首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As described previously, receptor dimerization of G protein-coupled receptors may influence signaling, trafficking, and regulation in vivo. Up to now, most studies aiming at the possible role of receptor dimerization in receptor activation and signal transduction are focused on class A GPCRs. In the present work, the dimerization behavior of the corticotropin-releasing factor receptor type 1 (CRF1R), which belongs to class B of GPCRs and plays an important role in coordination of the immune response, stress, and learning behavior, was investigated by using fluorescence resonance energy transfer (FRET). For this purpose, we generated fusion proteins of CRF1R tagged at their C-terminus to a cyan or yellow fluorescent protein, which can be used as a FRET pair. Binding studies verified that the receptor constructs were able to bind their natural ligands in a manner comparable with the wild-type receptor, whereas cAMP accumulation proved the functionality of the constructs. In microscopic studies, a dimerization of the CRF1R was observed, but the addition of either CRF-related agonists or antagonists did not show any dose-related increase of the observed FRET signal, indicating that the dimer-monomer ratio is not changed on addition of ligand.  相似文献   

2.
The corticotropin-releasing factor receptor type 2a (CRF2(a)R) belongs to the family of G protein-coupled receptors. The receptor possesses an N-terminal pseudo signal peptide that is unable to mediate targeting of the nascent chain to the endoplasmic reticulum membrane during early receptor biogenesis. The pseudo signal peptide remains uncleaved and consequently forms an additional hydrophobic receptor domain with unknown function that is unique within the large G protein-coupled receptor protein family. Here, we have analyzed the functional significance of this domain in comparison with the conventional signal peptide of the homologous corticotropin-releasing factor receptor type 1 (CRF1R). We show that the presence of the pseudo signal peptide leads to a very low cell surface receptor expression of the CRF2(a)R in comparison with the CRF1R. Moreover, whereas the presence of the pseudo signal peptide did not affect coupling to the Gs protein, Gi-mediated inhibition of adenylyl cyclase activity was abolished. The properties mediated by the pseudo signal peptide were entirely transferable to the CRF1R in signal peptide exchange experiments. Taken together, our results show that signal peptides do not only influence early protein biogenesis. In the case of the corticotropin-releasing factor receptor subtypes, the use of conventional and pseudo signal peptides have an unexpected influence on signal transduction.  相似文献   

3.
The corticotropin-releasing factor (CRF) type 1 receptor (CRF1R) for the 41-amino acid peptide CRF is a class B G protein-coupled receptor, which plays a key role in the response of our body to stressful stimuli and the maintenance of homeostasis by regulating neural and endocrine functions. CRF and related peptides, such as sauvagine, bind to the extracellular regions of CRF1R and activate the receptor. In contrast, small nonpeptide antagonists, which are effective against stress-related disorders, such as depression and anxiety, have been proposed to interact with the helical transmembrane domains (TMs) of CRF1R and allosterically antagonize peptide binding and receptor activation. Here, we aimed to elucidate the role of the third TM (TM3) in the molecular mechanisms underlying activation of CRF1R. TM3 was selected because its tilted orientation, relative to the membrane, allows its residues to establish key interactions with ligands, other TM helices, and the G protein. Using a combination of pharmacological, biochemical, and computational approaches, we found that Phe-2033.40 and Gly-2103.47 in TM3 play an important role in receptor activation. Our experimental findings also suggest that Phe-2033.40 interacts with nonpeptide antagonists.  相似文献   

4.
β-arrestin mediates the desensitization of GPCRs and acts as an adaptor molecule to recruit the receptor complex to clathrin-rich regions. Class-A GPCRs subsequently dissociate from β-arrestin but class-B GPCRs internalize with β-arrestin in the endocytic vesicles. Here the dopamine D2 and D3 receptors, which have similar structural features but different intracellular trafficking properties, were used in an attempt to better understand the structural requirements for the classification of GPCRs. The C-terminus tail of the vasopressin type-2 receptor was added to the ends of D2R and D3R to increase their affinity to β-arrestin. A point mutation was introduced into the DRY motif to change their basal activation levels. Among a battery of constructs in which the C-terminus tail and/or DRY motif was altered, class-B behavior was observed with the constructs whose affinities for β-arrestin were increased complementarily and their signaling was either maintained or regained. In conclusion, the DRY motif and C-terminal tail of the GPCRs determine complementarily their intracellular trafficking behavior by regulating the affinity to β-arrestin and G protein coupling.  相似文献   

5.
Dimerization of G protein‐coupled receptors (GPCRs) is crucial for receptor function including agonist affinity, efficacy, trafficking and specificity of signal transduction, including G protein coupling. Emerging data suggest that the cardiovascular system is the main target of apelin, which exerts an overall neuroprotective role, and is a positive regulator of angiotensin‐converting enzyme 2 (ACE2) in heart failure. Moreover, ACE2 cleaves off C‐terminal residues of vasoactive peptides including apelin‐13, and neurotensin that activate the apelin receptor (APJ) and neurotensin receptor 1 (NTSR1) respectively, that belong to the A class of GPCRs. Therefore, based on the similar mode of modification by ACE2 at peptide level, the homology at amino acid level and the capability of forming dimers with other GPCRs, we have been suggested that APJ and NTSR1 can form a functional heterodimer. Using co‐immunoprecipitation, BRET and FRET, we provided conclusive evidence of heterodimerization between APJ and NTSR1 in a constitutive and induced form. Upon agonist stimulation, hetrodimerization enhanced ERK1/2 activation and increased proliferation via activation of Gq α‐subunits. These novel data provide evidence for a physiological role of APJ/NTSR1 heterodimers in terms of ERK1/2 activation and increased intracellular calcium and induced cell proliferation and provide potential new pharmaceutical targets for cardiovascular disease.  相似文献   

6.
A new class of pyrrolo[2,3-d]pyrimidin-4-one corticotropin-releasing factor 1 (CRF1) receptor antagonists has been designed and synthesized. In general, reported CRF1 receptor antagonists possess a sp2-nitrogen atom as hydrogen bonding acceptor (HBA) on their core scaffolds. We proposed to use a carbonyl group of pyrrolo[2,3-d]pyrimidin-4-one derivatives as a replacement for the sp2-nitrogen atom as HBA in classical CRF1 receptor antagonists. As a result, several pyrrolo[2,3-d]pyrimidin-4-one derivatives showed CRF1 receptor binding affinity with IC50 values in the submicromolar range. Ex vivo 125I-sauvagine binding studies showed that 2-(dipropylamino)-3,7-dimethyl-5-(2,4,6-trimethylphenyl)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one (16b) (30 mg/kg, po) was able to penetrate into the brain and inhibit radioligand binding to CRF1 receptors (frontal cortex, olfactory bulb, and pituitary) in mice. We identified pyrrolo[2,3-d]pyrimidin-4-one derivatives as the first CRF1 antagonists with a carbonyl-based HBA.  相似文献   

7.
The role of brain corticotropin-releasing factor type 2 (CRF2) receptors in behavioral stress responses remains controversial. Conflicting findings suggest pro-stress, anti-stress or no effects of impeding CRF2 signaling. Previous studies have used antisauvagine-30 as a selective CRF2 antagonist. The present study tested the hypotheses that 1) potential anxiolytic-like actions of intracerebroventricular (i.c.v.) administration of antisauvagine-30 also are present in mice lacking CRF2 receptors and 2) potential anxiolytic-like effects of antisauvagine-30 are not shared by the more selective CRF2 antagonist astressin2-B. Cannulated, male CRF2 receptor knockout (n = 22) and wildtype littermate mice (n = 21) backcrossed onto a C57BL/6J genetic background were tested in the marble burying, elevated plus-maze, and shock-induced freezing tests following pretreatment (i.c.v.) with vehicle, antisauvagine-30 or astressin2-B. Antisauvagine-30 reduced shock-induced freezing equally in wildtype and CRF2 knockout mice. In contrast, neither astressin2-B nor CRF2 genotype influenced shock-induced freezing. Neither CRF antagonist nor CRF2 genotype influenced anxiety-like behavior in the plus-maze or marble burying tests. A literature review showed that the typical antisauvagine-30 concentration infused in previous intracranial studies (∼1 mM) was 3 orders greater than its IC50 to block CRF1-mediated cAMP responses and 4 orders greater than its binding constants (Kd, Ki) for CRF1 receptors. Thus, increasing, previously used doses of antisauvagine-30 also exert non-CRF2-mediated effects, perhaps via CRF1. The results do not support the hypothesis that brain CRF2 receptors tonically promote anxiogenic-like behavior. Utilization of CRF2 antagonists, such as astressin2-B, at doses that are more subtype-selective, can better clarify the significance of brain CRF2 systems in stress-related behavior.  相似文献   

8.
G-protein-coupled receptors (GPCRs) must properly insert and fold in the membrane to adopt a stable native structure and become biologically active. The interactions between transmembrane (TM) helices are believed to play a major role in these processes. Previous studies in our group showed that specific interactions between TM helices occur, leading to an increase in helical content, especially in weakly helical TM domains, suggesting that helix–helix interactions in addition to helix–lipid interactions facilitate helix formation. They also demonstrated that TM peptides interact in a similar fashion in micelles and lipid vesicles, as they exhibit relatively similar thermal stability and α-helicity inserted in SDS micelles to that observed in liposomes. In this study, we perform an analysis of pairwise interactions between peptides corresponding to the seven TM domains of the human A2A receptor (A2AR). We used a combination of Förster resonance energy transfer (FRET) measurement and circular dichroism (CD) spectroscopy to detect and analyze these interactions in detergent micelles. We found that strong and specific interactions occur in only seven of the 28 possible peptide pairs. Furthermore, not all interactions, identified by FRET, lead to a change in helicity. Our results identify stabilizing contacts that are likely related to the stability of the receptor and that are consistent with what is known about the three-dimensional structure and stability of rhodopsin and the β2 adrenergic receptor.  相似文献   

9.
In situations of hypoxia, glutamate excitotoxicity induces neuronal death. The release of extracellular adenosine is also triggered and is accompanied by an increase of the stress mediator, corticotrophin‐releasing factor (CRF). Adenosine A2A receptors contribute to glutamate excitoxicity and their blockade is effective in stress‐induced neuronal deficits, but the involvement of CRF on this effect was never explored. We now evaluated the interaction between A2A and CRF receptors (CRFR) function, upon glutamate insult. Primary rat cortical neuronal cultures (9 days in vitro) expressing both CRF1R and CRF2R were challenged with glutamate (20–1000 μM, 24 h). CRF1R was found to co‐localize with neuronal markers and CRF2R to be present in both neuronal and glial cells. The effects of the CRF and A2A receptors ligands on cell viability were measured using propidium iodide and Syto‐13 fluorescence staining. Glutamate decreased cell viability in a concentration‐dependent manner. Urocortin (10 pM), an agonist of CRF receptors, increased cell survival in the presence of glutamate. This neuroprotective effect was abolished by blocking either CRF1R or CRF2R with antalarmin (10 nM) or anti‐Sauvagine‐30 (10 nM), respectively. The blockade of A2A receptors with a selective antagonist SCH 58261 (50 nM) improved cell viability against the glutamate insult. This effect was dependent on CRF2R, but not on CRF1R activation. Overall, these data show a protective role of CRF in cortical neurons, against glutamate‐induced death. The neuroprotection achieved by A2A receptors blockade requires CRF2R activation. This interaction between the adenosine and CRF receptors can explain the beneficial effects of using A2A receptor antagonists against stress‐induced noxious effects.  相似文献   

10.
G-protein coupled receptors (GPCRs) can activate a heterotrimeric G-protein complex with subsecond kinetics. Genetically encoded biosensors based on Förster resonance energy transfer (FRET) are ideally suited for the study of such fast signaling events in single living cells. Here we report on the construction and characterization of three FRET biosensors for the measurement of Gαi1, Gαi2 and Gαi3 activation. To enable quantitative long-term imaging of FRET biosensors with high dynamic range, fluorescent proteins with enhanced photophysical properties are required. Therefore, we use the currently brightest and most photostable CFP variant, mTurquoise2, as donor fused to Gαi subunit, and cp173Venus fused to the Gγ2 subunit as acceptor. The Gαi FRET biosensors constructs are expressed together with Gβ1 from a single plasmid, providing preferred relative expression levels with reduced variation in mammalian cells. The Gαi FRET sensors showed a robust response to activation of endogenous or over-expressed alpha-2A-adrenergic receptors, which was inhibited by pertussis toxin. Moreover, we observed activation of the Gαi FRET sensor in single cells upon stimulation of several GPCRs, including the LPA2, M3 and BK2 receptor. Furthermore, we show that the sensors are well suited to extract kinetic parameters from fast measurements in the millisecond time range. This new generation of FRET biosensors for Gαi1, Gαi2 and Gαi3 activation will be valuable for live-cell measurements that probe Gαi activation.  相似文献   

11.
The expression of human G protein-coupled receptors (GPCRs) in Saccharomyces cerevisiae containing chimeric yeast/mammalian Gα subunits provides a useful tool for the study of GPCR activation. In this study, we used a one-GPCR-one-G protein yeast screening method in combination with molecular modeling and mutagenesis studies to decipher the interaction between GPCRs and the C-terminus of different α-subunits of G proteins. We chose the human adenosine A2B receptor (hA2BR) as a paradigm, a typical class A GPCR that shows promiscuous behavior in G protein coupling in this yeast system. The wild-type hA2BR and five mutant receptors were expressed in 8 yeast strains with different humanized G proteins, covering the four major classes: Gαi, Gαs, Gαq, and Gα12. Our experiments showed that a tyrosine residue (Y) at the C-terminus of the Gα subunit plays an important role in controlling the activation of GPCRs. Receptor residues R1033.50 and I1073.54 are vital too in G protein-coupling and the activation of the hA2BR, whereas L213IL3 is more important in G protein inactivation. Substitution of S2356.36 to alanine provided the most divergent G protein-coupling profile. Finally, L2366.37 substitution decreased receptor activation in all G protein pathways, although to a different extent. In conclusion, our findings shed light on the selectivity of receptor/G protein coupling, which may help in further understanding GPCR signaling.  相似文献   

12.
The intrinsic structural determinants for export trafficking of G protein‐coupled receptors (GPCRs) have been mainly identified in the termini of the receptors. In this report, we determined the role of the first intracellular loop (ICL1) in the transport from the endoplasmic reticulum (ER) to the cell surface of GPCRs. The α2B‐adrenergic receptor (AR) mutant lacking the ICL1 is unable to traffic to the cell surface and to initiate signaling measured as ERK1/2 activation. Mutagenesis studies identify a single Leu48 residue in the ICL1 modulates α2B‐AR export from the ER. The ER export function of the Leu48 residue can be substituted by Phe, but not Ile, Val, Tyr and Trp, and is unlikely involved in correct folding or dimerization of α2B‐AR in the ER. Importantly, the isolated Leu residue is remarkably conserved in the center of the ICL1s among the family A GPCRs and is also required for the export to the cell surface of β2‐AR, α1B‐AR and angiotensin II type 1 receptor. These data indicate a crucial role for a single Leu residue within the ICL1 in ER export of GPCRs.  相似文献   

13.
A new class of corticotropin releasing factor 1 (CRF1) receptor antagonists characterized by a tricyclic core ring was designed and synthesized. Novel tricyclic derivatives 2ae were designed as CRF1 receptor antagonists based on conformation analysis of our original 2-anilinobenzimidazole CRF1 receptor antagonist. The synthesized tricyclic derivatives 2ae showed CRF1 receptor binding activity with IC50 values of less than 400?nM, and the 1,2,3,4-tetrahydropyrimido-[1,2-a]benzimidazole derivative 2e was selected as a lead compound with potent in vitro CRF1 receptor binding activity (IC50?=?7.1?nM). To optimize the pharmacokinetic profiles of lead compound 2e, we explored suitable substituents on the 1-position and 6-position, leading to the identification of compound 42c-R, which exhibited potent CRF1 receptor binding activity (IC50?=?58?nM) with good oral bioavailability (F?=?68% in rats). Compound 42c-R exhibited dose-dependent inhibition of [125I]-CRF binding in the frontal cortex (5 and 10?mg/kg, p.o.) as well as suppression of locomotor activation induced by intracerebroventricular administration of CRF in rats (10?mg/kg, p.o.). These results suggest that compound 42c-R successfully binds CRF1 receptors in the brain and exhibits the potential to be further examined for clinical studies.  相似文献   

14.
Flp-InTM T-RExTM 293 cells expressing a wild type human M3 muscarinic acetylcholine receptor construct constitutively and able to express a receptor activated solely by synthetic ligand (RASSL) form of this receptor on demand maintained response to the muscarinic agonist carbachol but developed response to clozapine N-oxide only upon induction of the RASSL. The two constructs co-localized at the plasma membrane and generated strong ratiometric fluorescence resonance energy transfer (FRET) signals consistent with direct physical interactions. Increasing levels of induction of the FRET donor RASSL did not alter wild type receptor FRET-acceptor levels substantially. However, ratiometric FRET was modulated in a bell-shaped fashion with maximal levels of the donor resulting in decreased FRET. Carbachol, but not the antagonist atropine, significantly reduced the FRET signal. Cell surface homogeneous time-resolved FRET, based on SNAP-tag technology and employing wild type and RASSL forms of the human M3 receptor expressed stably in Flp-InTM TRExTM 293 cells, also identified cell surface dimeric/oligomeric complexes. Now, however, signals were enhanced by appropriate selective agonists. At the wild type receptor, large increases in FRET signal to carbachol and acetylcholine were concentration-dependent with EC50 values consistent with the relative affinities of the two ligands. These studies confirm the capacity of the human M3 muscarinic acetylcholine receptor to exist as dimeric/oligomeric complexes at the surface of cells and demonstrate that the organization of such complexes can be modified by ligand binding. However, conclusions as to the effect of ligands on such complexes may depend on the approach used.  相似文献   

15.
G protein-coupled receptors (GPCRs), such as the ghrelin receptor (GHS-R1a), the melanocortin 3 receptor (MC3), and the serotonin 2C receptor (5-HT2C), are well known for their key role in the homeostatic control of food intake and energy balance. Ghrelin is the only known gut peptide exerting an orexigenic effect and has thus received much attention as an anti-obesity drug target. In addition, recent data have revealed a critical role for ghrelin in dopaminergic mesolimbic circuits involved in food reward signaling. This study investigates the downstream signaling consequences and ligand-mediated co-internalization following heterodimerization of the GHS-R1a receptor with the dopamine 1 receptor, as well as that of the GHS-R1a-MC3 heterodimer. In addition, a novel heterodimer between the GHS-R1a receptor and the 5-HT2C receptor was identified. Interestingly, dimerization of the GHS-R1a receptor with the unedited 5-HT2C-INI receptor, but not with the partially edited 5-HT2C-VSV isoform, significantly reduced GHS-R1a agonist-mediated calcium influx, which was completely restored following pharmacological blockade of the 5-HT2C receptor. These results combined suggest a potential novel mechanism for fine-tuning GHS-R1a receptor-mediated activity via promiscuous dimerization of the GHS-R1a receptor with other G protein-coupled receptors involved in appetite regulation and food reward. These findings may uncover novel mechanisms of significant relevance for the future pharmacological targeting of the GHS-R1a receptor in the homeostatic regulation of energy balance and in hedonic appetite signaling, both of which play a significant role in the development of obesity.  相似文献   

16.
Based on the recently developed approach to generate fluorescence resonance energy transfer (FRET)-based sensors to measure GPCR activation, we generated sensor constructs for the human M1-, M3-, and M5-acetylcholine receptor. The receptors were labeled with cyan fluorescent protein (CFP) at their C-terminus, and with fluorescein arsenical hairpin binder (FlAsH) via tetra-cysteine tags inserted in the third intracellular loop. We then measured FRET between the donor CFP and the acceptor FlAsH in living cells and real time. Agonists like acetylcholine, carbachol, or muscarine activate each receptor construct with half-maximal activation times between 60 and 70 ms. Removal of the agonist caused the reversal of the signal. Compared with all other agonists, oxotremorine M differed in two major aspects: it caused significantly slower signals at M1- and M5-acetylcholine receptors and the amplitude of these signals was larger at the M1-acetylcholine receptor. Concentration-response curves for the agonists reveal that all agonists tested, with the mentioned exception of oxotremorine M, caused similar maximal FRET-changes as acetylcholine for the M1-, M3- and M5-acetylcholine receptor constructs. Taken together our data support the notion that orthosteric agonists behave similar at different muscarinic receptor subtypes but that kinetic differences can be observed for receptor activation.  相似文献   

17.
《Peptides》2012,33(12):2384-2393
Corticotropin-releasing factor (CRF) plays an important role in stress responses through activation of its receptor subtypes, CRF1 receptor (CRF1) and CRF2 receptor (CRF2). The parvocellular paraventricular nucleus of the hypothalamus (PVNp), the central nucleus of the amygdala (CeA), and the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), which are rich in CRF neurons with equivocal expression of CRF1 and CRF2, are involved in stress-related responses. In these areas, Fos expression is induced by various stimuli, although the functions of CRF receptor subtypes in stimuli-induced Fos expression are unknown. To elucidate this issue and to examine whether Fos is expressed in CRF or non-CRF neurons in these areas, the effects of antalarmin and antisauvagine-30 (AS-30), CRF1- and CRF2-specific antagonists, respectively, on intracerebroventricular (ICV) CRF- or 60 min-restraint-induced Fos expression were examined in rats. ICV CRF increased the number of Fos-positive CRF and non-CRF neurons in the PVNp, with the increases being inhibited by antalarmin in CRF and non-CRF neurons and by AS-30 in CRF neurons. Restraint also increased Fos-positive CRF and non-CRF neurons in the PVNp, with the increases being inhibited by antalarmin in the CRF neurons. ICV CRF also increased Fos-positive non-CRF neurons in the CeA and the BNSTov, which was inhibited by AS-30 in both areas, and inhibited by antalarmin in the BNSTov only. Restraint increased Fos-positive non-CRF neurons in the CeA and BNSTov, with the increases being almost completely inhibited by either antagonist. These results indicate that both ICV CRF and restraint activate both CRF and non-CRF neurons in the PVNp and non-CRF neurons in the CeA and BNSTov, and that the activation is mediated by CRF1 and/or CRF2. However, the manner of involvement for CRF1 and CRF2 in ICV CRF- and restraint-induced activation of neurons differs with respect to the stimuli and brain areas; being roughly equivalent in the CeA and BNSTov, but different in the PVNp. Furthermore, the non-CRF1&2-mediated signals seem to primarily play a role in restraint-induced activation of non-CRF neurons in the PVNp since the activation was not inhibited by CRF receptor antagonists.  相似文献   

18.
The human adenosine A2A receptor (A2AR) belongs to one of the largest family of membrane proteins, the G-protein coupled receptors (GPCRs), characterized by seven transmembrane (TM) helices. Little is known about the determinants of their structures, folding, assembly, activation mechanisms, and oligomeric states. Previous studies in our group showed that peptides corresponding to all seven TM domains form stable helical structures in detergent micelles and lipid vesicles. However, the peptides behave differently; TM5 is the only peptide to have a ratio [θ]222/[θ]208 obtained by circular dichroism (CD) spectroscopy>1. This finding suggested to us that TM5 might self-associate. In the present study, we investigate the unique properties of the TM5 domain. We performed detailed analyses of TM5 peptide behavior in membrane-mimetic environments using CD spectroscopy, fluorescence spectroscopy and Förster resonance energy transfer, and gel electrophoresis. We find that TM5 peptide has the ability to self-associate to form oligomeric structures in various hydrophobic milieus and that these oligomers are highly resistant to temperature and chemical denaturation. We also find that mutation of the full-length A2AR at position M193, which is located in the fifth TM domain, noticeably alters A2AR monomer: dimer ratio as observed on SDS-PAGE. Our results suggest that parallel association of TM5 dimers may play a role in the known adenosine A2A receptor dimerization. This study represents the first evidence of an individual GPCR transmembrane domain self-association.  相似文献   

19.
Takahashi C  Ohata H  Shibasaki T 《Peptides》2011,32(12):2384-2393
Corticotropin-releasing factor (CRF) plays an important role in stress responses through activation of its receptor subtypes, CRF1 receptor (CRF1) and CRF2 receptor (CRF2). The parvocellular paraventricular nucleus of the hypothalamus (PVNp), the central nucleus of the amygdala (CeA), and the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), which are rich in CRF neurons with equivocal expression of CRF1 and CRF2, are involved in stress-related responses. In these areas, Fos expression is induced by various stimuli, although the functions of CRF receptor subtypes in stimuli-induced Fos expression are unknown. To elucidate this issue and to examine whether Fos is expressed in CRF or non-CRF neurons in these areas, the effects of antalarmin and antisauvagine-30 (AS-30), CRF1- and CRF2-specific antagonists, respectively, on intracerebroventricular (ICV) CRF- or 60 min-restraint-induced Fos expression were examined in rats. ICV CRF increased the number of Fos-positive CRF and non-CRF neurons in the PVNp, with the increases being inhibited by antalarmin in CRF and non-CRF neurons and by AS-30 in CRF neurons. Restraint also increased Fos-positive CRF and non-CRF neurons in the PVNp, with the increases being inhibited by antalarmin in the CRF neurons. ICV CRF also increased Fos-positive non-CRF neurons in the CeA and the BNSTov, which was inhibited by AS-30 in both areas, and inhibited by antalarmin in the BNSTov only. Restraint increased Fos-positive non-CRF neurons in the CeA and BNSTov, with the increases being almost completely inhibited by either antagonist. These results indicate that both ICV CRF and restraint activate both CRF and non-CRF neurons in the PVNp and non-CRF neurons in the CeA and BNSTov, and that the activation is mediated by CRF1 and/or CRF2. However, the manner of involvement for CRF1 and CRF2 in ICV CRF- and restraint-induced activation of neurons differs with respect to the stimuli and brain areas; being roughly equivalent in the CeA and BNSTov, but different in the PVNp. Furthermore, the non-CRF1&2-mediated signals seem to primarily play a role in restraint-induced activation of non-CRF neurons in the PVNp since the activation was not inhibited by CRF receptor antagonists.  相似文献   

20.
The presence of both Urocortin 1 (Ucn1) and corticotropin-releasing factor 2 receptors (CRF2R) in the hypothalamic supraoptic nucleus (SON) suggests that endogenous Ucn1 released within this brain area acts as a local signal that might be involved in the regulation of not only endocrine but also behavioural stress responses. To test this hypothesis, we monitored the effects induced by the administration of a range of doses of synthetic Ucn1 (0.001–1.0 μg) bilaterally into the SON of rats in the open field test (OFT). Ucn1 administration produced an inverted U-shaped dose–response curve on OFT behaviour, in particular the dose of 0.01 μg of Ucn1 significantly increased the number of rearing and grooming episodes without affecting locomotion. In addition, this dosage augmented also the latency to visit the centre of the open field. Pre-treatment with the CRF2R antagonist, astressin-2B (0.1 μg) normalized Ucn1 treatment-induced effects. These results suggest that Ucn1 released within the SON area interacts with CRF2R to control the state of arousal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号