首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recently, a new approach to reprogram somatic cells into pluripotent stem cells was shown by fusion of somatic cells with embryonic stem (ES) cells, which results in a tetraploid karyotype. Normal hepatocytes are often polyploid, so we decided to investigate the differentiation potential of fusion hybrids into hepatic cells. We chose toxic milk mice (a model of Wilson's disease) and performed initial transplantation experiments using this potential cell therapy approach. Mononuclear bone marrow cells from Rosa26 mice were fused with OG2 (Oct4-GFP transgenic) ES cells. Unfused ES cells were eliminated by selection with G418 for OG2-Rosa26 hybrids and fusion-derived colonies could be subcloned. Using an endodermal differentiation protocol, hepatic precursor cells could be generated. After FACS depletion of contaminating Oct4-GFP-positive cells, the hepatic precursor cells were transplanted into immunosuppressed toxic milk mice by intrasplenic injection. However, five out of eight mice showed teratoma formation within 3-6 weeks after transplantation in the spleen and liver. In conclusion, a hepatic precursor cell type was achieved from mononuclear bone marrow cell-ES cell hybrids and preliminary transplantation experiments confirmed engraftment, but also showed teratoma formation, which needs to be excluded by using more stringent purification strategies.  相似文献   

3.
Mouse bone marrow contains theta-negative lymphocytes that can suppress an in vitro plaque response by spleen cells primed in vivo with burro red blood cells (BRBC). These bone marrow cells are radiosensitive and can be induced with thymosin fraction 5 or alpha 1 thymic peptides to express the theta antigen. Enrichment for these suppressor pre-T lymphocytes can be achieved by a one-step density centrifugation, macrophage depletion, or a combination of both procedures. NZB mice, which spontaneously develop an autoimmune disorder, have a suppressor abnormality revealed by this assay system. Upon analysis, they have normal BM pre-T suppressor cells but their spleen cells are refractory to the BM suppressor signal. NZB BM suppressor cells inhibit the response by DBA/2 spleen cells, but DBA/2 BM suppressor cells do not inhibit NZB spleen. This resistance to suppression is a property of the B cell fraction recovered from NZB spleen.  相似文献   

4.
Specific antibodies to human glycophorin A and spectrin were used to study the expression of these membrane proteins in normal and pathologic human bone marrow. In immunofluorescence experiments spectrin and glycophorin A are found in 50–60% of the nucleated cells in normal bone marrow. These two proteins are expressed at all stages of red cell differentiation and can be traced at least to the earliest morphologically recognizable nucleated red cell precursor, the proerythroblast; the two proteins are specific for cells of the red cell series and are not found to be expressed in lymphocytic, granulocytic cells or platelets. These conclusions were drawn from studies on bone marrow in patients with a temporary block in erythropoiesis at the level of stem cells or of the pronormoblast. Bone marrow from these individuals either lacked all nucleated cells stainable for glycophorin A and spectrin or contained only pronormoblasts. Similar findings were obtained on spleen cells from mice which were made severely anemic by multiple injections with N-acetyl-phenylhydrazine. Antibodies to a sialoglycoprotein isolated from mouse red cell membranes stain 70–80% of all cells in the spleen of anemic animals, while only 1–2% of such cells are seen in the spleen of normal animals. Spectrin and glycophorin A could be labeled metabolically and isolated using specific antibodies. The human tumor cell line K562 expresses both membrane proteins, but induction experiments with various agents thus far have failed to change their expression.  相似文献   

5.
Bone marrow mononuclear cells (BMNCs) are widely used in regenerative medicine, but recent data suggests that the isolation of BMNCs by commonly used Ficoll-Paque density gradient centrifugation (DGC) causes significant cell loss and influences graft function. The objective of this study was to determine in an animal study whether and how Ficoll-Paque DGC affects the yield and composition of BMNCs compared to alternative isolation methods such as adjusted Percoll DGC or immunomagnetic separation of polymorphonuclear cells (PMNs). Each isolation procedure was confounded by a significant loss of BMNCs that was maximal after Ficoll-Paque DGC, moderate after adjusted Percoll DGC and least after immunomagnetic PMN depletion (25.6±5.8%, 51.5±2.3 and 72.3±6.7% recovery of total BMNCs in lysed bone marrow). Interestingly, proportions of BMNC subpopulations resembled those of lysed bone marrow indicating symmetric BMNC loss independent from the isolation protocol. Hematopoietic stem cell (HSC) content, determined by colony-forming units for granulocytes-macrophages (CFU-GM), was significantly reduced after Ficoll-Paque DGC compared to Percoll DGC and immunomagnetic PMN depletion. Finally, in a proof-of-concept study, we successfully applied the protocol for BMNC isolation by immunodepletion to fresh human bone marrow aspirates. Our findings indicate that the common method to isolate BMNCs in both preclinical and clinical research can be considerably improved by replacing Ficoll-Paque DGC with adapted Percoll DGC, or particularly by immunodepletion of PMNs.  相似文献   

6.
A new, simple, and rapid in vitro assay has been developed for identification of adherent and nonadherent leukocytes. The assay is based on adherence of latex (polystyrene) particles to the cell surface. Using the latex particle adherence (LPA) assay, the percentage of adhesive leukocytes has been determined in human peripheral blood mononuclear preparations and in the lymph nodes, thymus, bursa of Fabricius, spleen, and bone marrow of mouse, chicken, and rat origin. The highest proportion of LPA-positive cells was found in peritoneal exudate, bone marrow, and spleen, the lowest proportion, in thymus and bursa of Fabricius. LPA-Positive cells in human peripheral blood mononuclear preparations were identified as surface immunoglobulin-positive lymphocytes nonrosetting with sheep red blood cells. LPA-Positive cells in peritoneal exudate were identified as macrophages. Incubation of leukocyte suspensions on polystyrene petri dishes or nylon wool columns reduces substantially the percentage of LPA-positive cells in the nonadherent fraction. The LPA assay seems to be a method of choice for establishing the relationship between adhesiveness of the cell surface and other cell membrane markers on a single-cell level.  相似文献   

7.
8.
The response and subsequent recovery of mouse haemopoietic progenitor cells (spleen colony forming cells and agar colony forming cells) has been studied following two cytotoxic agents. Busulphan was administered to normal mice and vinblastine to mice where the progenitor cell proliferation rate had been increased by a period of continuous γ-irradiation. With both these agents there is a difference between the response of the spleen colony forming cells and the agar colony forming cells during the first five days. They then recover together, but much more slowly after busulphan than after vinblastine even though their proliferation rate is increased. The rate of progenitor cell recovery after busulphan is increased if the progenitor cells are depleted further by vinblastine. However, methotrexate, which severely depletes the peripheral blood count and bone marrow cellularity but not the progenitor cells, has no effect on the recovery following busulphan. These results suggest that following cytotoxic agents the agar colony forming cells (“committed” stem cells) are not self-maintaining but are dependent on a supply of cells from the pluripotential spleen colony forming cells. In addition it appears that the depletion of the progenitor cells of the bone marrow and not the depletion of the maturing cells, provides a stimulus for stem cell recovery.  相似文献   

9.
It was investigated the functional status of stem cell pool (CFUs) of bone marrow, spleen and peripheral blood in mice (CBA) in early (1-30 days) and late (180-360 days) period after acute intake of 90Sr (29.6 kBq/g). Cumulative dose in red bone marrow due to incorporated 90Sr was 0.98-87.7 Gy. The kinetics, proliferative and differentiative potential of stem hemopoietic cells (CFUs) and productivity of hemopoietic tissues were significantly influenced by dose rate, absorbed dose and degree of suppresssion of bone marrow functions.The obtained results indicated that the sarcomogenous doses of 90Sr (29.6 kBq/g) resulted in realization of compensatory reactions in hemopoietic stem cell pool to support the life ability of irradiated animals: higher proliferative potential of CFUs and its repopulation, redistribution of cell subpopulations during differentiation and activation of spleens hemopoiesis.  相似文献   

10.
Isolation of murine pluripotent hemopoietic stem cells in the Go phase   总被引:4,自引:0,他引:4  
A method to purify pluripotent hemopoietic stem cells in the Go phase from mouse bone marrow was established. Bone marrow cells from 5-fluorouracil (5-FU)-treated mice were fractionated by Percoll density gradient. The cells with density between 1.063 and 1.075 were further separated into wheat germ agglutinin (WGA)-positive and -negative cells using fluorescent-activated cell sorter (FACS) after staining with fluorescein isothiocyanate-conjugated WGA (FITC-WGA). An assay for spleen colony-forming units (CFU-S) revealed that the WGA-positive cells (1 X 10(6)) produced 1380 CFU-S (about 150 times of the number in the original bone marrow cells) on day 12 (but no CFU-S on day 8), whereas the WGA-negative cells produced no CFU-S. Thus, the stem cells in the Go phase are found to be enriched 150 times in 5-FU-treated WGA-positive cells.  相似文献   

11.
The colony formation in spleen of lethally irradiated syngeneic or hybrid recipients was studied after transplantation of bone marrow cells, with or without macrophages from lymph nodules or from peritoneal cavity of mice, cells of macrophage-like cell line J-774, and monocytes from peripheral blood of healthy donors. The direction of stem cell differentiations in the presence of all the types of mononuclear phagocytes was seen to change from mainly erythroid to mainly myeloid one. The ratio of erythroid to myeloid colonies became equal to 0.5-0.9 instead of 2.0, when bone marrow cells were injected with equivalent quantity of mononuclear phagocytes. This new regulatory function of mononuclear phagocytes is discussed.  相似文献   

12.
T.M. Dexter  D. Scott  N.M. Teich 《Cell》1977,12(2):355-364
Long-term cultures of proliferating hematopoietic stem cells derived from bone marrow permit the study of the interaction between murine leukemia virus (MuLV) infection and the proliferation and differentiation of stem cells. We have used this system to analyze the replication of different biological variants of MuLV in bone marrow cells; the effect of MuLV infection upon pluripotent stem cell (CFU-S) proliferation; and the effect of MuLV on differentiation of CFU-S along different hematopoietic pathways. Two MuLV variants were studied in detail: the Moloney strain of lymphatic leukemia virus (Mol-MuLV) and the erythroleukemic Friend virus complex (FLV) consisting of the lymphoid leukemia helper virus and the defective spleen focus-forming virus (SFFV). Mol-MuLV and its sarcoma virus pseudotype, MSV(Mol-MuLV), replicate efficiently in the bone marrow cultures; however, CFU-S are lost more readily than in uninfected cultures, and the cultures are soon represented by a majority population of mononuclear macrophages. On the other hand, infection with FLV produces a prolonged survival of the spleen colony-forming cells, CFU-S, and CFU-C (the committed granulocytic precursor cells). Production of erythroleukemogenic SFFV is maintained in these cultures for more than 40 weeks. No erythroblastic differentiation was observed in vitro, however, neither erythroblast precursor cells (CFU-E) nor hemoglobin-producing cells could be detected. This suggests that the target cell for FLV is an earlier precursor cell.  相似文献   

13.
Populations of rat bone marrow lymphocytes (BML) consisting of approximately 90 percent, “tnull” cells were prepared by density gradient centrifugation, passage through a column of fine glass beads, and treatment with anti-T cell and anti-B cell serum plus complement. Antisera to these bone marrow lymphocytes were raised in rabbits. After absorption with RBC and peritoneal exudate cells, the anti-BML sera were found by immunofluorescence to react selectively with “null” cells in bone marrow, with cortical thymocytes, and with a cortisone-sensitive subset of T cells in blood and in spleen, possibly in red pulp. The antigen that is common to these cell types is designated the rat bone marrow lymphocyte antigen (RBMLA). Lymphocytes that are positive fur KBMLA are negative for another lymphocyte-specific heteroantigen, rat musked thymocyte antigen (RMTA). As shown previously, RMTA is present on medullary thymocytes and ou cortisone-resistant T cells in white pulp of spleen, paracortex of lymph node and thoracic duct lymph. It is postulated that two developmentally and functionally distinct lines of T cells exist in peripheral lymphoid tissues of the rat, one derived from cortical thymocytes and one derived from medullary thymocytes. It is further postulated that the “null” population of bone marrow lymphocytes contains the lymphopoietic stem cells from which these two lines of T cells originate.  相似文献   

14.
Using a chromosome marker within a syngeneic system, we investigated the seeding characteristics of murine hematopoietic stem cells after transplantation to irradiated hosts. The chromosome-marked test cells were allowed to compete with normal marrow cells in repopulating the spleen and marrow of irradiated mice. Although the seeding behavior of normal marrow could be predicted from the number of colony-forming units-spleen (CFU-s) transplanted, the marrow seeding of melphalan-treated marrow was 7-fold greater than expected. Repopulation of marrow by spleen cells was less effective than expected from the CFU-s content, while the reverse was true after repopulation by fetal liver cells. These differences were emphasized after treatment of cell donors with melphalan. The results were due primarily to differences in the lodging properties of the transplanted cells, those seeding in the marrow were less sensitive to melphalan than CFU-s. In some instances marrow-repopulating ability could be separated from peak CFU-s activity on a density gradient, suggesting a marrow-repopulating cell exists that is distinct from CFU-s.  相似文献   

15.
Age-related changes in the number and concentration of pluripotential and unipotential hematopoietic stem cells in the femoral bone marrow and spleen of BC3F1 mice were investigated. Pluripotential stem cells were assayed by the spleen colony technique, and unipotential stem cells were determined by an agar cloning method and by erythropoietin responsiveness in polycythemic mice. Changes with senescence were observed in the concentration of both uni- and pluripotential stem cells in the bone marrow; the size of the stem cell compartment in the marrow did not change significantly with age. Also, a reduction in the seeding of transplanted spleen colony-forming units into the spleens of aged recipients was demonstrated. The implications of these findings for the kinetics of hematopoietic stem cell proliferation in aged animals are discussed.  相似文献   

16.
One approach to overcome the problem of histoincompatibility in bone marrow transplantation is to use T cell depleted marrow from a haploidentical donor in an attempt to ameliorate graft-versus-host disease. Since the T cell requirements for normal hematopoiesis are uncertain, experiments were performed to study the effects of E rosette-T cell depletion on in vitro growth of hematopoietic progenitor cells. Marrow mononuclear cells were cultured in a modified CFU-GEMM assay before and after T cell depletion. The number of 7 day granulocytic and erythrocytic colonies, and 14 day granulocytic, erythrocytic and mixed colonies were enumerated and expressed in terms of colonies per 10(5) non T cells plated. T cell depletion did not result in decreased proliferation of any of these progenitors save possibly for 14 day granulocytic colonies in one of four experiments. In two cases, T cell depletion resulted in increased growth of progenitor cells. Three of four patients transplanted with T cell depleted haploidentical marrow cells engrafted. It is concluded that E rosette depletion of T cells from marrow does not decrease the potential of these cells to establish hematopoiesis in vitro or in vivo.  相似文献   

17.
A competitive repopulation assay utilizing chromosome markers was used to assay the reconstituting potential of hematopoietic populations. The test populations consisted of tibial murine marrow locally irradiated with doses ranging from 1.5 Gy to 8.5 Gy and of marrow generated from either murine splenic or marrow stem cells. The purpose of this assay was to assess the innate proliferative potential and microenvironmental influences on the ability to repopulate. Regardless of origin, spleen repopulating ability consistently agreed with spleen colony-forming unit (CFU-s) content. Doses of radiation from 5 Gy to 8.5 Gy diminished, by a factor of 2, the ability to repopulate marrow despite maintenance of CFU-s levels. Marrow generated from splenic stem cells had one-fifth the repopulating ability of marrow derived from marrow stem cells, even though CFU-s levels were equivalent. The results imply that the splenic environment can only maintain stem cells at the level of the CFU-s, even if the stem cells were originally of higher quality, and that their original potential cannot be regained in a marrow environment. Nevertheless, the marrow can maintain more primitive stem cells, but this reserve is drained to support CFU-s levels.  相似文献   

18.
Two subpopulations of stem cells for T cell lineage   总被引:2,自引:0,他引:2  
An assay system for the stem cell that colonizes the thymus and differentiates into T cells was developed, and by using this assay system the existence of two subpopulations of stem cells for T cell lineage was clarified. Part-body-shielded and 900-R-irradiated C57BL/6 (H-2b, Thy-1.2) recipient mice, which do not require the transfer of pluripotent stem cells for their survival, were transferred with cells from B10 X Thy-1.1 (H-2b, Thy-1.1) donor mice. The reconstitution of the recipient's thymus lymphocytes was accomplished by stem cells in the donor cells and those spared in the shielded portion of the recipient that competitively colonize the thymus. Thus, the stem cell activity of donor cells can be evaluated by determining the proportion of donor-type (Thy-1.1+) cells in the recipient's thymus. Bone marrow cells were the most potent source of stem cells, the generation of donor-derived T cells being observed in two out of 14 recipients transferred with as few as 1.5 X 10(4) cells. The stem cell activity of spleen cells was estimated to be about 1% of that of bone marrow cells, and no activity was found in thymus cells. By contrast, when the stem cell activity was compared between spleen and bone marrow cells of whole-body-irradiated (800 R) C57BL/6 mice reconstituted with B10 X Thy-1.1 bone marrow cells by assaying in part-body-shielded and irradiated C57BL/6 mice, the activity of these two organs showed quite a different time course of development. Spleen cells showed a markedly high level of activity 7 days after the reconstitution, followed by a decline, whereas the activity of bone marrow cells was very low on day 7 and increased crosswise. The results strongly suggest that the stem cells for T cell lineage in the bone marrow comprise at least two subpopulations, spleen-seeking and bone marrow-seeking cells. Such patterns of compartmentalization of stem cells in the spleen and bone marrow of irradiated recipients completely conform to the general scheme of the relationship between restricted stem cells and less mature stem cells, including pluripotent stem cells, which became evident in other systems such as in the differentiation of spleen colony-forming cells or of stem cells for B cell lineage.  相似文献   

19.
升血汤促进辐射损伤小鼠造血与免疫功能恢复的实验研究   总被引:3,自引:0,他引:3  
本文研究了中药升血汤对辐射损伤小鼠造血与免疫功能恢复的促进作用,结果证明,升血汤能显著地增加辐射损伤小鼠外周血中各类血细胞数以及骨髓及脾脏中的有核细胞数,明显促进小鼠巨噬细胞,T及B淋巴细胞功能的恢复,表明升血汤可以明显促进辐射损伤小鼠造血与免疫功能的恢复。  相似文献   

20.
Therapeutic angiogenesis can be induced by the implantation of bone marrow mononuclear cells. We investigated the roles of mature mononuclear cell and stem cell fractions in bone marrow in this treatment. Although CD34 is the most popular marker for stem cell selection for inducing therapeutic angiogenesis, we separated CD117-positive cells (CD117+) from mature bone marrow mononuclear cells [CD117-negative cells (CD117-)] from mice using the antibody to the stem cell receptor, because some of the bone marrow stem cells that express CD117+ and CD34- might generate angiogenic cytokines and differentiate into endothelial cells. The angiogenic potency of CD117+ and CD117- cells was investigated in vitro and in vivo. Significantly higher levels of VEGF were secreted from the CD117+ cells than from the CD117- cells (P < 0.001). Most of the CD117- cells died, but the CD117+ cells grew well and differentiated into endothelial cells within 14 days of culture. The CD117+ cells survived and were incorporated in microvessels within 14 days of being implanted into the ischemic hindlimbs of mice, but the CD117- cells did not. The microvessel density and blood perfusion of the ischemic hindlimbs were significantly higher in the CD117+ cell-implanted mice than in the CD117- cell-implanted mice (P < 0.01). The microvessel density in ischemic hindlimbs was also significantly higher in the CD117+ cell-implanted mice than in the total bone marrow cell-implanted mice (P < 0.05). Thus CD117+ stem cells play a key role in the therapeutic angiogenesis induced by bone marrow cell implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号