首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The reduction or absence of TCR zeta-chain (zeta) expression in systemic lupus erythematosus (SLE) patients is thought to be related to the pathogenesis of SLE. Recently, we reported the predominant expression of zeta mRNA containing an alternatively spliced 3'-untranslated region (3'UTR; zetamRNA/as-3'UTR) and a reduction in the expression of zeta mRNA containing the wild-type 3'UTR (zetamRNA/w-3'UTR) in T cells from SLE patients. Here we show that AS3'UTR mutants (MA5.8 cells deficient in zeta protein that have been transfected with zetamRNA/as-3'UTR) exhibit a reduction in the expression of TCR/CD3 complex and zeta protein on their cell surface as well as a reduction in the production of IL-2 after stimulation with anti-CD3 Ab compared with that in wild-type 3'UTR mutants (MA5.8 cells transfected with zetamRNA/w-3'UTR). Furthermore, the real-time PCR analyses demonstrated that the half-life of zetamRNA/as-3'UTR in AS3'UTR mutants (3 h) was much shorter than that of zetamRNA/w-3'UTR in wild-type 3'UTR mutants (15 h). Thus, the lower stability of zetamRNA/as-3'UTR, which is predominant in SLE T cells, may be responsible for the reduced expression of the TCR/CD3 complex, including zeta protein, in SLE T cells.  相似文献   

4.
The T-cell receptor (TCR) is a multimeric receptor composed of the Ti alpha beta heterodimer and the noncovalently associated CD3 gamma delta epsilon and zeta(2) chains. All of the TCR chains are required for efficient cell surface expression of the TCR. Previous studies on chimeric molecules containing the di-leucine-based endocytosis motif of the TCR subunit CD3 gamma have indicated that the zeta chain can mask this motif. In this study, we show that successive truncations of the cytoplasmic tail of zeta led to reduced surface expression levels of completely assembled TCR complexes. The reduced TCR expression levels were caused by an increase in the TCR endocytic rate constant in combination with an unaffected exocytic rate constant. Furthermore, the TCR degradation rate constant was increased in cells with truncated zeta. Introduction of a CD3 gamma chain with a disrupted di-leucine-based endocytosis motif partially restored TCR expression in cells with truncated zeta chains, indicating that the zeta chain masks the endocytosis motif in CD3 gamma and thereby stabilizes TCR cell surface expression.  相似文献   

5.
Studies from our laboratory have revealed a novel mu opiate receptor, mu 3, which is expressed in both vascular tissues and leukocytes. The mu 3 receptor is selective for opiate alkaloids and is insensitive to opioid peptides. We now identify the mu 3 receptor at the molecular level using a 441-bp conserved region of the mu 1 receptor. Sequence analysis of the isolated cDNA suggests that it is a novel, alternatively spliced variant of the mu opiate receptor gene. To determine whether protein expressed from this cDNA exhibits the biochemical characteristics expected of the mu 3 receptor, the cDNA clone was expressed in a heterologous system. At the functional level, COS-1 cells transfected with the mu 3 receptor cDNA exhibited dose-dependent release of NO following treatment with morphine, but not opioid peptides (i.e., Met-enkephalin). Naloxone was able to block the effect of morphine on COS-1 transfected cells. Nontransfected COS-1 cells did not produce NO in the presence of morphine or the opioid peptides at similar concentrations. Receptor binding analysis with [(3)H]dihydromorphine further supports the opiate alkaloid selectivity and opioid peptide insensitivity of this receptor. These data suggest that this new mu opiate receptor cDNA encodes the mu 3 opiate receptor, since it exhibits biochemical characteristics known to be unique to this receptor (opiate alkaloid selective and opioid peptide insensitive). Furthermore, using Northern blot, RT-PCR, and sequence analysis, we have demonstrated the expression of this new mu variant in human vascular tissue, mononuclear cells, polymorphonuclear cells, and human neuroblastoma cells.  相似文献   

6.
We have investigated the regulation of splicing of one of the alternatively spliced exons in the rat fibronectin gene, the EIIIB exon. This 273-nucleotide exon is excluded by some cells and included to various degrees by others. We find that EIIIB is intrinsically poorly spliced and that both its exon sequences and its splice sites contribute to its poor recognition. Therefore, cells which recognize the EIIIB exon must have mechanisms for improving its splicing. Furthermore, in order for EIIB to be regulated, a balance must exist between the EIIIB splice sites and those of its flanking exons. Although the intron upstream of EIIIB does not appear to play a role in the recognition of EIIIB for splicing, the intron downstream contains sequence elements which can promote EIIIB recognition in a cell-type-specific fashion. These elements are located an unusually long distance from the exon that they regulate, more than 518 nucleotides downstream from EIIIB, and may represent a novel mode of exon regulation.  相似文献   

7.
Glucocorticoid hormones (GCH) are anti-inflammatory and immunosuppressive agents that inhibit T-cell growth and activation. Since the T-cell receptor (TCR)/CD3 complex mediates T-lymphocyte activation, we studied the effect of in vitro dexamethasone (DEX), a synthetic GCH, on TCR/CD3 expression.DEX-treatment of a hybridoma T-cell line and normal un-transformed T-cell clones induced a decrease of the TCR/CD3 membrane expression after 4 days. After 4 weeks, TCR/CD3 was undetectable. However, the amount of mRNAs coding TCR/CD3 chains, including TCR, TCR, CD3, CD3 and CD3, as well as the amount of CD3 protein, a major component of the complex, were unaltered. By contrast, a decrease of the mRNAs deriving from the TCR gene locus, as well as of the TCR protein which is responsible for the membrane expression of the TCR/CD3 complex, was induced.These data suggest that the down-modulation of TCR expression is due to the diminution of TCR gene products in DEX-treated cells. (Mol Cell Biochem 167: 135-144, 1997)  相似文献   

8.
9.
10.
The T-cell antigen receptor is a multisubunit complex consisting of at least seven chains. Based upon structural and genetic considerations, we have divided these chains into three groups. The alpha and beta subunits (Ti) are the clonotypic chains responsible for antigen recognition. Three chains that are invariant among all T-cells define the CD3 complex. These include the CD3 gamma, delta, and epsilon chains. The zeta chain is a distinct component that, like the CD3 chains, is invariant among all T-cells. In the majority of receptors, zeta is found as a disulfide-linked homodimer. We have recently shown that approximately 10% of zeta is disulfide-linked to a chain which we have called eta. A preliminary model has been proposed, suggesting that there are two subclasses of receptors, depending upon the presence within the complex of either the zeta-zeta homodimer or the zeta-eta heterodimer. Evidence has been presented that these two subclasses may perform distinct signaling functions. In this paper the eta chain is characterized to determine whether it is structurally related to the zeta chain and, in particular, whether it might represent a post-translational modification of zeta. We can identify specific antigenic epitopes that are shared by both zeta and eta. However, not all antibodies raised against zeta can directly recognize eta. The apparent molecular mass of eta is 22 kDa, whereas zeta has a molecular mass of 16 kDa. We are unable to demonstrate any post-translational covalent modifications of eta to explain the difference in apparent molecular weight. These include phosphorylation, glycosylation, or sulfation. Amino acid incorporation studies demonstrate that the amino acid composition of eta is distinct from that of zeta. All of the eta in a T-cell is found in association with the rest of the components of the T-cell receptor. In addition, our anti-eta antibodies allow us to directly recognize human eta, which has an apparent molecular mass of approximately 23 kDa. Thus, eta and zeta appear to be related but distinct proteins, and we would propose that eta is the second member of the zeta group of components of the T-cell receptor.  相似文献   

11.
12.
The CD44 cell surface glycoprotein is expressed on a broad range of different tissues as multiple isoforms containing from one to ten alternatively spliced exons v1-v10 inserted within the extracellular domain. Differential glycosylation generates still further variability, yielding both N- and O-glycan-modified forms of CD44 in addition to proteoglycan-like variants containing chondroitin sulphate and heparan sulphate. These high molecular mass proteoglycan-like variants, previously identified in lymphocytes, melanomas, and keratinocytes have been implicated in cell-matrix adhesion, cell motility, and invasiveness. More recently, monocyte CD44 molecules presumed to carry glycosaminoglycan chains were shown to bind the chemokine MIP-1 beta (Tanaka, Y.,D. H. Adams, S. Hubscher, H. Hirano, U. Siebenlist, and S. Shaw. 1993. Nature (Lond). 361:79-82.) raising the intriguing possibility that proteoglycan-like CD44 variants might play a role in regulating inflammatory responses. Here we have investigated the molecular identity of these proteoglycan-like CD44 variants by generating a panel of recombinant CD44 isoforms using a novel cassette cloning strategy. We show that both chondroitin and heparan sulphate modifications are associated specifically with isoforms (CD44v3-10 and CD44v3,8-10) containing the v3 alternative exon which encodes a consensus motif SGXG for GAG addition. Other isoforms (CD44v10, CD44v8- 10, CD44v7-10, and CD44v6-10) are shown to lack these GAG chains but to carry extensive O-glycan modifications, most likely within the mucin- like alternative exon inserts. We also demonstrate that the majority of endogenous GAG-modified CD44 isoforms present in epithelial cells constitute v3 isoforms thus establishing that in these cells the majority of proteoglycan-like CD44 variants are generated by alternative splicing. Finally we present evidence using transfected B lymphoma cells that the GAG-modified CD44 isoforms CD44v3-10 and CD44v3,8-10, unlike CD44H, bind only weakly to hyaluronan. Together with the demonstration in the accompanying paper (Bennett, K., D. G. Jackson, J.C. Simon, E. Tanczos, R. Peach, B. Modrell, I. Stamenkovic, G. Plowman, and A. Aruffo. 1995. J. Cell Biol. 128:687-698.), that CD44 molecules containing the v3 exon bind growth factors, these results highlight a new and potentially important role for CD44 alternative splicing in the control of cell-surface proteoglycan expression.  相似文献   

13.
This study of two forms of ankyrin (protein 2.1 and 2.2) from human erythrocytes has revealed a role for alternate exon usage at the level of regulation of protein interactions. The smaller form of ankyrin (protein 2.2), which lacks a portion of the regulatory domain due to alternative splicing of pre-mRNA, exhibits increased affinity for the cytoplasmic domain of the anion exchanger, spectrin, and tubulin. Direct evidence that at least one of these associations is modulated by the alternatively spliced segment of the regulatory domain is provided by experiments utilizing a polypeptide that is comprised of residues 1513-1674 corresponding to the portion of the regulatory domain missing from protein 2.2. Addition of this regulatory domain polypeptide to binding assays reversed the increase in affinity of protein 2.2 for the anion exchanger. The inhibitory activity of the regulatory domain polypeptide in these assays is accompanied by a direct interaction with a site that is available on the smaller form of ankyrin and is distinct from the binding site for the anion exchanger. These results support the idea that the alternatively spliced segment within the regulatory domain of erythrocyte ankyrin performs a repressor function and acts through an allosteric mechanism involving interaction(s) at a site separate from the binding site for the anion exchanger.  相似文献   

14.
The expression and function of transforming growth factor-β superfamily receptors are regulated by multiple molecular mechanisms. The type II BMP receptor (BMPRII) is expressed as two alternatively spliced forms, a long and a short form (BMPRII-LF and –SF, respectively), which differ by an ∼500 amino acid C-terminal extension, unique among TGF-β superfamily receptors. Whereas this extension was proposed to modulate BMPRII signaling output, its contribution to the regulation of receptor expression was not addressed. To map regulatory determinants of BMPRII expression, we compared synthesis, degradation, distribution, and endocytic trafficking of BMPRII isoforms and mutants. We identified translational regulation of BMPRII expression and the contribution of a 3’ terminal coding sequence to this process. BMPRII-LF and -SF differed also in their steady-state levels, kinetics of degradation, intracellular distribution, and internalization rates. A single dileucine signal in the C-terminal extension of BMPRII-LF accounted for its faster clathrin-mediated endocytosis relative to BMPRII-SF, accompanied by mildly faster degradation. Higher expression of BMPRII-SF at the plasma membrane resulted in enhanced activation of Smad signaling, stressing the potential importance of the multilayered regulation of BMPRII expression at the plasma membrane.  相似文献   

15.
The TCR/CD3 complex is a multimeric protein complex composed of a minimum of seven transmembrane chains (TCR alpha beta-CD3 gamma delta epsilon zeta 2). Whereas earlier studies have demonstrated that both the TCR-alpha and -beta chains are required for the cell surface expression of the TCR/CD3 complex, the role of the CD3 chains for the TCR/CD3 expression have not been experimentally addressed in human T cells. In this study the function of the CD3-zeta chain for the assembly, intracellular processing, and expression of the TCR/CD3 complex in the human leukemic T cell line Jurkat was investigated. The results indicate that: 1) CD3-zeta is required for the cell surface expression of the TCR/CD3 complex; 2) the pentameric form (TCR alpha beta-CD3 gamma delta epsilon) of the TCR/CD3 complex and single TCR chains associated with CD3 (TCR alpha-CD3 gamma delta epsilon and TCR beta-CD3 gamma delta epsilon) are produced in the endoplasmic reticulum in the absence of CD3-zeta; 3) the CD3-zeta does not associate with TCR alpha-CD3 gamma delta epsilon or TCR beta-CD3 gamma delta epsilon complexes; 4) CD3-zeta associate with the pentameric form of the TCR/CD3 complex in the endoplasmic reticulum to form the heptameric complex (TCR alpha beta-CD3 gamma delta epsilon----TCR alpha beta-CD3 gamma delta epsilon 2); and 5) CD3-zeta is required for the export of the TCR/CD3 complex from the endoplasmic reticulum to the Golgi apparatus for subsequent processing.  相似文献   

16.
The T cell receptor (TCR) is a molecular complex formed by at least seven transmembrane proteins: the antigen/major histocompatibility complex recognition unit (Ti alpha-beta heterodimer) and the invariant CD3 chains (gamma, delta, epsilon, zeta, and eta). In addition to targeting partially assembled Ti alpha-beta CD3 gamma delta epsilon TCR complexes to the cell surface, CD3 zeta appears to be essential for interleukin-2 production after TCR stimulation with antigen/major histocompatibility complex. The gamma chain of the high affinity Fc receptor for IgE (Fc epsilon RI gamma) has significant structural homology to CD3 zeta and the related CD3 eta subunit. To identify the functional significance of sequence homologies between CD3 zeta and Fc epsilon RI gamma in T cells, we have transfected a Fc epsilon RI gamma cDNA into a T cell hybridoma lacking CD3 zeta and CD3 eta proteins. Herein we show that a Fc epsilon RI gamma-gamma homodimer associates with TCR components to up-regulate TCR surface expression. A TCR composed of Ti alpha-beta CD3 gamma delta epsilon Fc epsilon RI gamma-gamma is sufficient to restore the coupling of TCR antigen recognition to the interleukin-2 induction pathway, demonstrating the functional significance of structural homology between the above receptor subunits. These results, in conjunction with the recent finding that CD3 zeta, CD3 eta, and Fc epsilon RI gamma are coexpressed in certain T cells as subunits of an unusual TCR isoform, suggest that Fc epsilon RI gamma is likely to play a role in T cell lineage function.  相似文献   

17.
T cell development in mice lacking the CD3-zeta/eta gene.   总被引:25,自引:3,他引:22       下载免费PDF全文
The CD3-zeta and CD3-eta polypeptides are two of the components of the T cell antigen receptor (TCR) which contribute to its efficient cell surface expression and account for part of its transducing capability. CD3-zeta and CD3-eta result from the alternative splicing of a single gene designated CD3-zeta/eta. To evaluate the role of these subunits during T cell development, we have produced mice with a disrupted CD3-zeta/eta gene. The analysis of thymocyte populations from the CD3-zeta/eta-/- homozygous mutant mice revealed that they have a profound reduction in the surface levels of TCR complexes and that the products of the CD3-zeta/eta gene appear to be needed for the efficient generation and/or survival of CD4+CD8+ thymocytes. Despite the almost total absence of mature single positive thymocytes, the lymph nodes from zeta/eta-/- mice were found to contain unusual CD4+CD8- and CD4-CD8+ single positive cells which were CD3-. In contrast to the situation observed in the thymus, the thymus-independent gut intraepithelial lymphocytes present in zeta/eta-/- mice do express TCR complexes on their surface and these are associated with Fc epsilon RI gamma homodimers. These results establish an essential role for the CD3-zeta/eta gene products during intrathymic T cell differentiation and further emphasize the difference between conventional T cells and thymus-independent gut intraepithelial lymphocytes.  相似文献   

18.
19.
20.
Members of the beta 1 subfamily of heterodimeric integrins, such as the fibronectin receptors alpha 5 beta 1 and alpha 4 beta 1, are expressed on human T lymphocytes. The presence of these two adhesion receptors on T lymphocytes suggests an involvement in cell-cell and cell-extracellular matrix interactions that may be important for the development of immune and inflammatory reactions. We have examined the cell surface expression of alpha 5, alpha 4, and beta 1 subunits on purified peripheral blood T lymphocytes before and after activation with Con A and PMA. Freshly isolated T lymphocytes contained distinct fractions expressing high or low levels of alpha 5 and beta 1. Only a high expressing T lymphocyte population was present after 72-h culture with Con A and PMA. Time course analysis indicated that the shift in alpha 5 and beta 1 expression occurred during the first 24 h after addition of activating agents and occurred in the absence of proliferation. In contrast to alpha 5 and beta 1, essentially all freshly isolated T lymphocytes expressed high levels of alpha 4. After 72-h culture with Con A and PMA, a wide distribution of alpha 4 expression was observed. Further experiments showed that after activation, a proportion of CD4-positive cells decreased their surface expression of alpha 4, but increased their surface expression of alpha 5 and beta 1. In contrast, most CD8-positive cells increased their surface expression of alpha 5, beta 1, and alpha 4 upon activation. An examination of mRNA levels in pan-T lymphocyte cultures after activation indicated that alpha 5 and alpha 4 mRNA expression decreased, whereas beta 1 mRNA expression was unchanged, in Con A/PMA-activated cells as compared to those cultured in medium alone. Our results indicate that T lymphocyte activating agents may differentially affect the expression of alpha 5 beta 1 and alpha 4 beta 1, thus providing a mechanism for the selective regulation of binding interactions that occur at sites of immune reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号