首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zyxin is an actin regulatory protein that is concentrated at sites of actin–membrane association, particularly cell junctions. Zyxin participates in actin dynamics by binding VASP, an interaction that occurs via proline-rich N-terminal ActA repeats. An intramolecular association of the N-terminal LIM domains at or near the ActA repeats can prevent VASP and other binding partners from binding full-length zyxin. Such a head–tail interaction likely accounts for how zyxin function in actin dynamics, cell adhesion, and cell migration can be regulated by the cell. Since zyxin binding to several partners, via the LIM domains, requires phosphorylation, it seems likely that zyxin phosphorylation might alter the head–tail interaction and, thus, zyxin activity. Here we show that zyxin point mutants at a known phosphorylation site, serine 142, alter the ability of a zyxin fragment to directly bind a separate zyxin LIM domains fragment protein. Further, expression of the zyxin phosphomimetic mutant results in increased localization to cell–cell contacts of MDCK cells and generates a cellular phenotype, namely inability to disassemble cell–cell contacts, precisely like that produced by expression of zyxin mutants that lack the entire regulatory LIM domain region. These data suggest that zyxin phosphorylation at serine 142 results in release of the head–tail interaction, changing zyxin activity at cell–cell contacts.  相似文献   

2.
Zyxin is an adhesion protein that regulates actin assembly by binding to VASP family members through N-terminal proline-rich motifs. Evidence suggests that zyxin’s C-terminal LIM domains function as a negative regulator of zyxin-VASP complexes. Zyxin LIM domains access to binding partners is negatively regulated by an unknown mechanism. One possibility is that zyxin LIM domains mediate a head-tail interaction, blocking interactions with other proteins. Such a mechanism might prevent both zyxin-VASP complexes activity and LIM domain access. In this report, the effect of LIM domains on zyxin-VASP complex assembly is defined. We find that zyxin LIM domains associate with zyxin’s VASP binding sites, preventing zyxin from binding to PKA-phosphorylated VASP. Unphosphorylated VASP overcomes the head-tail interaction, a result of a direct interaction with the LIM domain region. Zyxin, like a growing number of actin regulators, is controlled by intramolecular interactions.  相似文献   

3.
Cadherins mediate cell-cell adhesion by linking cell junctions to actin networks. Although several actin regulatory systems have been implicated in cell-cell adhesion, it remains unclear how such systems drive cadherin-actin network formation and how they are regulated to coincide with initiation of adhesion. Previous work implicated VASP in assembly of cell-cell junctions in keratinocytes and the VASP-binding protein zyxin colocalizes with VASP at cell-cell junctions. Here we examine how domains in zyxin and its relative LPP contribute to cell-cell junction assembly. Using a quantitative assay for cell-cell adhesion, we demonstrate that zyxin and LPP function to increase the rate of early cell-cell junction assembly through the VASP-binding ActA repeat region. We also identify the LIM region of zyxin and LPP to be a regulatory domain that blocks function of these proteins. Deletion of the LIM domains drives adhesion and increases VASP level in detergent insoluble cadherin-actin. Dominant-negative zyxin/LPP mutants reduce the rate of adhesion, lower VASP levels in detergent-insoluble cadherin-actin networks, and allow for the accumulation of capping protein at cell-cell contacts. These data implicate the LIM domains of zyxin and LPP in regulating cell-cell junction assembly through VASP.  相似文献   

4.
The zyxin family of proteins consists of five members, ajuba, LIMD1, LPP, TRIP6 and zyxin, which localize at cell adhesion sites and shuttle to the nucleus. Previously, we established that LPP interacts with the tumor suppressor Scrib, a member of the leucine-rich repeat and PDZ (LAP) family of proteins. Here, we demonstrate that Scrib also interacts with TRIP6, but not with zyxin, ajuba, or LIMD1. We show that TRIP6 directly binds to the third PDZ domain of Scrib via its carboxy-terminus. Both proteins localize in cell-cell contacts but are not responsible to target each other to these structures. In the course of our experiments, we also characterized the nuclear export signal of human TRIP6, and show that LIMD1 is localized in focal adhesions. The binding between two of zyxin's family members and Scrib links Scrib to a communication pathway between cell-cell contacts and the nucleus, and implicates these zyxin family members in Scrib-associated functions.  相似文献   

5.
The nectin-afadin system is a novel cell-cell adhesion system that organizes adherens junctions cooperatively with the cadherin-catenin system in epithelial cells. Nectin is an immunoglobulin-like adhesion molecule, and afadin is an actin filament-binding protein that connects nectin to the actin cytoskeleton. Nectin has four isoforms (-1, -2, -3, and -4). Each nectin forms a homo-cis-dimer followed by formation of a homo-trans-dimer, but nectin-3 furthermore forms a hetero-trans-dimer with nectin-1 or -2, and the formation of each hetero-trans-dimer is stronger than that of each homo-trans-dimer. We show here that at the synapses between the mossy fiber terminals and dendrites of pyramidal cells in the CA3 area of adult mouse hippocampus, the nectin-afadin system colocalizes with the cadherin-catenin system, and nectin-1 and -3 asymmetrically localize at the pre- and postsynaptic sides of puncta adherentia junctions, respectively. During development, nectin-1 and -3 asymmetrically localize not only at puncta adherentia junctions but also at synaptic junctions. Inhibition of the nectin-based adhesion by an inhibitor of nectin-1 in cultured rat hippocampal neurons results in a decrease in synapse size and a concomitant increase in synapse number. These results indicate an important role of the nectin-afadin system in the formation of synapses.  相似文献   

6.
Cell–cell contact formation is a dynamic process requiring the coordination of cadherin-based cell–cell adhesion and integrin-based cell migration. A genome-wide RNA interference screen for proteins required specifically for cadherin-dependent cell–cell adhesion identified an Elmo–Dock complex. This was unexpected as Elmo–Dock complexes act downstream of integrin signaling as Rac guanine-nucleotide exchange factors. In this paper, we show that Elmo2 recruits Dock1 to initial cell–cell contacts in Madin–Darby canine kidney cells. At cell–cell contacts, both Elmo2 and Dock1 are essential for the rapid recruitment and spreading of E-cadherin, actin reorganization, localized Rac and Rho GTPase activities, and the development of strong cell–cell adhesion. Upon completion of cell–cell adhesion, Elmo2 and Dock1 no longer localize to cell–cell contacts and are not required subsequently for the maintenance of cell–cell adhesion. These studies show that Elmo–Dock complexes are involved in both integrin- and cadherin-based adhesions, which may help to coordinate the transition of cells from migration to strong cell–cell adhesion.  相似文献   

7.
An interaction between zyxin and alpha-actinin   总被引:11,自引:0,他引:11       下载免费PDF全文
Zyxin is an 82-kD protein first identified as a component of adhesion plaques and the termini of stress fibers near where they associate with the cytoplasmic face of the adhesive membrane. We report here that zyxin interacts with the actin cross-linking protein alpha-actinin. Zyxin cosediments with filamentous actin in an alpha-actinin-dependent manner and an association between zyxin and alpha-actinin is observed in solution by analytical gel filtration. The specificity of the interaction between zyxin and alpha-actinin was demonstrated by blot overlay experiments in which 125I-zyxin recognizes most prominently alpha-actinin among a complex mixture of proteins extracted from avian smooth muscle. By these blot overlay binding studies, we determined that zyxin interacts with the NH2-terminal 27-kD domain of alpha-actinin, a region that also contains the actin binding site. Solid phase binding assays were performed to evaluate further the specificity of the binding and to determine the affinity of the zyxin-alpha-actinin interaction. By these approaches we have demonstrated a specific, saturable, moderate-affinity interaction between zyxin and alpha-actinin. Furthermore, double-label immunofluorescence reveals that zyxin and alpha-actinin exhibit extensive overlap in their subcellular distributions in both chicken embryo fibroblasts and pigmented retinal epithelial cells. The significant colocalization of the two proteins is consistent with the possibility that the interaction between zyxin and alpha-actinin has a biologically relevant role in coordinating membrane-cytoskeletal interactions.  相似文献   

8.
The localization of proteins to particular intracellular compartments often regulates their functions. Zyxin is a LIM protein found prominently at sites of cell adhesion, faintly in leading lamellipodia, and transiently in cell nuclei. Here we have performed a domain analysis to identify regions in zyxin that are responsible for targeting it to different subcellular locations. The N-terminal proline-rich region of zyxin, which harbors binding sites for alpha-actinin and members of the Ena/VASP family, concentrates in lamellipodial extensions and weakly in focal adhesions. The LIM region of zyxin displays robust targeting to focal adhesions. When overexpressed in cells, the LIM region of zyxin causes displacement of endogenous zyxin from focal adhesions. Upon mislocalization of full-length zyxin, at least one member of the Ena/VASP family is also displaced, and the organization of the actin cytoskeleton is perturbed. Zyxin also has the capacity to shuttle between the nucleus and focal adhesion sites. When nuclear export is inhibited, zyxin accumulates in cell nuclei. The nuclear accumulation of zyxin occurs asynchronously with approximately half of the cells exhibiting nuclear localization of zyxin within 2.3 h of initiating leptomycin B treatment. Our results provide insight into the functions of different zyxin domains.  相似文献   

9.
We have isolated a novel cell-cell adhesion system localized at cadherin-based adherens junctions (AJs). This system consists of at least nectin, a Ca(2+)-independent immunoglobulin-like adhesion molecule, and afadin, an actin filament-binding protein, that connects nectin to the actin cytoskeleton. Nectin constitutes a family consisting of two members, nectin-1 and -2. We have isolated here a third member of the nectin family and named it nectin-3. Nectin-3 has three splicing variants, nectin-3alpha (biggest), -3beta (middle), and -3gamma (smallest). Like nectin-1 and -2, nectin-3alpha consists of three extracellular immunoglobulin-like domains, a transmembrane segment, and a cytoplasmic region with the C-terminal consensus motif for binding to the PDZ domain. Nectin-3alpha formed a cis-homo-dimer and showed Ca(2+)-independent trans-homo-interaction to cause homophilic cell-cell adhesion. Nectin-3alpha furthermore showed trans-hetero-interaction with nectin-1 or -2 but did not form a cis-hetero-dimer with nectin-1 or -2. Nectin-1 did not show trans-hetero-interaction with nectin-2. The affinity of trans-hetero-interaction of nectin-3alpha with nectin-1 or -2 was higher than that of trans-homo-interaction of nectin-1, -2, or -3alpha. Nectin-2 and -3 were ubiquitously expressed, whereas nectin-1 was abundantly expressed in brain. Nectin-3alpha was colocalized with nectin-2 at cadherin-based AJs and interacted with afadin. These results indicate that the nectin family consists of at least three members, nectin-1, -2, and -3, all of which show homophilic and heterophilic cell-cell adhesion activities and are localized at cadherin-based AJs.  相似文献   

10.
We have recently found a novel functional unit of cell-cell adhesion at cadherin-based adherens junctions, consisting of at least nectin, a homophilic cell adhesion molecule, and afadin, an actin filament-binding protein, which connects nectin to the actin cytoskeleton. Here we studied a mechanism of cell-cell adhesion of the nectin-afadin system by use of a cadherin-deficient L cell line stably expressing the intact form of mouse nectin-2alpha, a truncated form of nectin-2alpha incapable of interacting with afadin (nectin-2alpha-DeltaC), or a point-mutated form of nectin-2alpha capable of interacting with afadin and a cadherin-expressing EL cell line, which transiently expressed the point-mutated form of nectin-2alpha. We found that the interaction of nectin-2alpha with afadin was necessary for their clustering at cell-cell contact sites. However, nectin-2alpha-DeltaC showed cis dimerization and trans interaction, both of which did not require the interaction of nectin-2alpha with afadin. We have previously shown in EL cells that the interaction of nectin-1 with afadin is necessary for its recruitment to adherens junctions. We found that the trans interaction of nectin-2alpha was furthermore necessary for this recruitment. On the basis of these observations, we propose a model for the mechanism of cell-cell adhesion of nectin and roles of afadin in this mechanism.  相似文献   

11.
Development is punctuated by morphogenetic rearrangements of epithelial tissues, including detachment of motile cells during epithelial–mesenchymal transition (EMT). Dramatic actin rearrangements occur as cell–cell junctions are dismantled and cells become independently motile during EMT. Characterizing dynamic actin rearrangements and identifying actin machinery driving these rearrangements is essential for understanding basic mechanisms of cell–cell junction remodeling. Using immunofluorescence and live cell imaging of scattering MDCK cells we examine dynamic actin rearrangement events during EMT and demonstrate that zyxin–VASP complexes mediate linkage of dynamic medial actin networks to adherens junction (AJ) membranes. A functional analysis of zyxin in EMT reveals its role in regulating disruption of actin membrane linkages at cell–cell junctions, altering cells' ability to fully detach and migrate independently during EMT. Expression of a constitutively active zyxin mutant results in persistent actin‐membrane linkages and cell migration without loss of cell–cell adhesion. We propose zyxin functions in morphogenetic rearrangements, maintaining collective migration by transducing individual cells' movements through AJs, thus preventing the dissociation of individual migratory cells. J. Cell. Physiol. 222: 612–624, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
We recently found a novel cell-cell adhesion system at cadherin-based adherens junctions (AJs), consisting at least of nectin, a Ca(2+)-independent homophilic immunoglobulin-like adhesion molecule, and afadin, an actin filament-binding protein that connects nectin to the actin cytoskeleton. Nectin is associated with cadherin through afadin and alpha-catenin. The cadherin-catenin system increases the concentration of nectin at AJs in an afadin-dependent manner. Nectin constitutes a family consisting of three members: nectin-1, -2, and -3. Nectin-1 serves as an entry and cell-cell spread mediator of herpes simplex virus type 1 (HSV-1). We studied here a role of the interaction of nectin-1alpha with afadin in entry and/or cell-cell spread of HSV-1. By the use of cadherin-deficient L cells overexpressing the full length of nectin-1alpha capable of interacting with afadin and L cells overexpressing a truncated form of nectin-1alpha incapable of interacting with afadin, we found that the interaction of nectin-1alpha with afadin increased the efficiency of cell-cell spread, but not entry, of HSV-1. This interaction did not affect the binding to nectin-1alpha of glycoprotein D, a viral component mediating entry of HSV-1 into host cells. Furthermore, the cadherin-catenin system increased the efficiency of cell-cell spread of HSV-1, although it also increased the efficiency of entry of HSV-1. It is likely that efficient cell-cell spread of HSV-1 is caused by afadin-dependent concentrated localization of nectin-1alpha at cadherin-based AJs.  相似文献   

13.
AF6 and its rat homologue afadin are multidomain proteins localized at cell junctions and involved in intercellular adhesion. AF6 interacts via its PDZ domain with nectin-1 at epithelial adherens junctions. Nectin-1 serves as a mediator of cell-to-cell spread for Herpes simplex virus 1 (HSV-1). We analyzed the role of AF6 protein in the viral spread and nectin-1 clustering at cell-cell contacts by knockdown of AF6 in epithelial cells. AF6 knockdown reduced efficiency of HSV-1 spreading, however, the clustering of nectin-1 at cell-cell contacts was not affected. Thus, AF6 protein is important for spreading of HSV-1 in epithelial cells, independently of nectin clustering, possibly by stabilization of the E-cadherin-dependent cell adhesion.  相似文献   

14.
Sensing physical forces is a critical first step in mechano-transduction of cells. Zyxin, a LIM domain-containing protein, is recruited to force-bearing actin filaments and is thought to repair and strengthen them. Yet, the precise force-induced protein interactions surrounding zyxin remain unclear. Using BioID analysis, we identified proximal proteins surrounding zyxin under normal and force-bearing conditions by label-free mass spectrometry analysis. Under force-bearing conditions, increased biotinylation of α-actinin 1, α-actinin 4, and AFAP1 were detected, and these proteins accumulated along force-bearing actin fibers independently from zyxin, albeit at a lower intensity than zyxin. VASP also accumulated along force-bearing actin fibers in a zyxin-dependent manner, but the biotinylation of VASP remained constant regardless of force, supporting the model of a free zyxin–VASP complex in the cytoplasm being corecruited to tensed actin fibers. In addition, ARHGAP42, a RhoA GAP, was also identified as a proximal protein of zyxin and colocalized with zyxin along contractile actin bundles. The overexpression of ARHGAP42 reduced the rate of small wound closure, a zyxin-dependent process. These results demonstrate that the application of proximal biotinylation can resolve the proximity and composition of protein complexes as a function of force, which had not been possible with traditional biochemical analysis.  相似文献   

15.
Actin polymerization is accompanied by the formation of protein complexes that link extracellular signals to sites of actin assembly such as membrane ruffles and focal adhesions. One candidate recently implicated in these processes is the LIM domain protein zyxin, which can bind both Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the actin filament cross-linking protein alpha-actinin. To characterize the localization and dynamics of zyxin in detail, we generated both monoclonal antibodies and a green fluorescent protein (GFP)-fusion construct. The antibodies colocalized with ectopically expressed GFP-VASP at focal adhesions and along stress fibers, but failed to label lamellipodial and filopodial tips, which also recruit Ena/VASP proteins. Likewise, neither microinjected, fluorescently labeled zyxin antibodies nor ectopically expressed GFP-zyxin were recruited to these latter sites in live cells, whereas both probes incorporated into focal adhesions and stress fibers. Comparing the dynamics of zyxin with that of the focal adhesion protein vinculin revealed that both proteins incorporated simultaneously into newly formed adhesions. However, during spontaneous or induced focal adhesion disassembly, zyxin delocalization preceded that of either vinculin or paxillin. Together, these data identify zyxin as an early target for signals leading to adhesion disassembly, but exclude its role in recruiting Ena/VASP proteins to the tips of lamellipodia and filopodia.  相似文献   

16.
Actin-based cell-cell adherens junctions (AJs) are crucial not only for mechanical adhesion but also for cell morphogenesis and differentiation. While organization of homotypic AJs is attributed mostly to classic cadherins, the adhesive mechanism of heterotypic AJs in more complex tissues remains to be clarified. Nectin, a member of a family of immunoglobulin-like adhesion molecules at various AJs, is a possible organizer of heterotypic AJs because of its unique heterophilic trans-interaction property. Recently, nectin-2 (-/-) mice have been shown to exhibit the defective sperm morphogenesis and the male-specific infertility, but the role of nectin in testicular AJs has not been investigated. We show here the heterotypic trans-interaction between nectin-2 in Sertoli cells and nectin-3 in spermatids at Sertoli-spermatid junctions (SspJs), heterotypic AJs in testes. Moreover, each nectin-based adhesive membrane domain exhibits one-to-one colocalization with each actin bundle underlying SspJs. Inactivation of the mouse nectin-2 gene causes not only impaired adhesion but also loss of the junctional actin scaffold at SspJs, resulting in aberrant morphogenesis and positioning of spermatids. Localization of afadin, an adaptor protein of nectin with the actin cytoskeleton, is also nectin-2 dependent at SspJs. These results indicate that the nectin-afadin system plays essential roles in coupling cell-cell adhesion and the cortical actin scaffold at SspJs and in subsequent sperm morphogenesis.  相似文献   

17.
Cell-cell and cell-substrate adhesions are sites of dramatic actin rearrangements and where actin-membrane connections are tightly regulated. Zyxin-VASP complexes localize to sites of cell-cell and cell-substrate adhesion and function to regulate actin dynamics and actin-membrane connections at these sites. To accomplish these functions, zyxin recruits VASP to cellular sites via proline-rich binding sites near zyxin’s amino terminus. While the prevailing thought has been that zyxin simply acts as a scaffold protein for VASP binding, the identification of a LIM domain-VASP interaction could complicate this view. Here we assess how zyxin-VASP binding through both the proline rich motifs and the LIM domains alters specific VASP functions. We find that neither individual interaction alters VASP’s actin regulatory activities. In contrast, however, we find that full-length zyxin dramatically reduces VASPmediated actin bundling and actin assembly. Taken together, these results suggest a model where zyxin-VASP complexes occur in complex organizations with suppressed actin regulatory activity.  相似文献   

18.
19.
20.
Nectins present a novel class of Ig superfamily adhesion molecules that, cooperatively with cadherins, establish and maintain cell-cell adherens junctions. CD155, the cognate receptor for poliovirus, undergoes cell-matrix contacts by binding to the extracellular matrix protein vitronectin. The significant homology of nectins with CD155 prompted us to investigate the possibility of their interaction. We determined that nectin-3 binds CD155 and its putative mouse homologue Tage4 in cell-based ligand binding assays. Coculture of nectin-3- and CD155-expressing HeLa cells led to CD155-dependent recruitment of nectin-3 to cell-cell contacts. In a heterologous coculture system with CD155 expressing mouse neuroblastoma cells, HeLa cell-expressed nectin-3 was recruited to contact sites with CD155 bearing neurites. CD155 and nectin-3 colocalized to epithelial cell-cell junctions in renal proximal tubules and in the amniotic membrane. Efficient interaction depended on CD155 dimerization, which appears to be aided by cell type-specific cofactors. We furthermore found CD155 to codistribute with alpha(v) integrin microdomains on the surface of transfected mouse fibroblasts and at amniotic epithelial cell junctions. Our findings demonstrate the possible trans-interaction between the bona fide cell-cell adherens type adhesion system (cadherin/nectin) and the cell-matrix adhesion system (integrin/CD155) by virtue of their nectin-3 and CD155 components, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号