment even in constant light (L:L). Moreover, lithium abolished the melatonin rhythms in rats exposed to normal (L:D) and reversed L:D (D:L) cycles, and sustained the rhythms in constant dark. But testosterone rhythm was abolished after lithium treatment in normal (L:D)/reversed L:D (D:L) cycle or even in constant light/dark. The findings indicate that the circadian rhythm exists in pineal hormones in alternate light - dark cycle (L:D/D:L) and in constant dark (D:D), but was absent in constant light phase (L:L) in rats. Lithium not only suppresses the circadian rhythms of pineal hormones, but abolishes the pineal melatonin rhythm only in alternate light - dark cycles, but sustains it in constant dark. The testosterone rhythm is abolished after lithium treatment in alternate light - dark cycle and constant light/dark. It is suggested that (a) normal circadian rhythms of pineal hormones are regulated by pulse dark phase in normal rats, (b) lithium abolishes pineal hormonal rhythm only in pulse light but sustains it in constant dark phase, and (c) circadian testosterone rhythm occurs in both pulse light or pulse dark phase in normal rats, and lithium abolishes the rhythm in all the combinations of the photoperiod. The differential responses of circadian rhythms of pineal and testicular hormones to pulse light or pulse dark in normal and lithium recipients are discussed.  相似文献   

11.
Abstract— Circadian variations in the activity of tyrosine hydroxylase, tyrosine aminotransferase, and tryptophan hydroxylase were observed in the rat brain stem. Tyrosine hydroxylase exhibited a bimodal pattern with peaks occurring during both the light and dark phases of the circadian cycle. Tyrosine aminotransferase had one daily peak of activity occurring late in the light phase, whereas tryptophan hydroxylase activity was maximal late in the dark phase. Circadian fluctuations in tyrosine hydroxylase activity did not correlate well with circadian variations in the turnover rates of norepinephrine or dopamine nor with levels of these catecholamines. This supports the idea that although tyrosine hydroxylase is the rate-limiting enzyme in the synthesis of catecholamines, other factors must also be involved in the in vivo regulation of this process. Administration of α -methyl- p -tyrosine (AMT) methyl ester HC1 (100 mg/kg) had no effect on the activity of tryptophan hydroxylase, but effectively eliminated the peak of tyrosine hydroxylase activity that occurred during the light phase. AMT also lowered levels of tyrosine aminotransferase, but only at times near the daily light to dark transition. These chronotypic effects of AMT emphasize the importance of "time of day" as a factor that must be taken into account in evaluating the biochemical as well as the pharmacological and toxicological effects of drugs.  相似文献   

12.
Abstract: The light/dark cycle influences the rhythmic production of melatonin by the trout pineal organ through a modulation of the serotonin N -acetyltransferase (NAT) activity. In static organ culture, cyclic AMP (cAMP) levels (in darkness) and NAT activity (in darkness or light) were stimulated in the presence of forskolin, isobutylmethylxanthine, or theophylline. Analogues of cAMP, but not of cyclic GMP, induced an increase in NAT activity. Light, applied after dark adaptation, inhibited NAT activity. This inhibitory effect was partially prevented in the presence of drugs stimulating cAMP accumulation. In addition, cAMP accumulation and NAT activity increase, induced by forskolin, were temperature dependent. Finally, melatonin release, determined in superfused organs under normal conditions of illumination, was stimulated during the light period of a light/dark cycle by adding an analogue of cAMP or a phosphodiesterase inhibitor. However, no further increase in melatonin release was observed during the dark phase of this cycle in the presence of the drugs. This report shows for the first time that cAMP is a candidate as intracellular second messenger participating in the control of NAT activity and melatonin production by light and temperature.  相似文献   

13.
The activities of N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) and the indole contents of the Harderian glands of male Syrian hamsters were studied throughout a 24-h period. NAT activity exhibited a sharp rise 1 h after lights on, decreasing to basal levels 1 h later. Neither a HIOMT activity nor a melatonin concentration rhythm was detected throughout the 24 h. The 5-hydroxytryptamine (serotonin) concentration was highest during the dark phase reaching a peak at 0300 h; with light onset serotonin levels exhibited a rapid short-term drop. The 5-hydroxytryptophol concentration was highest during the mid- to late photophase; the lowest values to this constituent were measured late in the dark phase and at 1 h after lights on. The 5-hydroxyindole acetic acid concentration of the Harderian glands was rather stable throughout the 24-h period but levels did show a short-lived drop 1 h after light onset. Only a few animals contained detectable amounts of N-acetyl-5-hydroxytryptamine (N-acetylserotonin) in their Harderian glands. In agreement with previous work on the Harderian glands of female Syrian hamsters, the present results in males suggest that light onset is associated with marked changes in Harderian indoleamine metabolism.  相似文献   

14.
15.
Investigations on the effects of the 5-HT agonists and antagonists on the phase of the circadian locomotor activity rhythm of animals kept in constant light conditions (LL) are rare. Therefore the influence of R-(+)-OH-DPAT (5-HT1A receptors agonist) and metergoline (5-HT1/2/7 receptors antagonist) on the phase shift of the locomotor-activity rhythm alone and when combined with dark pulses in mice kept in LL are examined. The results indicate that 8-OH-DPAT administered independently at 12.00CT (Circadian Time) shifted the phase of the circadian rhythm and reinforced the effect of dark pulses on this parameter. 12.00CT was defined arbitrarily as the onset of locomotor activity in constant conditions. Metergoline diminished the phase shifts after dark pulses compared to 8-OH-DPAT. The influence of the serotonin agonist showed that serotonin can reinforce the phase shifting effect of the locomotor activity rhythm after dark pulses in LL condition.  相似文献   

16.
Abstract: N-Acetyltransferase (NAT) is an enzyme whose rhythmic activity in the pineal gland and retina is thought responsible for melatonin circadian rhythms. The enzyme has properties of a circadian biological clock—its rhythm persists in constant conditions and it is precisely controlled by light and dark. Experiments are reported in which light pulses of 1 to 10 h duration were imposed on chicks during their dark-time. The effect of these pulses upon the NAT was measured and the effect of the pulses on subsequent NAT was also determined. The experiments support the conclusion that the amount and/or duration of dark-time NAT is limited. This finding is interpreted as supporting the idea that a fixed amount of some substance, an initiator, is synthesized during the subjective day.  相似文献   

17.
The split circadian activity rhythm that emerges in hamsters after prolonged exposure to constant light has been a theoretical cornerstone of a multioscillator view of the mammalian circadian pacemaker. The present study demonstrates a novel method for splitting hamster circadian rhythms and entraining them to exotic light:dark cycles. Male Syrian hamsters previously maintained on a 14-h day and 10-h night were exposed to a second 5-h dark phase in the afternoon. The 10-h night was progressively shortened until animals experienced two 5-h dark phases beginning 10 h apart. Most hamsters responded by splitting their activity rhythms into two components associated with the afternoon and nighttime dark phases, respectively. Each activity component was entrained to this light:dark:light:dark cycle. Transfer of split hamsters to constant darkness resulted in rapid joining of the two activity components with the afternoon component associated with onset of the fused rhythm. In constant light, the nighttime component corresponded to activity onset of the fused rhythm, but splitting emerged again at an interval characteristic for this species. The results place constraints on multi-oscillator models of circadian rhythms and offer opportunities to characterize the properties of constituent circadian oscillators and their interactions.  相似文献   

18.
The aim of the present study was to examine arylalkylamine N‐acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light‐dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night‐time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high‐amplitude melatonin rhythms in the turkey.  相似文献   

19.
When chick pineal glands were explanted into organ culture at midlight phase of a diurnal cycle of illumination and incubated in the dark, they developed marked increases in serotonin acetyltransferase (acetyl coA:arylamine N-acetyltransferase; EC 2.3.1.5) activity. Either this increase in activity was inhibited or its onset was retarded in glands incubated under constant illumination. Supplements of theophylline, isobutylmethylxanthine, quinidine, and compound Ro 20-1724 (4-(3-butoxyl-4-methoxybenzyl)-2-imidazolidinone) elicited very marked increases in serotonin acetyltransferase activity in glands cultured in the dark. Levels of activity attained after 6 h in culture approached or exceeded the maximum levels attained at middark phase of the diurnal cycle in vivo. Effects of theophylline and compound Ro 20-1724 were additive. Supplements of dibutryl cAMP had little or no effect upon levels of serotonin acetyltransferase activity when tested alone or in combination with theophylline but further enhanced the increase in the level of enzyme activity elicited by Ro 20-1724. Adenosine and cAMP had little or no effect upon levels of serotonin acetyltransferase activity. It is concluded that levels of serotonin acetyltransferase activity in the chick pineal gland are regulated by a repressive, negative-control mechanism, which probably involves a membranous adenosine receptor.  相似文献   

20.
The aim of the present study was to examine arylalkylamine N-acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light-dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night-time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high-amplitude melatonin rhythms in the turkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号