首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotonin is actively transported into brush-border membrane vesicles isolated from normal human term placentas and an inward-directed NaCl gradient provides the driving force for this process. Uptake is negligible if Na+ is replaced by Li+, K+, Rb+, Cs+ or choline. The presence of Cl- seems necessary for the maximal activity of this Na+-dependent uptake system. Intravesicular K+ (20-40 mM) stimulates serotonin uptake, the stimulation being considerably greater at pH 7.5 than at pH 6.5. But, in the absence of K+, uptake at pH 6.5 was twice the uptake at pH 7.5. Unlabeled serotonin and dopamine inhibit the uptake of radiolabeled serotonin and the IC50 values are 70 nM and 20 microM, respectively. Histamine and 5-hydroxytryptophan do not significantly interact with the system (IC50 greater than 1 mM). Kinetic analysis reveals that serotonin uptake in these vesicles occurs via a single, saturable, high affinity system (Kt = 51 +/- 2 nM; Vmax = 6.4 +/- 0.1 pmol/mg of protein/15 s). The transporter is highly sensitive to inhibition by imipramine (IC50 = 32 nM) and desipramine (IC50 = 160 nM) but relatively insensitive to reserpine and hydralazine.  相似文献   

2.
本文以星形神经胶质细胞为对象,用同位素示踪技术较详细地研究了介质中Na、、K~+和CL~-、不同浓度的卡因酸以及几种抑制剂对L-谷氨酸摄取的影响;并观察了L-谷氨酸对星形神经胶质细胞膜运输Na~+、K~+、Cl~-和Ca~(2+)等的作用.结果表明:L-谷氨酸的摄取依赖于介质中是否存在Na~+ ,在缺Na~+介质中对Cl~-的依赖性也较明显,但在正常Na~+浓度下,含Cl~_和缺Cl~_没有明显差别.当增加介质中K~+浓度引起膜的去极化时,则能降低L~_谷氨酸的摄取.反过来,L-谷氨酸的摄取也对Na~+、K~+、Cl~-等的运输起刺激作用.此外,卡因酸及所用的几种抑制剂对谷氨酸的摄取办有明显抑制作用.  相似文献   

3.
Triethyllead (TEL) is a CNS neurotoxin producing bizarre neurobehavioral changes. The principal objective of this study was to determine if TEL-induced defects in energy metabolism were responsible for the inhibition of synaptosomal Na+-dependent high-affinity uptake of gamma-aminobutyric acid (GABA). A dose-dependent inhibition of GABA uptake (ID50 = 10 microM TEL) was found during 30-s incubations. Uptake of glutamate was more resistant to the inhibitory effects of TEL. A TEL-induced Cl(-)-dependent synaptosomal deficit of ATP was observed. Such deficit in high-energy phosphate was time-dependent and did not occur in the absence of Cl- or as early as 30 s. Inhibition of GABA uptake, on the other hand, was a Cl(-)-independent phenomenon and was observed at as early as 30 s. TEL was not competitive with Na+ or GABA itself, as the effects of TEL were not overcome with high [Na+] or [GABA]. These results indicate that the locus of TEL inhibition of GABA uptake is not a Cl(-)-dependent event and does not involve a perturbed transmembrane electrochemical gradient, due to either an observed mitochondrial defect or an inhibition of Na+, K+-ATPase directly.  相似文献   

4.
In bovine cardiac sarcolemmal vesicles, an outward H+ gradient stimulated the initial rate of amiloride-sensitive uptake of 22Na+, 42K+, or 86Rb+. Release of H+ from the vesicles was stimulated by extravesicular Na+, K+, Rb+, or Li+ but not by choline or N-methylglucamine. Uptakes of Na+ and Rb+ were half-saturated at 3 mM Na+ and 3 mM Rb+, but the maximal velocity of Na+ uptake was 1.5 times that of Rb+ uptake. Na+ uptake was inhibited by extravesicular K+, Rb+, or Li+, and Rb+ uptake was inhibited by extravesicular Na+ or Li+. Amiloride-sensitive uptake of Na+ or Rb+ increased with increase in extravesicular pH and decrease in intravesicular pH. In the absence of pH gradient, there were stimulations of Na+ uptake by intravesicular Na+ and K+ and of Rb+ uptake by intravesicular Rb+ and Na+. Similarly, there were trans stimulations of Na+ and Rb+ efflux by extravesicular alkali cations. The data suggest the existence of a nonselective antiporter catalyzing either alkali cation/H+ exchange or alkali cation/alkali cation exchange. Since increasing Na+ caused complete inhibition of Rb+/H+ exchange, but saturating K+ caused partial inhibitions of Na+/H+ exchange and Na+/Na+ exchange, the presence of a Na(+)-selective antiporter is also indicated. Although both antiporters may be involved in pH homeostasis, a role of the nonselective antiporter may be in the control of Na+/K+ exchange across the cardiac sarcolemma.  相似文献   

5.
We have studied the effects of several cations on (1) the neuronal uptake of [3H]dopamine ([3H]DA) and (2) the specific binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenyl-2-[1-3H]propenyl)piperazi ne ([3H]GBR 12783) to a site associated with the neuronal carrier of DA, in preparations obtained from rat striatum. When studied under the same experimental conditions, both the uptake of [3H]DA and the binding of [3H]GBR 12783 were similarly impaired by the gradual replacement of NaCl by sucrose. In both processes, no convenient substitute for Na+ was found. Furthermore, potential substitutes of Na+ acted as inhibitors of the uptake with a rank order of potency as follows: K+ = Li+ > or = Cs+ > or = Rb+ > choline+ > Tris+ > sucrose, which was somewhat different from that observed in binding studies, i.e., Cs+ > Rb+ > choline+ > or = K+ > Li+ > Tris+ > sucrose. In the presence of either 36 mM or 136 mM Na+, [3H]DA uptake was optimal with 2 mM Mg2+, 1 mM K+, or 1 mM Ca2+. In contrast, higher concentrations of divalent cations competitively blocked the uptake process. K+ concentrations > 50 mM impaired the specific binding, whereas in the millimolar range of concentrations, K+ noncompetitively inhibited the uptake. Decreasing the Na+ concentration increased the inhibitory effect of K+, Ca2+, and Mg2+ on the specific uptake. An increase in NaCl concentration from 0 to 120 mM elicited a significant decline in the affinity of some substrates for the [3H]GBR 12783 binding site. An uptake study performed using optimal experimental conditions defined in the present study revealed that decreasing Na+ concentration reduces the affinity of DA for the neuronal transport. We propose a hypothetical model for the neuronal transport of DA in which both Na+ and K+ membrane gradients are involved.  相似文献   

6.
Na+-dependent uptake of dicarboxylic amino acids in membrane saccules, due to exchange diffusion and independent of ion gradients, was highly sensitive to inhibition by K+. The IC50 was 1-2 mM under a variety of conditions (i.e., whole tissue or synaptic membranes, frozen/thawed or fresh, D-[3H]aspartate (10-1000 nM) or L-[3H]glutamate (100 nM), phosphate or Tris buffer, NaCl or Na acetate, presence or absence of Ca2+ and Mg2+). The degree of inhibition by K+ was also not affected on removal of ion gradients by ionophores, or by extensive washing with H2O and reloading of membrane saccules with glutamate and incubation medium in the presence or absence of K+ (3 mM, i.e., IC70). Rb+, NH4+, and, to a lesser degree Cs+, but not Li+, could substitute for K+. [K+] showed a competitive relationship to [Na+]2. Incubation with K+ before or after uptake suggested that the ion acts in part by allowing net efflux, thus reducing the internal pool of amino acid against which D-[3H]aspartate exchanges, and in part by inhibiting the interaction of Na+ and D-[3H]aspartate with the transporter. The current model of the Na+-dependent high-affinity acidic amino acid transport carrier allows the observations to be explained and reconciled with previous seemingly conflicting reports on stimulation of acidic amino acid uptake by low concentrations of K+. The findings correct the interpretation of recent reports on a K+-induced inhibition of Na+-dependent "binding" of glutamate and aspartate, and partly elucidate the mechanism of action.  相似文献   

7.
Although much is known about the effects of Na+, K+, and Cl- on the functional activity of the neuronal dopamine transporter, little information is available on their role in the initial event in dopamine uptake, i.e., the recognition step. This was addressed here by studying the inhibition by dopamine of the binding of [3H]WIN 35,428 [2beta-carbomethoxy-3beta-(4-fluorophenyl)[3H]tropane], a phenyltropane analogue of cocaine, to the cloned human dopamine transporter expressed in HEK-293 cells. The decrease in the affinity of dopamine (or WIN 35,428) binding affinity with increasing [K+] could be fitted to a competitive model involving an inhibitory cation site (1) overlapping with the dopamine (or WIN 35,428) domain. The K+ IC50 for inhibiting dopamine or WIN 35,428 binding increased linearly with [Na+], indicating a K(D,Na+) of 30-44 mM and a K(D,K+) of 13-16 mM for this cation site. A second Na+ site (2), distal from the WIN 35,428 domain but linked by positive allosterism, was indicated by model fitting of the WIN 35,428 binding affinities as a function of [Na+]. No strong evidence for this second site was obtained for dopamine binding in the absence or presence of low (20 mM) Cl- and could not be acquired for high [Cl-] because of the lack of a suitable substitute ion for Na+. The K(D) but not Bmax of [3H]WIN 35,428 binding increased as a function of the [K+]/[Na+] ratio regardless of total [Cl-] or ion tonicity. A similar plot was obtained for the Ki of dopamine binding, with Cl- at > or = 140 mM decreasing the Ki. At 290 mM Cl- and 300 mM Na+ the potency of K+ in inhibiting dopamine binding was enhanced as compared with the absence of Cl- in contrast to the lack of effect of Cl- up to 140 mM (Na up to 150 mM). The results indicate that Cl- at its extracellular level enhances dopamine binding through a mechanism not involving site 1. The observed correspondence between the WIN 35,428 and dopamine domains in their inclusion of the inhibitory cation site explains why many of the previously reported interrelated effects of Na+ and K+ on the binding site of radiolabeled blockers to the dopamine transporter are applicable to dopamine uptake in which dopamine recognition is the first step.  相似文献   

8.
The mechanisms by which 86Rb+ (used as a tracer for K+) enters human nonpigmented ciliary epithelial cells were investigated. Ouabain-inhibitable bumetanide-insensitive 86Rb+ transport accounted for approximately 70-80% of total, whereas bumetanide-inhibitable ouabain-insensitive uptake accounted for 15-25% of total. K+ channel blockers such as BaCl2 reduced uptake by approximately 5%. Bumetanide inhibited 86Rb+ uptake with an IC50 of 0.5 microM, while furosemide inhibited with an IC50 of about 20 microM. Bumetanide-inhibitable 86Rb+ uptake was reduced in Na(+)-free or Cl(-)-free media, suggesting that Na+ and Cl- were required for optimal uptake via this mechanism. These characteristics are consistent with a Na+, K+, Cl- cotransporter in NPE cells. Treatment of NPE cells for 15 min with phorbol 12-myristate, 13-acetate (PMA), an activator of protein kinase C, caused a 50-70% decrease in 86Rb+ uptake via the Na+, K+, Cl- cotransporter. Other 86Rb+ uptake mechanisms were not affected. 86Rb+ uptake via the Na+, K+, Cl- cotransporter could be inhibited by other phorbol esters and by dioctanoylglycerol, an analog of diacylglycerol, but not by 4 alpha phorbol didecanoate, an ineffective activator of protein kinase C. Staurosporine, a protein kinase C inhibitor, blocked phorbol ester inhibition of 86Rb+ uptake. These data suggest that a Na+, K+, Cl- cotransporter in NPE cells is inhibited by activation of protein kinase C.  相似文献   

9.
Na+, Li+ and Cl− transport by brush border membranes from rabbit jejunum   总被引:1,自引:0,他引:1  
Na+, Li+, K+, Rb+, Br-, Cl- and SO4(2-) transport were studied in brush border membrane vesicles isolated from rabbit jejunum. Li+ uptakes were measured by flameless atomic absorption spectroscopy, and all others were measured using isotopic flux and liquid scintillation counting. All uptakes were performed with a rapid filtration procedure. A method is presented for separating various components of ion uptake: 1) passive diffusion, 2) mediated transport and 3) binding. It was concluded that a Na+/H+ exchange mechanism exists in the jejunal brush border. The exchanger was inhibited with 300 microM amiloride or harmaline. The kinetic parameters for sodium transport by this mechanism depend on the pH of the intravesicular solution. The application of a pH gradient (pHin = 5.5, pHout = 7.5) causes an increase in Jmax (50 to 125 pmol/mg protein . sec) with no change in Kt (congruent to 4.5 nM). Competition experiments show that other monovalent cations, e.g. Li+ and NH4+, share the Na+/H+ exchanger. This was confirmed with direct measurements of Li+ uptakes. Saturable uptake mechanisms were also observed for K+, Rb+ and SO4(2-), but not for Br-. The Jmax for K+ and Rb+ are similar to the Jmax for Na+, suggesting that they may share a transporter. The SO4(2-) system appears to be a Na+/SO4(2-) cotransport system. There does not appear to be either a Cl-/OH- transport mechanism of the type observed in ileum or a specific Na+/Cl- symporter.  相似文献   

10.
The Na+ and Cl- dependence of imipramine binding and dissociation were determined in platelet plasma membrane vesicles. Equilibrium imipramine binding affinity depends on Na+ binding to two non-interacting, low-affinity sites. Binding of a single Cl- ion also enhances imipramine affinity. Imipramine dissociation is inhibited by Na+ and Cl-, indicating that both ions can bind after imipramine. Of the two Na+ ions required for imipramine binding, only one is involved in slowing imipramine dissociation, indicating that imipramine binding makes the two Na+ ions non-equivalent. The initial rate of imipramine association is strongly Na(+)-dependent, suggesting that Na+ binds prior to imipramine. Cl-, however, affects imipramine dissociation but not association. Thus, while Na+ and Cl- can bind either before or after imipramine, kinetic considerations impose a most likely binding order of first Na+, then imipramine and finally Cl-. We have confirmed and extended these conclusions using serotonin exchange and efflux measurements. Efflux of radioactivity from vesicles preloaded with [3H]serotonin is stimulated by both external K+ and external unlabelled serotonin. K+ acts to accelerate a step that is rate-limiting for net efflux but that does not involve Na+, Cl- or serotonin translocation. Unlabelled serotonin accelerates radioactivity efflux by exchanging with intravesicular label. This serotonin exchange requires external Cl-, but not external Na+. These results suggest that first Na+, then serotonin and finally Cl- bind from the external medium. Although serotonin exchange requires external Cl-, internal Cl- is not required. These results suggest that translocation does not disturb the spatial order of bound substrates, which dissociate internally in a first-in-first-out order.  相似文献   

11.
The modulation of serotonin uptake kinetics by Na+, Cl-, H+, and K+ was investigated in brush-border membrane vesicles prepared from normal human term placentas. The presence of Na+ and Cl- in the external medium was mandatory for the function of the serotonin transporter. In both cases, the initial uptake rate of serotonin was a hyperbolic function of the ion concentration, indicating involvement of one Na+ and one Cl- per transport of one serotonin molecule. The apparent dissociation constant for Na+ and Cl- was 145 and 79 mM, respectively. The external Na+ increased the Vmax of the transporter and also increased the affinity of the transporter for serotonin. The external Cl- also showed similar effects on the Vmax and the Kt, but its effect on the Kt was small compared to that of Na+. The presence of an inside-acidic pH, with or without a transmembrane pH gradient, stimulated the NaCl-dependent serotonin uptake. The effect of internal [H+] on the transport function was to increase the Vmax and decrease the affinity of the transporter for serotonin. The presence of K+ inside the vesicles also greatly stimulated the initial rates of serotonin uptake, and the stimulation was greater at pH 7.5 than at pH 6.5. This stimulation was a hyperbolic function of the internal K+ concentration at both pH values, indicating involvement of one K+ per transport of one serotonin molecule. The apparent dissociation constant for K+ was 5.6 mM at pH 6.5 and 4.0 mM at pH 7.5. The effects of internal [K+] on the uptake kinetics were similar to those of internal [H+].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Confluent monolayer cultures of the Madin-Darby canine kidney (MDCK) cell line have been shown to possess a furosemide and bumetanide-sensitive (Na+,K+)-cotransport system. We have studied the effect of anion substitutions on (Na+,K+)-cotransport. In Na+-depleted cells, bumetanide-sensitive uptake of 22Na+ or 86Rb+ exhibited an absolute requirement for extracellular Cl-. Chloride could be replaced in the buffers by Br-, but not by F-, I-, acetate, nitrate, thiocyanate, sulfate, or gluconate. The effect of Cl- was saturating, and Na+-stimulated 86RB+ uptake as well as K+-stimulated 22Na+ uptake was shown to be dependent on the square of the Cl- concentration. The concentration of Cl- which gave half-maximal stimulation of cation cotransport varied between 58 and 70 mM. There was a small degree of cooperativity between the binding affinities for Cl- and K+ at constant Na+ concentrations. Bumetanide-sensitive 36Cl- uptake could be demonstrated when extracellular Na+ and K+ were present simultaneously. Uptake through this system was unaffected by changes in the membrane potential or by the imposition of pH gradients. Together these data strongly suggest that the bumetanide-sensitive transport system in Madin-Darby canine kidney cells co-transports Na+, K+, and Cl- in a ratio of 1:1:2.  相似文献   

13.
Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system.  相似文献   

14.
Protein I is a neuron-specific, synaptic phosphoprotein highly localized on the surface of synaptic vesicles. We have recently isolated anti-Protein I IgG by affinity chromatography and shown that these antibodies inhibit specifically the phosphorylation of Protein I (Naito, S., and Ueda, T. (1981) J. Biol. Chem. 256, 10657-10663). In an effort to characterize Protein I-associated synaptic vesicles with respect to the types of neurotransmitters, we have now developed a procedure, using the affinity-purified anti-Protein I IgG, which allows immunoprecipitation of those synaptic vesicles which contain Protein I. The isolated vesicles are largely free of contamination from other intracellular organelles and plasma membranes. We present evidence that these vesicles isolated from bovine cortex are able to accumulate L-glutamate specifically in an ATP-dependent, temperature-dependent but Na-independent manner. Thus, the structurally similar aminoacid neurotransmitters aspartate and gamma-aminobutyric acid, as well as other neurotransmitters such as dopamine, norepinephrine, serotonin, acetylcholine, and glycine, failed to show a significant ATP-dependent uptake into these vesicles. Moreover, the ATP-dependent glutamate uptake was not inhibited effectively by glutamine, aspartate, or gamma-aminobutyric acid. The ATP-dependent glutamate uptake requires ATP hydrolysis; thus there was little accumulation of glutamate in the absence of ATP or Mg2+, or when ATP was replaced by an unhydrolyzable beta, gamma-methylene ATP analog. The glutamate uptake appears to be driven at least in part by a membrane potential generated by Mg2+-ATPase, similar to that of the catecholamine and serotonin uptakes into storage granules. These observations suggest that Protein I may be involved in some aspect of the function of glutamate-containing synaptic vesicles in the brain.  相似文献   

15.
We have studied the effects of curare on responses resulting from iontophoretic application of several putative neurotransmitters onto Aplysia neurons. These neurons have specific receptors for acetylcholine (ACh), dopamine, octopamine, phenylethanolamine, histamine, gamma-aminobutyric acid (GABA), aspartic acid, and glutamic acid. Each of these substances may on different specific neurons elicit at least three types of response, caused by a fast depolarizing Na+, a fast hyperpolarizing Cl-, or a slow hyperpolarizing K+ conductance increase. All responses resulting from either Na+ or Cl- conductance increases, irrespective of which putative transmitter activated the response, were sensitive to curare. Most were totally blocked by less than or equal to 10-4 M curare. GABA responses were less sensitive and were often only depressed by 10-3 M curare. K+ conductance responses, irrespective of the transmitter, were not curare sensitive. These results are consistent with a model of receptor organization in which one neurotransmitter receptor may be associated with any of at least three ionophores, mediating conductance increase responses to Na+, Cl-, and K+, respectively. In Aplysia nervous tissue, curare appears not to be a specific antagonist for the nicotinic ACh receptor, but rather to be a specific blocking agent for a class of receptor-activated Na+ and Cl- responses.  相似文献   

16.
We expressed the mouse gamma-aminobutyric acid (GABA) transporter GAT4 (homologous to rat/ human GAT-3) in Xenopus laevis oocytes and examined its functional and pharmacological properties by using electrophysiological and tracer uptake methods. In the coupled mode of transport (Na+/ Cl-/GABA cotransport), there was tight coupling between charge flux and GABA flux across the plasma membrane (2 charges/GABA). Transport was highly temperature-dependent with a temperature coefficient (Q10) of 4.3. The GAT4 turnover rate (1.5 s(-l); -50 mV, 21 degrees C) and temperature dependence suggest physiological turnover rates of 15-20 s(-1). No uncoupled current was observed in the presence of Na+. In the absence of external Na+, GAT4 exhibited two distinct uncoupled currents. (i) A Cl- leak current (ICl(leak)) was observed when Na+ was replaced with choline or tetraethylammonium. The reversal potential of (ICl(leak)) followed the Cl- Nernst potential. (ii) A Li+ leak current (ILi(leak)) was observed when Na+ was replaced with Li+. Both leak currents were inhibited by Na+, and both were temperature-independent (Q10 approximately 1). The two leak modes appeared not to coexist, as Li+ inhibited (ICl(leak)). The results suggest the existence of cation- and anion-selective channel-like pathways in GAT4. Flufenamic acid inhibited GAT4 Na+/Cl-/GABA cotransport, ILi(leak), and ICl(leak), (Ki approximately 30 microM), and the voltage-induced presteady-state charge movements (Ki approximately 440 microM). Flufenamic acid exhibited little or no selectivity for GAT1, GAT2, or GAT3. Sodium and GABA concentration jicroumps revealed that slow Na+ binding to the transporter is followed by rapid GABA-induced translocation of the ligands across the plasma membrane. Thus, Na+ binding and associated conformational changes constitute the rate-limiting steps in the transport cycle.  相似文献   

17.
The transport of uridine into rat renal brush-border membrane vesicles was investigated using an inhibitor-stop filtration method. Uridine was not metabolized under these conditions. The rapid efflux of intravesicular uridine was prevented by adding 1 mM phloridzin to the ice-cold stop solution. In the presence of inwardly directed gradients of either Na+ or K+, zero-trans uridine uptake exhibited a transient overshoot phenomenon indicating active transport. The overshoot was much more pronounced with Na+ than K+ and it was not observed when either Na+ or K+ was at equilibrium across the membrane. The K+-induced overshoot was not due to the presence of a membrane potential alone, as an inwardly directed gradient of choline chloride failed to produce it. The amplitude of the overshoot was increased by raising either the Na+ or K+ concentration outside the membrane or by using more lipophilic anions (reactive order was NO3- greater than SCN- greater than Cl- greater than SO4(2-). Zero-trans efflux studies showed that the uridine transport is bidirectional. Li+ could substitute poorly for Na+ but not at all for K+. Stoichiometries of 1:1 and greater than 1:1 were observed for Na+: uridine and K+: uridine coupling, respectively. A preliminary analysis of the interactions between Na+ and K+ for uridine uptake showed complex interactions which can best be explained by the involvement of two different systems for nucleoside transport in the rat renal brush-border membrane, one requiring Na+ and the other K+ as transport coupler.  相似文献   

18.
To assess the functions of Cl- -dependent glutamate "binding" (Cl- -dependent glutamate uptake) in synaptic membranes, possible effects of depolarization on the uptake were examined. When rat cerebral cortical slices were preincubated with depolarizing agents such as veratrine (7 micrograms/ml), 10 microM aconitine, 56 mM K+, and 50 microM monensin, [3H]glutamate uptake by the crude synaptic membranes, which were subsequently prepared from the pretreated slices, was increased by 60-85%. Stimulation of the glutamate uptake by predepolarization was dependent on Na+ but not on Ca2+. The bindings of gamma-[3H]aminobutyric acid and 5-[3H]hydroxytryptamine were not significantly affected by the predepolarization. Veratrine pretreatment increased the maximal density of the glutamate uptake sites without affecting the affinity for glutamate. Several characteristics of the uptake sites increased by the veratrine pretreatment coincided with those of Cl- -dependent glutamate uptake sites. Na+-dependent glutamate binding (Na+-dependent glutamate uptake) to the membranes was not affected by pretreatment with veratrine. The content of endogenous glutamate and the noninulin space in the membrane fractions were not changed by the predepolarization. The increase in the glutamate uptake induced by pretreatment with high K+ was reversible: it returned to the control level after a second incubation of the slices in control medium. These results suggest that the Cl- -dependent glutamate sequestration system in synaptic membranes is regulated by the membrane potential.  相似文献   

19.
Active secretion of electrolytes by hepatocytes is believed to be responsible for bile acid-independent canalicular bile flow (BAICF). Theophylline, which enhances BAICF, has been shown to enhance electrogenic Cl- secretion in a number of other epithelia. Such transport is dependent on Na+ and Cl-. Thus, the mechanism of theophylline choleresis may also involve stimulation of electrogenic Cl- secretion of the liver. This hypothesis was tested by studying the effect of ion substitution on theophylline choleresis in isolated perfused rat livers. Addition of theophylline (0.1 mmol) and dibutyryl cAMP (0.05 mmol) to 100 ml perfusate, in a single dose, increased bile flow and biliary secretion of Na+ and Cl- reversibly. These effects of theophylline were virtually abolished when perfusate Na+ (146 mM) was replaced by Li+ (146 mM) or choline+ (120 mM), and when Cl- (127 mM) was replaced by 120 mM NO-3, acetate- or isethionate-. Since even the permeable ions like Li+ and NO-3 could not substitute for Na+ and Cl-, these results show that the effect of theophylline on BAICF is specifically dependent on the presence of Na+ and Cl- in the perfusate. We propose, by analogy to other epithelia, that an electrogenic Cl- secretion mechanism is present in the liver. Theophylline, acting via cAMP, stimulates this transport process, thereby enhancing BAICF.  相似文献   

20.
Extracellular ATP rendered the plasma membrane of transformed mouse fibroblasts permeable to normally impermeant molecules. This permeability change was prevented by increasing the ionic strength of the isotonic medium with NaCl. Conversely, the cells exhibited increased sensitivity to ATP when the NaCl concentration was decreased below isotonicity, when the KCl concentration was increased above 5 mM while maintaining isotonicity, and when the pH of the medium was raised above 7.0. These conditions as well as the addition of ATP itself caused cell swelling. However, the effect of ATP was independent of cell volume and dependent upon the ionic strength and not the osmolarity of the medium since 1) addition of sucrose to isotonic medium did not prevent permeabilization although media made hypertonic with either sucrose or NaCl caused a decrease in cell volume; and 2) addition of sucrose or NaCl to hypotonic media caused a decrease in cell volume, but only NaCl addition decreased the response to ATP. Conditions that have been shown to inhibit plasma membrane proteins that play a reciprocal role in cell volume regulation had reciprocal effects on the permeabilization process, even though the effect of ATP was independent of cell volume. For example, inhibition of the Na+,K+-ATPase by ouabain increased sensitivity of cells to ATP while conditions which inhibit Na+,K+,Cl- -cotransporter activity, such as treatment of the cells with the diuretics furosemide or bumetanide or replacement of sodium chloride in the medium with sodium nitrate or thiocyanate, inhibited permeabilization. The furosemide concentration that inhibited permeabilization was greater than the concentration that inhibited Na+,K+,Cl- -cotransporter-mediated 86Rb+ (K+) uptake, suggesting that the effect of furosemide on the permeabilization process may not be specific for the Na+,K+,Cl- -cotransporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号