首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, there has been an increased number of sequenced RNAs leading to the development of new RNA databases. Thus, predicting RNA structure from multiple alignments is an important issue to understand its function. Since RNA secondary structures are often conserved in evolution, developing methods to identify covariate sites in an alignment can be essential for discovering structural elements. Structure Logo is a technique established on the basis of entropy and mutual information measured to analyze RNA sequences from an alignment. We proposed an efficient Structure Logo approach to analyze conservations and correlations in a set of Cardioviral RNA sequences. The entropy and mutual information content were measured to examine the conservations and correlations, respectively. The conserved secondary structure motifs were predicted on the basis of the conservation and correlation analyses. Our predictive motifs were similar to the ones observed in the viral RNA structure database, and the correlations between bases also corresponded to the secondary structure in the database.  相似文献   

2.
Models of RNA secondary structure folding are widely used to study evolution in theory and simulation. However, systematic studies of the parameters involved are rare. In this paper, we study by simulation how RNA evolution is influenced by three different factors, namely the mutation rate, scaling of the fitness function, and distance measure. We found that for low mutation rates the qualitative evolutionary behavior is robust with respect to the scaling of the fitness function. For efficient mutation rates, which are close to the error threshold, scaling and distance measure have a strong influence on the evolutionary behavior. A global distance measure that takes sequence information additively into account lowers the error threshold. When using a local sequence-structure alignment for the distance, we observed a smoother evolution of the fitness over time. Finally, in addition to the well known error threshold, we identify another threshold of the mutation rate, called divergence threshold, where the qualitative transient behavior changes from a localized to an exploratory search.  相似文献   

3.

Background  

Traditional genome alignment methods consider sequence alignment as a variation of the string edit distance problem, and perform alignment by matching characters of the two sequences. They are often computationally expensive and unable to deal with low information regions. Furthermore, they lack a well-principled objective function to measure the performance of sets of parameters. Since genomic sequences carry genetic information, this article proposes that the information content of each nucleotide in a position should be considered in sequence alignment. An information-theoretic approach for pairwise genome local alignment, namely XMAligner, is presented. Instead of comparing sequences at the character level, XMAligner considers a pair of nucleotides from two sequences to be related if their mutual information in context is significant. The information content of nucleotides in sequences is measured by a lossless compression technique.  相似文献   

4.
Mapping nucleotide sequences onto a "DNA walk" produces a novel representation of DNA that can then be studied quantitatively using techniques derived from fractal landscape analysis. We used this method to analyze 11 complete genomic and cDNA myosin heavy chain (MHC) sequences belonging to 8 different species. Our analysis suggests an increase in fractal complexity for MHC genes with evolution with vertebrate > invertebrate > yeast. The increase in complexity is measured by the presence of long-range power-law correlations, which are quantified by the scaling exponent alpha. We develop a simple iterative model, based on known properties of polymeric sequences, that generates long-range nucleotide correlations from an initially noncorrelated coding region. This new model-as well as the DNA walk analysis-both support the intron-late theory of gene evolution.  相似文献   

5.
MOTIVATION: The observed correlations between pairs of homologous protein sequences are typically explained in terms of a Markovian dynamic of amino acid substitution. This model assumes that every location on the protein sequence has the same background distribution of amino acids, an assumption that is incompatible with the observed heterogeneity of protein amino acid profiles and with the success of profile multiple sequence alignment. RESULTS: We propose an alternative model of amino acid replacement during protein evolution based upon the assumption that the variation of the amino acid background distribution from one residue to the next is sufficient to explain the observed sequence correlations of homologs. The resulting dynamical model of independent replacements drawn from heterogeneous backgrounds is simple and consistent, and provides a unified homology match score for sequence-sequence, sequence-profile and profile-profile alignment.  相似文献   

6.
An evolutionary model for maximum likelihood alignment of DNA sequences   总被引:16,自引:0,他引:16  
Summary Most algorithms for the alignment of biological sequences are not derived from an evolutionary model. Consequently, these alignment algorithms lack a strong statistical basis. A maximum likelihood method for the alignment of two DNA sequences is presented. This method is based upon a statistical model of DNA sequence evolution for which we have obtained explicit transition probabilities. The evolutionary model can also be used as the basis of procedures that estimate the evolutionary parameters relevant to a pair of unaligned DNA sequences. A parameter-estimation approach which takes into account all possible alignments between two sequences is introduced; the danger of estimating evolutionary parameters from a single alignment is discussed.  相似文献   

7.
MOTIVATION: A large, high-quality database of homologous sequence alignments with good estimates of their corresponding phylogenetic trees will be a valuable resource to those studying phylogenetics. It will allow researchers to compare current and new models of sequence evolution across a large variety of sequences. The large quantity of data may provide inspiration for new models and methodology to study sequence evolution and may allow general statements about the relative effect of different molecular processes on evolution. RESULTS: The Pandit 7.6 database contains 4341 families of sequences derived from the seed alignments of the Pfam database of amino acid alignments of families of homologous protein domains (Bateman et al., 2002). Each family in Pandit includes an alignment of amino acid sequences that matches the corresponding Pfam family seed alignment, an alignment of DNA sequences that contain the coding sequence of the Pfam alignment when they can be recovered (overall, 82.9% of sequences taken from Pfam) and the alignment of amino acid sequences restricted to only those sequences for which a DNA sequence could be recovered. Each of the alignments has an estimate of the phylogenetic tree associated with it. The tree topologies were obtained using the neighbor joining method based on maximum likelihood estimates of the evolutionary distances, with branch lengths then calculated using a standard maximum likelihood approach.  相似文献   

8.
Pairwise alignment incorporating dipeptide covariation   总被引:1,自引:0,他引:1  
MOTIVATION: Standard algorithms for pairwise protein sequence alignment make the simplifying assumption that amino acid substitutions at neighboring sites are uncorrelated. This assumption allows implementation of fast algorithms for pairwise sequence alignment, but it ignores information that could conceivably increase the power of remote homolog detection. We examine the validity of this assumption by constructing extended substitution matrices that encapsulate the observed correlations between neighboring sites, by developing an efficient and rigorous algorithm for pairwise protein sequence alignment that incorporates these local substitution correlations and by assessing the ability of this algorithm to detect remote homologies. RESULTS: Our analysis indicates that local correlations between substitutions are not strong on the average. Furthermore, incorporating local substitution correlations into pairwise alignment did not lead to a statistically significant improvement in remote homology detection. Therefore, the standard assumption that individual residues within protein sequences evolve independently of neighboring positions appears to be an efficient and appropriate approximation.  相似文献   

9.
MOTIVATION: The BLAST program for comparing two sequences assumes independent sequences in its random model. The resulting random alignment matrices have correlations across their diagonals. Analytic formulas for the BLAST p-value essentially neglect these correlations and are equivalent to a random model with independent diagonals. Progress on the independent diagonals model has been surprisingly rapid, but the practical magnitude of the correlations it neglects remains unknown. In addition, BLAST uses a finite-size correction that is particularly important when either of the sequences being compared is short. Several formulas for the finite-size correction have now been given, but the corresponding errors in the BLAST p-values have not been quantified. As the lengths of compared sequences tend to infinity, it is also theoretically unknown whether the neglected correlations vanish faster than the finite-size correction. RESULTS: Because we required certain analytic formulas, our study restricted its computer experiments to ungapped sequence alignment. We expect some of our conclusions to extend qualitatively to gapped sequence alignment, however. With this caveat, the finite-size correction appeared to vanish faster than the neglected correlations. Although the finite-size correction underestimated the BLAST p-value, it improved the approximation substantially for all but very short sequences. In practice, the Altschul-Gish finite-size correction was superior to Spouge's. The independent diagonals model was always within a factor of 2 of the true BLAST p-value, although fitting p-value parameters from it probably is unwise. CONTACT: spouge@ncbi.nlm.nih.gov  相似文献   

10.
MOTIVATION: Multiple sequence alignment is an essential part of bioinformatics tools for a genome-scale study of genes and their evolution relations. However, making an accurate alignment between remote homologs is challenging. Here, we develop a method, called SPEM, that aligns multiple sequences using pre-processed sequence profiles and predicted secondary structures for pairwise alignment, consistency-based scoring for refinement of the pairwise alignment and a progressive algorithm for final multiple alignment. RESULTS: The alignment accuracy of SPEM is compared with those of established methods such as ClustalW, T-Coffee, MUSCLE, ProbCons and PRALINE(PSI) in easy (homologs) and hard (remote homologs) benchmarks. Results indicate that the average sum of pairwise alignment scores given by SPEM are 7-15% higher than those of the methods compared in aligning remote homologs (sequence identity <30%). Its accuracy for aligning homologs (sequence identity >30%) is statistically indistinguishable from those of the state-of-the-art techniques such as ProbCons or MUSCLE 6.0. AVAILABILITY: The SPEM server and its executables are available on http://theory.med.buffalo.edu.  相似文献   

11.
Molecular phylogenetic trees are constructed in three dimensions relative to the distribution of MW and pl classes and immunocrossreactivity against polyclonal antibodies to lens crystallins, as well as multiple sequence alignment between amino acid sequences, coding nucleotide sequences and the gene nucleotide sequences for beta-globin. Euclidian distances are estimated to position species in x, y, z space by multidimensional scaling and merged with bootstrap-tested branching pattern of Fitch & Margoliash plots to obtain 3-D phylogenetic tree. Compared to single attributes, phylogenetic trees based on multiple parameters allow significant repositioning of rodents, chiroptera and primates.  相似文献   

12.
Long-range correlations in genomic base composition are a ubiquitous statistical feature among many eukaryotic genomes. In this article, these correlations are shown to substantially influence the statistics of sequence alignment scores. Using a Gaussian approximation to model the correlated score landscape, we calculate the corrections to the scale parameter lambda of the extreme value distribution of alignment scores. Our approximate analytic results are supported by a detailed numerical study based on a simple algorithm to efficiently generate long-range correlated random sequences. We find both, mean and exponential tail of the score distribution for long-range correlated sequences to be substantially shifted compared to random sequences with independent nucleotides. The significance of measured alignment scores will therefore change upon incorporation of the correlations in the null model. We discuss the magnitude of this effect in a biological context.  相似文献   

13.
Reconstructing the evolutionary history of protein sequences will provide a better understanding of divergence mechanisms of protein superfamilies and their functions. Long-term protein evolution often includes dynamic changes such as insertion, deletion, and domain shuffling. Such dynamic changes make reconstructing protein sequence evolution difficult and affect the accuracy of molecular evolutionary methods, such as multiple alignments and phylogenetic methods. Unfortunately, currently available simulation methods are not sufficiently flexible and do not allow biologically realistic dynamic protein sequence evolution. We introduce a new method, indel-Seq-Gen (iSG), that can simulate realistic evolutionary processes of protein sequences with insertions and deletions (indels). Unlike other simulation methods, iSG allows the user to simulate multiple subsequences according to different evolutionary parameters, which is necessary for generating realistic protein families with multiple domains. iSG tracks all evolutionary events including indels and outputs the "true" multiple alignment of the simulated sequences. iSG can also generate a larger sequence space by allowing the use of multiple related root sequences. With all these functions, iSG can be used to test the accuracy of, for example, multiple alignment methods, phylogenetic methods, evolutionary hypotheses, ancestral protein reconstruction methods, and protein family classification methods. We empirically evaluated the performance of iSG against currently available methods by simulating the evolution of the G protein-coupled receptor and lipocalin protein families. We examined their true multiple alignments, reconstruction of the transmembrane regions and beta-strands, and the results of similarity search against a protein database using the simulated sequences. We also presented an example of using iSG for examining how phylogenetic reconstruction is affected by high indel rates.  相似文献   

14.
Alignment of nucleotide and/or amino acid sequences is a fundamental component of sequence‐based molecular phylogenetic studies. Here we examined how different alignment methods affect the phylogenetic trees that are inferred from the alignments. We used simulations to determine how alignment errors can lead to systematic biases that affect phylogenetic inference from those sequences. We compared four approaches to sequence alignment: progressive pairwise alignment, simultaneous multiple alignment of sequence fragments, local pairwise alignment and direct optimization. When taking into account branch support, implied alignments produced by direct optimization were found to show the most extreme behaviour (based on the alignment programs for which nearly equivalent alignment parameters could be set) in that they provided the strongest support for the correct tree in the simulations in which it was easy to resolve the correct tree and the strongest support for the incorrect tree in our long‐branch‐attraction simulations. When applied to alignment‐sensitive process partitions with different histories, direct optimization showed the strongest mutual influence between the process partitions when they were aligned and phylogenetically analysed together, which makes detecting recombination more difficult. Simultaneous alignment performed well relative to direct optimization and progressive pairwise alignment across all simulations. Rather than relying upon methods that integrate alignment and tree search into a single step without accounting for alignment uncertainty, as with implied alignments, we suggest that simultaneous alignment using the similarity criterion, within the context of information available on biological processes and function, be applied whenever possible for sequence‐based phylogenetic analyses.  相似文献   

15.
16.
The analysis of extant sequences shows that molecular evolution has been heterogeneous through time and among lineages. However, for a given sequence alignment, it is often difficult to uncover what factors caused this heterogeneity. In fact, identifying and characterizing heterogeneous patterns of molecular evolution along a phylogenetic tree is very challenging, for lack of appropriate methods. Users either have to a priori define groups of branches along which they believe molecular evolution has been similar or have to allow each branch to have its own pattern of molecular evolution. The first approach assumes prior knowledge that is seldom available, and the second requires estimating an unreasonably large number of parameters. Here we propose a convenient and reliable approach where branches get clustered by their pattern of molecular evolution alone, with no need for prior knowledge about the data set under study. Model selection is achieved in a statistical framework and therefore avoids overparameterization. We rely on substitution mapping for efficiency and present two clustering approaches, depending on whether or not we expect neighbouring branches to share more similar patterns of sequence evolution than distant branches. We validate our method on simulations and test it on four previously published data sets. We find that our method correctly groups branches sharing similar equilibrium GC contents in a data set of ribosomal RNAs and recovers expected footprints of selection through dN/dS. Importantly, it also uncovers a new pattern of relaxed selection in a phylogeny of Mantellid frogs, which we are able to correlate to life-history traits. This shows that our programs should be very useful to study patterns of molecular evolution and reveal new correlations between sequence and species evolution. Our programs can run on DNA, RNA, codon, or amino acid sequences with a large set of possible models of substitutions and are available at http://biopp.univ-montp2.fr/forge/testnh.  相似文献   

17.

Background  

Whole-genome sequence alignment is an essential process for extracting valuable information about the functions, evolution, and peculiarities of genomes under investigation. As available genomic sequence data accumulate rapidly, there is great demand for tools that can compare whole-genome sequences within practical amounts of time and space. However, most existing genomic alignment tools can treat sequences that are only a few Mb long at once, and no state-of-the-art alignment program can align large sequences such as mammalian genomes directly on a conventional standalone computer.  相似文献   

18.
The maintenance of protein function and structure constrains the evolution of amino acid sequences. This fact can be exploited to interpret correlated mutations observed in a sequence family as an indication of probable physical contact in three dimensions. Here we present a simple and general method to analyze correlations in mutational behavior between different positions in a multiple sequence alignment. We then use these correlations to predict contact maps for each of 11 protein families and compare the result with the contacts determined by crystallography. For the most strongly correlated residue pairs predicted to be in contact, the prediction accuracy ranges from 37 to 68% and the improvement ratio relative to a random prediction from 1.4 to 5.1. Predicted contact maps can be used as input for the calculation of protein tertiary structure, either from sequence information alone or in combination with experimental information. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Landan G  Graur D 《Gene》2009,441(1-2):141-147
We characterize pairwise and multiple sequence alignment (MSA) errors by comparing true alignments from simulations of sequence evolution with reconstructed alignments. The vast majority of reconstructed alignments contain many errors. Error rates rapidly increase with sequence divergence, thus, for even intermediate degrees of sequence divergence, more than half of the columns of a reconstructed alignment may be expected to be erroneous. In closely related sequences, most errors consist of the erroneous positioning of a single indel event and their effect is local. As sequences diverge, errors become more complex as a result of the simultaneous mis-reconstruction of many indel events, and the lengths of the affected MSA segments increase dramatically. We found a systematic bias towards underestimation of the number of gaps, which leads to the reconstructed MSA being on average shorter than the true one. Alignment errors are unavoidable even when the evolutionary parameters are known in advance. Correct reconstruction can only be guaranteed when the likelihood of true alignment is uniquely optimal. However, true alignment features are very frequently sub-optimal or co-optimal, with the result that optimal albeit erroneous features are incorporated into the reconstructed MSA. Progressive MSA utilizes a guide-tree in the reconstruction of MSAs. The quality of the guide-tree was found to affect MSA error levels only marginally.  相似文献   

20.
When two sequences are aligned with a single set of alignment parameters, or when mutation parameters are estimated on the basis of a single ``optimal' sequence alignment, the variability of both the alignment and the estimated parameters can be seriously underestimated. To obtain a more realistic impression of the actual uncertainty, we propose sampling sequence alignments and mutation parameters simultaneously from their joint posterior distribution given the two original sequences. We illustrate our method with human and orangutan sequences from the hyper variable region I and with gene–pseudogene pairs. Received: 16 November 2000 / Accepted: 15 May 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号