首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Death by design: apoptosis, necrosis and autophagy   总被引:29,自引:0,他引:29  
Apoptosis is the principal mechanism by which cells are physiologically eliminated in metazoan organisms. During apoptotic death, cells are neatly carved up by caspases and packaged into apoptotic bodies as a mechanism to avoid immune activation. Recently, necrosis, once thought of as simply a passive, unorganized way to die, has emerged as an alternate form of programmed cell death whose activation might have important biological consequences, including the induction of an inflammatory response. Autophagy has also been suggested as a possible mechanism for non-apoptotic death despite evidence from many species that autophagy represents a survival strategy in times of stress. Recent advances have helped to define the function of and mechanism for programmed necrosis and the role of autophagy in cell survival and suicide.  相似文献   

2.
Basal levels of autophagy are elevated in most pancreatic ductal adenocarcinomas (PDAC). Suppressing autophagy pharmacologically using chloroquine (CQ) or genetically with RNAi to essential autophagy genes inhibits human pancreatic cancer growth in vitro and in vivo, which presents possible treatment opportunities for PDAC patients using the CQ-derivative hydroxychloroquine (HCQ). Indeed, such clinical trials are ongoing. However, autophagy is a complex cellular mechanism to maintain cell homeostasis under stress. Based on its biological role, a dual role of autophagy in tumorigenesis has been proposed: at tumor initiation, autophagy helps maintain genomic stability and prevent tumor initiation; while in advanced disease, autophagy degrades and recycles cellular components to meet the metabolic needs for rapid growth. This model was proven to be the case in mouse lung tumor models. However, in contrast to prior work in various PDAC model systems, loss of autophagy in PDAC mouse models with embryonic homozygous Trp53 deletion does not inhibit tumor growth and paradoxically increases progression. This raised concerns whether there may be a genotype-dependent reliance of PDAC on autophagy. In a recent study, our group used a Trp53 heterozygous mouse PDAC model and human PDX xenografts to address the question. Our results demonstrate that autophagy inhibition was effective against PDAC tumors irrespective of TP53/TRP53 status.  相似文献   

3.
The mechanism by which Bcl-2 inhibits apoptosis is unknown. One proposal is that Bcl-2 regulates intracellular Ca2+ fluxes thought to mediate apoptosis. In the present study, we investigated Bcl-2's mechanism of action by determining the effect of Bcl-2 on intracellular Ca2+ fluxes in the WEH17.2 mouse lymphoma cell line, which does not express Bcl-2, and its stable transfectant, which expresses a high level of Bcl-2. Treatment with the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin produced marked alterations in intracellular Ca2+ homeostasis in both WEH17.2 and W.Hb12 cells, including elevation of free cytosolic Ca2+, endoplasmic reticulum Ca2+ pool depletion, capacitative entry of extracellular Ca2+, and increased loading of Ca2+ into mitochondria. Similar changes in intracellular Ca2+ occurred spontaneously in both cell lines following exponential growth. In both situations, W.Hb12 cells maintained optimal viability despite marked alterations in intracellular Ca 2+' whereas WEH17.2 cells underwent apoptosis. Treatment with the glucocorticoid hormone, dexamethasone, induced apoptosis in WEH17.2 cells, but not in W.HB12 cells, even though dexamethasone treatment did not alter intracellular Ca2+ homeostasis in either cell line. These findings indicate that Bcl-2 acts downstream from intracellular Ca 2+ fluxes in a pathway where Ca2+-dependent and Ca2+-independent death signals converge.  相似文献   

4.
Background: It is unclear whether mammographic breast density, a strong risk factor for breast cancer, predicts subtypes of breast cancer defined by estrogen receptor (ER) and/or progesterone receptor (PR) expression. Methods: In a nested case–control study, we compared the breast density of 667 controls and 607 breast cancer cases among women of Caucasian, Japanese, and Native Hawaiian ancestry in the Hawaii component of the Multiethnic Cohort Study. A reader blinded to disease status performed computer assisted density assessment on prediagnostic mammograms. Receptor status was obtained from the statewide Hawaii Tumor Registry. Tumors were classified into ER+PR+ (n = 341), ER−PR− (n = 50), ER+PR−/ER−PR+ (n = 64), and unstaged/unknown (n = 152). Mean percent density values were computed for women with more than one mammogram. Polytomous logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) while adjusting for confounders. Results: Mean percent density was significantly greater for ER+PR+ but not for ER−PR− tumors compared to controls after adjusting for age: 37.3%, 28.9% versus 29.4%, respectively. The overall OR per 10% increase in percent density were similar for ER+PR+ and ER+PR−/ER−PR+ tumors: 1.26 (95% CI 1.17–1.36) and 1.23 (95% CI 1.07–1.42), respectively. However, percent density was not found to be a predictor for ER−PR− tumors (OR 1.00, 95% CI 0.84–1.18). The results did not differ by ethnicity, nor by menopausal status, parity, or HRT use. Conclusions: Our findings indicate that within a multiethnic population, women with higher breast density have an increased risk for ER+PR+ but not ER−PR− tumors.  相似文献   

5.
Guanylate cyclases constitute a gene family of enzymes that synthesize the second messenger guanosine 3′,5′-cyclic monophosphate (cGMP) and play important roles in diverse physiological functions. Here we report a novel, simple and highly sensitive method for measurement intracellular cGMP concentrations using a cAMP-responsive element (CRE) and cGMP-dependent protein kinase (cGK). Transient transfection of the CRE reporter plasmid, encoding a luciferase reporter gene under the control of a modified promoter containing a CRE, and a cGK expression vector into HEK293 cells followed by treatment with 8-bromo-cGMP showed a dose dependent increase in luciferase activity. Moreover, HEK293 cells expressing GC-A or GC-B natriuretic peptide receptors and harboring this reporter system responded to specific ligands in a dose dependent manner. Our results indicate that this reporter gene method enables high throughput screening of receptor-type GC selective agonists in the treatment of cardiovascular diseases and homeostatic dysfunctions.  相似文献   

6.
The endoplasmic reticulum (ER) is an organelle in which most membrane and secretory proteins are synthesized. If these proteins are not folded correctly, unfolded proteins accumulate in the ER lumen, causing a cellular situation known as ER stress. Recently, many studies on the relationship between ER stress and diseases have been reported. Thus, studies of ER stress in vivo should yield information that is useful in pathology. Model mice have been developed as a powerful tool to visualize ER stress in vivo, but this approach depends on transgenic technology. Here, we report on a method of detecting ER stress in vivo by Raman spectroscopy. Our experiments revealed that two specific Raman bands were reduced in both cultured cells and animal tissues in an ER stress dependent manner. This suggests that Raman spectroscopy could be a useful tool to detect ER stress in vivo without transgenic technology.  相似文献   

7.
While sulfur dioxide (SO2) has been previously known for its toxicological effects, it is now known to be produced endogenously in mammals from sulfur-containing amino acid l-cysteine. l-cysteine is catalyzed by cysteine dioxygenase (CDO) to l-cysteinesulfinate, which converts to β-sulfinylpyruvate through transamination by aspartate aminotransferase (AAT), and finally spontaneously decomposes to pyruvate and SO2. The present study explored endogenous SO2 production, and AAT and CDO distribution in different rat tissue. SO2 content was highest in stomach, followed by tissues in the right ventricle, left ventricle, cerebral gray matter, pancreas, lung, cerebral white matter, renal medulla, spleen, renal cortex and liver. AAT activity and AAT1 mRNA expression were highest in the left ventricle, while AAT1 protein expression was highest in the right ventricle. AAT2 and CDO mRNA expressions were both highest in liver tissue. AAT2 protein expression was highest in the renal medulla, but CDO protein expression was highest in liver tissue. In all tissues, AAT1 and AAT2 were mainly distributed in the cytoplasm rather than the nucleus. These observed differences among tissues endogenously generating SO2 and associated enzymes are important in implicating the discovery of SO2 as a novel endogenous signaling molecule.  相似文献   

8.
The robust nature of vocal communication in frogs has long attracted the attention of natural philosophers and their biologically inclined successors. Each frog species produces distinctive calls that facilitate pre-mating reproductive isolation and thus speciation. In many terrestrial species, a chorus of simultaneously calling males attracts females to breeding sites; reproductive females then choose and locate one male, using distinctive acoustic cues. Males compete with each other vocally and sometimes physically as well. Anuran acoustic signaling systems are thus subject to the strong pressures of sexual selection. We are beginning to understand the ways in which vocal signals are produced and decoded by the nervous system and the roles of neurally active hormones in both processes.  相似文献   

9.
10.
Chloroquine (CQ) is a 4-aminoquinoline drug used for the treatment of diverse diseases. It inhibits lysosomal acidification and therefore prevents autophagy by blocking autophagosome fusion and degradation. In cancer treatment, CQ is often used in combination with chemotherapeutic drugs and radiation because it has been shown to enhance the efficacy of tumor cell killing. Since CQ and its derivatives are the only inhibitors of autophagy that are available for use in the clinic, multiple ongoing clinical trials are currently using CQ or hydroxychloroquine (HCQ) for this purpose, either alone, or in combination with other anticancer drugs. Here we show that in the mouse breast cancer cell lines, 67NR and 4T1, autophagy is induced by the DNA damaging agent cisplatin or by drugs that selectively target autophagy regulation, the PtdIns3K inhibitor LY294002, and the mTOR inhibitor rapamycin. In combination with these drugs, CQ sensitized to these treatments, though this effect was more evident with LY294002 and rapamycin treatment. Surprisingly, however, in these experiments CQ sensitization occurred independent of autophagy inhibition, since sensitization was not mimicked by Atg12, Beclin 1 knockdown or bafilomycin treatment, and occurred even in the absence of Atg12. We therefore propose that although CQ might be helpful in combination with cancer therapeutic drugs, its sensitizing effects can occur independently of autophagy inhibition. Consequently, this possibility should be considered in the ongoing clinical trials where CQ or HCQ are used in the treatment of cancer, and caution is warranted when CQ treatment is used in cytotoxic assays in autophagy research.  相似文献   

11.
Park G  Jeong JW  Kim JE 《FEBS letters》2011,(1):219-224
One of the functions mediated by sirtuin 1 (SIRT1), the NAD+-dependent protein deacetylase, has been suggested to be neuroprotective since resveratrol, a SIRT1 activator, inhibits 1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicity. In this study, we show that SIRT1 siRNA transfection blocks MPP+-induced apoptosis in SH-SY5Y cells. The ratio of potential pro-apoptotic BNIP2 to antiapoptotic BCL-xL was attenuated in SIRT1-deficient cells following MPP+ treatment. In addition, BNIP2 shRNA-transfected cells showed reduced cleavage of PARP-1, while BNIP2 overexpression intensified the cleavage in MPP+-treated SH-SY5Y cells, suggesting that BNIP2 participates in the MPP+-induced apoptosis. Overall, these data imply that SIRT1 may mediate MPP+-induced cytotoxicity, possibly through the regulation of BNIP2.  相似文献   

12.
Botulinum neurotoxins (BoNTs), the most poisonous protein toxins known, represent a serious bioterrorism threat but are also used as a unique and important bio-pharmaceutical to treat an increasing myriad of neurological disorders. The only currently accepted detection method by the United States Food and Drug Administration for biological activity of BoNTs and for potency determination of pharmaceutical preparations is the mouse bioassay (MBA). Recent advances have indicated that cell-based assays using primary neuronal cells can provide an equally sensitive and robust detection platform as the MBA to reliably and quantitatively detect biologically active BoNTs. This study reports for the first time a BoNT detection assay using mouse embryonic stem cells to produce a neuronal cell culture. The data presented indicate that this assay can reliably detect BoNT/A with a similar sensitivity as the MBA.  相似文献   

13.
Methods for engineering proteins that contain non-canonical amino acids have advanced rapidly in the past few years. Novel amino acids can be introduced into recombinant proteins in either a residue-specific or site-specific fashion. The methods are complementary: residue-specific incorporation allows engineering of the overall physical and chemical behavior of proteins and protein-like macromolecules, whereas site-specific methods allow mechanistic questions to be probed in atomistic detail. Challenges remain in the engineering of the translational apparatus and in the design of schemes that can be used to encode both canonical and non-canonical amino acids.  相似文献   

14.
Recently, studies on specification of axes in the developing embryo have focused on the heart, which is the first functional organ to form and probably responds to common cues controlling positional information in surrounding tissues. The early differentiation of heart cells affords an opportunity to link the acquisition of regional identity with the signals underlying terminal differentiation. In the past year, a wealth of information on these signals has emerged, elucidating the general pathways controlling body axes in the context of the developing heart.  相似文献   

15.
The genome of monotremes, like the animals themselves, is unique and strange. The importance of monotremes to genomics depends on their position as the earliest offshoot of the mammalian lineage. Although there has been controversy in the literature over the phylogenetic position of monotremes, this traditional interpretation is now confirmed by recent sequence comparisons. Characterizing the monotreme genome will therefore be important for studying the evolution and organization of the mammalian genome, and the proposal to sequence the platypus genome has been received enthusiastically by the genomics community. Recent investigations of X-chromosome inactivation, genomic imprinting and sex chromosome evolution provide good examples of the power of the monotreme genome to inform us about mammalian genome organization and evolution.  相似文献   

16.

Background

Estrogens are steroid hormones responsible for the primary and secondary sexual characteristics in females. While pre-menopausal women use estrogens as the main constituents of contraceptive pills, post-menopausal women use the same for Hormone Replacement Therapy. Estrogens produce reactive oxygen species by increasing mitochondrial activity and redox cycling of estrogen metabolites. The phenolic hydroxyl group present at the C3 position of the A ring of estrogens can get oxidized either by accepting an electron or by losing a proton. Thus, estrogens might act as pro-oxidant in some settings, resulting in complicated non-communicable diseases, namely, cancer and cardiovascular disorders. However, in some other settings the phenolic hydroxyl group of estrogens may be responsible for the anti-oxidative beneficial functions and thus protect against cardiovascular and neurodegenerative diseases.

Scope of review

To date, no single review article has mentioned the implication of estrogen receptors in both the pro-oxidative and anti-oxidative actions of estrogens.

Major conclusion

The controversial role of estrogens as pro-oxidant or anti-oxidant is largely dependent on cell types, ratio of different types of estrogen receptors present in a particular cell and context specificity of the estrogen hormone responses. Both pro-oxidant and anti-oxidant effects of estrogens might involve different estrogen receptors that can have either genomic or non-genomic action to manifest further hormonal response.

General significance

This review highlights the role of estrogen receptors in the pro-oxidative and anti-oxidative actions of estrogens with special emphasis on neuronal cells.  相似文献   

17.
Progression from a steroid sensitive to insensitive state is characteristic of breast tumors, but little is known about the molecular mechanisms involved. Changes in steroid receptor can be associated with the progression. This paper reviews the cell culture data pertaining to loss of response and concludes that loss of receptor is a consequence rather than a cause of insensitivity. This view is based on evidence that loss of all response parameters occurs despite the presence of fully functional receptors as determined by transfection experiments. The postreceptor defect appears to be at the level of the hormone response element of the responsive genes and may involve DNA methylation. The implications of the model for human breast cancer biology are discussed.  相似文献   

18.
There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.  相似文献   

19.
Agents that target HER2 have improved the prognosis of patients with HER2-amplified breast cancers. However, patients who initially respond to such targeted therapy eventually develop resistance to the treatment. We have established a line of lapatinib-resistant breast cancer cells (UACC812/LR) by chronic exposure of HER2-amplified and lapatinib-sensitive UACC812 cells to the drug. The mechanism by which UACC812/LR acquired resistance to lapatinib was explored using comprehensive gene hybridization. The FGFR2 gene in UACC812/LR was highly amplified, accompanied by overexpression of FGFR2 and reduced expression of HER2, and a cell proliferation assay showed that the IC50 of PD173074, a small-molecule inhibitor of FGFR tyrosine kinase, was 10,000 times lower in UACC812/LR than in the parent cells. PD173074 decreased the phosphorylation of FGFR2 and substantially induced apoptosis in UACC812/LR, but not in the parent cells. FGFR2 appeared to be a pivotal molecule for the survival of UACC812/LR as they became independent of the HER2 pathway, suggesting that a switch of addiction from the HER2 to the FGFR2 pathway enabled cancer cells to become resistant to HER2-targeted therapy. The present study is the first to implicate FGFR in the development of resistance to lapatinib in cancer, and suggests that FGFR-targeted therapy might become a promising salvage strategy after lapatinib failure in patients with HER2-positive breast cancer.  相似文献   

20.
The fundamental role of glycoconjugates in many biological processes is now well appreciated and has intensified the development of innovative and improved synthetic strategies. All areas of synthetic methodology have seen major advances and many complex, highly branched carbohydrates and glycoproteins have been prepared using solution- and/or solid-phase approaches. The development of an automated oligosaccharide synthesizer provides rapid access to biologically relevant compounds. These chemical approaches help to produce sufficient quantities of defined oligosaccharides for biological studies. Synthetic chemistry also supports an improved understanding of glycobiology and will eventually result in the discovery of new therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号