首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-energy visible light (LEVL) has previously been found to modulate various processes in different biological systems. One explanation for the stimulatory effect of LEVL is light-induced reactive oxygen species formation. In the present study, both sperm and skin cells were illuminated with LEVL and were found to generate singlet oxygen (1O2). The detection of 1O2 was performed using a trapping probe, 2,2,6,6-tetramethyl-4-piperidone, coupled with electron paramagnetic resonance spectroscopy. In addition, we have shown that, together with 1O2 generation, LEVL illumination increases the reductive capacity of the cells, which explains the difficulties encountered in 1O2 detection. The potential of visible light to change the cellular redox state may explain the recently observed biostimulative effects exerted by LEVL.  相似文献   

2.
The expression of the glutathione peroxidase homologous gene Gpxh, known to be specifically induced by the formation of singlet oxygen (1O2), was analyzed in cells of Chlamydomonas reinhardtii exposed to environmental conditions causing photoinhibition. Illumination with high light intensities, leading to an increased formation of 1O2 in photosystem II, continuously induced the expression of Gpxh in cell for at least 2 h. Phenolic herbicides like dinoterb, raise the rate of 1O2 formation by increasing the probability of charge recombination in photosystem II via the formation of the primary radical pair and thereby 3P680 formation (Fufezan C et al. 2002, FEBS Letters 532, 407–410). In the presence of dinoterb the light-induced loss of the D1 protein in C. reinhardtii was increased and the high light-induced Gpxh expression was further stimulated. DCMU, a urea-type herbicide, causing reduced 1O2 generation in photosystem II, protected the D1 protein slightly against degradation and downregulated the expression of the Gpxh gene compared to untreated cells exposed to high light intensities. This indicates that the Gpxh expression is induced by 1O2 under environment conditions causing photoinhibition.  相似文献   

3.
Photodynamic therapy (PDT) is a cancer treatment modality where photosensitizer (PS) is activated by visible and near IR light to produce singlet oxygen (1O2). However, 1O2 has a short lifetime (<40 ns) and cannot diffuse (<20 nm) beyond the cell diameter (e.g., ∼1800 nm). Thus, 1O2 damage is both spatially and temporally limited and does not produce bystander effect. In a heterogeneous tumor, cells escaping 1O2 damage can regrow after PDT treatment. To overcome these limitations, we developed a prodrug concept (PS–L–D) composed of a photosensitizer (PS), an anti-cancer drug (D), and an 1O2-cleavable linker (L). Upon illumination of the prodrug, 1O2 is generated, which damages the tumor and also releases anticancer drug. The locally released drug could cause spatially broader and temporally sustained damage, killing the surviving cancer cells after the PDT damage. In our previous report, we presented the superior activity of our prodrug of CA4 (combretastatin A-4), Pc-(L-CA4)2, compared to its non-cleavable analog, Pc-(NCL-CA4)2, that produced only PDT effects. Here, we provide clear evidence demonstrating that the released anticancer drug, CA4, indeed damages the surviving cancer cells over and beyond the spatial and temporal limits of 1O2. In the limited light illumination experiment, cells in the entire well were killed due to the effect of released anti-cancer drug, whereas only a partial damage was observed in the pseudo-prodrug treated wells. A time-dependent cell survival study showed more cell death in the prodrug-treated cells due to the sustained damage by the released CA4. Cell cycle analysis and microscopic imaging data demonstrated the typical damage patterns by CA4 in the prodrug treated cells. A time-dependent histological study showed that prodrug-treated tumors lacked mitotic bodies, and the prodrug caused broader and sustained tumor size reduction compared to those seen in the tumors treated with the pseudo-prodrug. This data consistently support that the released CA4 overcomes the spatiotemporal limitations of 1O2, providing far superior antitumor effect.  相似文献   

4.
Combination of photosensitizers (PS) for photodynamic therapy with NO photodonors (NOPD) is opening intriguing horizons towards new and still underexplored multimodal anticancer and antibacterial treatments not based on “conventional” drugs and entirely controlled by light stimuli. In this contribution, we report an intriguing molecular hybrid based on a BODIPY light-harvesting antenna that acts simultaneously as PS and NOPD upon single photon excitation with the highly biocompatible green light. The presented hybrid offers a combination of superior advantages with respect to the other rare cases reported to date, meeting most of the key criteria for both PSs and NOPDs in the same molecular entity such as: (i) capability to generate 1O2 and NO with single photon excitation of biocompatible visible light, (ii) excellent 1O2 quantum yield and NO quantum efficiency, (iii) photogeneration of NO independent from the presence of oxygen, (iv) large light harvesting properties in the green region. Furthermore, this compound together with its stable photoproduct, is well tolerated by both normal and cancer cells in the dark and exhibits bimodal photomortality of cancer cells under green light excitation due to the combined action of the cytotoxic 1O2 and NO.  相似文献   

5.
We have studied the spectroscopic properties of hair (white, blond, red, brown, and black) under illumination with visible light, giving special emphasis to the photoinduced generation of singlet oxygen (1O2). Irradiation of hair shafts (λex > 400 nm) changed their properties by degrading the melanin. Formation of C3 hydroperoxides in the melanin indol groups was proven by 1H NMR. After 532-nm excitation, all hair shafts presented the characteristic 1O2 emission (λem = 1270 nm), whose intensity varied inversely with the melanin content. 1O2 lifetime was also shown to vary with hair type, being five times shorter in black hair than in blond hair, indicating the role of melanin as a 1O2 suppressor. Lifetime ranged from tenths of a nanosecond to a few microseconds, which is much shorter than the lifetime expected for 1O2 in the solvents in which the hair shafts were suspended, indicating that 1O2 is generated and suppressed inside the hair structure. Both eumelanin and pheomelanin were shown to produce and to suppress 1O2, with similar efficiencies. The higher amount of 1O2 generated in blond hair and its longer lifetime is compatible with the stronger damage that light exposure causes in blond hair. We propose a model to explain the formation and suppression of 1O2 in hair by photosensitization of melanin with visible light and the deleterious effects that an excess of visible light may cause in hair and skin.  相似文献   

6.
In field conditions, the zebra2 (z2) mutant in rice (Oryza sativa) produces leaves with transverse pale-green/yellow stripes. It was recently reported that ZEBRA2 encodes carotenoid isomerase (CRTISO) and that low levels of lutein, an essential carotenoid for non-photochemical quenching, cause leaf variegation in z2 mutants. However, we found that the z2 mutant phenotype was completely suppressed by growth under continuous light (CL; permissive) conditions, with concentrations of chlorophyll, carotenoids and chloroplast proteins at normal levels in z2 mutants under CL. In addition, three types of reactive oxygen species (ROS; superoxide [O2 ], hydrogen peroxide [H2O2], and singlet oxygen [1O2]) accumulated to high levels in z2 mutants grown under short-day conditions (SD; alternate 10-h light/14-h dark; restrictive), but do not accumulate under CL conditions. However, the levels of lutein and zeaxanthin in z2 leaves were much lower than normal in both permissive CL and restrictive SD growth conditions, indicating that deficiency of these two carotenoids is not responsible for the leaf variegation phenotype. We found that the CRTISO substrate tetra-Cis-lycopene accumulated during the dark periods under SD, but not under CL conditions. Its accumulation was also positively correlated with 1O2 levels generated during the light period, which consequently altered the expression of 1O2-responsive and cell death-related genes in the variegated z2 leaves. Taking these results together, we propose that the z2 leaf variegation can be largely attributed to photoperiodic accumulation of tetra-cis-lycopene and generation of excessive 1O2 under natural day-night conditions.  相似文献   

7.
Detection of Active Oxygen Species in Biological Systems   总被引:6,自引:0,他引:6  
1. Cypridina luciferin analogues, 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3-one (MCLD) and 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-a]pyrazin-3-one(CLA), react with O2 or 1O2 to emit light in visible region. Such chemiluminescences were used for the detection of O2 or 1O2 in activated leukocyte systems and myeloperoxidase (granulocyte-extract) + Br + H2O2 systems in vitro.2. The mechanism of MCLA (CLA)-dependent luminescence is described in detail. Superoxide generated from sinusoidal cells in acute ethanol intoxication of rats was detected by MCLA-dependent luminescence from the surface of perfused rat liver (organ luminescence).3. Furthermore, with alive animals, O2 generated in the lung of rats with necrotized pancreatitis and that in the stomach of rats after ischemia/reperfusion were detected by their organ luminescences.  相似文献   

8.
Low energy visible light (LEVL) irradiation has been shown to exert some beneficial effects on various cell cultures. For example, it increases the fertilizing capability of sperm cells, promotes cell proliferation, induces sprouting of neurons, and more. To learn about the mechanism of photobiostimulation, we studied the relationship between increased intracellular calcium ([Ca2+]i) and reactive oxygen species production following LEVL illumination of cardiomyocytes. We found that visible light causes the production of O2. and H2O2 and that exogenously added H2O2 (12 microm) can mimic the effect of LEVL (3.6 J/cm2) to induce a slow and transient increase in [Ca2+]i. This [Ca2+]i elevation can be reduced by verapamil, a voltage-dependent calcium channel inhibitor. The kinetics of [Ca2+]i elevation and morphologic damage following light or addition of H2O2 were found to be dose-dependent. For example, LEVL, 3.6 J/cm2, which induced a transient increase in [Ca2+]i, did not cause any cell damage, whereas visible light at 12 J/cm2 induced a linear increase in [Ca2+]i and damaged the cells. The linear increase in [Ca2+]i resulting from high energy doses of light could be attenuated into a non-linear small rise in [Ca2+]i by the presence of extracellular catalase during illumination. We suggest that the different kinetics of [Ca2+]i elevation following various light irradiation or H2O2 treatment represents correspondingly different adaptation levels to oxidative stress. The adaptive response of the cells to LEVL represented by the transient increase in [Ca2+]i can explain LEVL beneficial effects.  相似文献   

9.
Scalar irradiance, oxygen concentration, and oxygenic photosynthesis were measured at 0.1 mm spatial resolution within the tissue of the siphonous green macroalga Codium fragile subsp. tomentosoides (van Goor) Silva by fiber-optic scalar irradiance microsensors and oxygen microelectrodes. The scalar irradiance of visible light was strongly attenuated in the outer 0.2 mm of the tissue but was nearly constant for the subsequent 1.0 mm of photo-synthetic tissue. Far-red scalar irradiance at 750 nm increased below the tissue surface to a maximum of 200% of incident irradiance at 1.2 mm depth due to multiple scattering in the medullary tissue. The constant intensity of visible light below 0.2 mm was thus a result of the combined effects of absorption and backscattering from the medulla. The oxygen exchange between the alga and the surrounding water was diffusion-limited with a steep O2gradient inside and around the alga. In darkness, the tissue below 0.6 mm became anoxic, and endophytic extracellular space provided an environment where anoxygenic microbial processes may occur. When illuminated at 160 nmol photons·?2·?1, O2 concentrations exceeded ambient levels throughout the thallus, with a maximum of 250% of air saturation just below the surface. The amplitude of oxygen variation was buffered by gas bubbles formed in the medullary tissue.  相似文献   

10.
The antioxidant effects of chlorophyllin (CHL), a water-soluble analog of the green plant pigment chlorophyll, on different reactive oxygen species (ROS) were investigated by electron spin resonance (ESR) spectroscopy. As a standard, we have used the ability of CHL to scavenge the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. CHL inhibits the formation of 5,5-dimethyl-1-pyrroline-N-oxide adduct with hydroxyl radical (DMPO-OH adduct) generated by γ-radiation in a dose-dependent manner. At a concentration of 1 mM, CHL caused more than 90% inhibition of ESR signal intensity of this adduct. However, the results obtained with the Fenton reaction were different. We also found evidence for the inhibition of 1O2-dependent formation of the 2,2,6,6-tetramethyl-piperidine oxide (TEMPO) radical during photosensitization of methylene blue with visible light. CHL was also able to inhibit hydrogen peroxide induced oxidation of phenol red. The rate constant of the reaction of CHL with H2O2 was found to be 2.7×106 M-1s-1. In conclusion, CHL has potent antioxidant ability involving scavenging of various physiologically important ROS.  相似文献   

11.
Plants respond to environmental changes by acclimation that activates defence mechanisms and enhances the plant''s resistance against a subsequent more severe stress. Chloroplasts play an important role as a sensor of environmental stress factors that interfere with the photosynthetic electron transport and enhance the production of reactive oxygen species (ROS). One of these ROS, singlet oxygen (1O2), activates a signalling pathway within chloroplasts that depends on the two plastid-localized proteins EXECUTER 1 and 2. Moderate light stress induces acclimation protecting photosynthetic membranes against a subsequent more severe high light stress and at the same time activates 1O2-mediated and EXECUTER-dependent signalling. Pre-treatment of Arabidopsis seedlings with moderate light stress confers cross-protection against a virulent Pseudomonas syringae strain. While non-pre-acclimated seedlings are highly susceptible to the pathogen regardless of whether 1O2- and EXECUTER-dependent signalling is active or not, pre-stressed acclimated seedlings without this signalling pathway lose part of their pathogen resistance. These results implicate 1O2- and EXECUTER-dependent signalling in inducing acclimation but suggest also a contribution by other yet unknown signalling pathways during this response of plants to light stress.  相似文献   

12.
Oxygen inhibited the rate of light-saturated photosynthesis of the marine diatom Phaeodactylum tricornutum Bohlin. However, inhibition could only be detected with O2 concentrations approaching 100%. Atmospheric concentrations of O2 (21%) had little effect on photosynthesis. In this, Phaeodactylum more closely resembles the so-called C-4 plants which show low rates of photorespiration. The results presented here agree with others in showing increased O2 inhibition at reduced bicarbonate concentrations. The biochemical mechanism of photorespiration in Phaeodactylum appears to be similar to that reported for other photosynthetic systems. The activity of ribulose-1,5 diphosphate (RuDP) carboxylase in cell-free extracts was also inhibited, by oxygen. Inhibition by O2 was optimal at pH 9.2 as was the RuDP-dependent O2 uptake. RuDP carboxylase/oxygenase ratios decreased with increasing pH and were greater in cells grown at lower light intensities. Carboxylase levels were less affected by the light intensity for growth than were the levels of the oxygenase. Short-term incorporation of NaHCO3-14C by cells grown at high light intensities showed increased labelling of glycolate and glycine plus serine under O2 compared with nitrogen. There was a concomitant decrease in the radioactivity found in phosphoglyeric acid (PGA) and sugar phosphates in the presence of O2. The effects of O2 on the short-term pattern of photosynthesis were less marked when the alga was previously grown at low light intensities.  相似文献   

13.
A mass spectrometric 16O2/18O2-isotope technique was used to analyse the rates of gross O2 evolution, net O2 evolution and gross O2 uptake in relation to photon fluence rate by Dunaliella tertiolecta adapted to 0.5, 1.0, 1.5, 2.0 and 2.5 M NaCl at 25°C and pH 7.0.At concentrations of dissolved inorganic carbon saturating for photosynthesis (200 M) gross O2 evolution and net O2 evolution increased with increasing salinity as well as with photon fluence rate. Light compensation was also enhanced with increased salinities. Light saturation of net O2 evolution was reached at about 1000 mol m-2s-1 for all salt concentrations tested. Gross O2 uptake in the light was increased in relation to the NaCl concentration but it was decreased with increasing photon fluence rate for almost all salinities, although an enhanced flow of light generated electrons was simultaneously observed. In addition, a comparison between gross O2 uptake at 1000 mol photons m-2s-1, dark respiration before illumination and immediately after darkening of each experiment showed that gross O2 uptake in the light paralleled but was lower than mitochondrial O2 consumption in the dark.From these results it is suggested that O2 uptake by Dunaliella tertiolecta in the light is mainly influenced by mitochondrial O2 uptake. Therefore, it appears that the light dependent inhibition of gross O2 uptake is caused by a reduction in mitochondrial O2 consumption by light.Abbreviations DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - DHAP dihydroxy-acetonephosphate - DIC dissolved inorganic carbon - DRa rate of dark respiration immediately after illumination - DRb rate of dark respiration before illumination - E0 rate of gross oxygen evolution in the light - NET rate of net oxygen evolution in the light - PFR photon fluence rate - RubP rubulose-1,5-bisphosphate - SHAM salicyl hydroxamic acid - U0 rate of gross oxygen uptake in the light  相似文献   

14.
15.
In the present study, singlet oxygen (1O2) scavenging activity of tocopherol and plastochromanol was examined in tocopherol cyclase‐deficient mutant (vte1) of Arabidopsis thaliana lacking both tocopherol and plastochromanol. It is demonstrated here that suppression of tocopherol and plastochromanol synthesis in chloroplasts isolated from vte1 Arabidopsis plants enhanced 1O2 formation under high light illumination as monitored by electron paramagnetic resonance spin‐trapping spectroscopy. The exposure of vte1 Arabidopsis plants to high light resulted in the formation of secondary lipid peroxidation product malondialdehyde as determined by high‐pressure liquid chromatography. Furthermore, it is shown here that the imaging of ultra‐weak photon emission known to reflect oxidation of lipids was unambiguously higher in vte1 Arabidopsis plants. Our results indicate that tocopherol and plastochromanol act as efficient 1O2 scavengers and protect effectively lipids against photooxidative damage in Arabidopsis plants.  相似文献   

16.
The Arabidopsis vte1 mutant is devoid of tocopherol and plastochromanol (PC‐8). When exposed to excess light energy, vte1 produced more singlet oxygen (1O2) and suffered from extensive oxidative damage compared with the wild type. Here, we show that overexpressing the solanesyl diphosphate synthase 1 (SPS1) gene in vte1 induced a marked accumulation of total plastoquinone (PQ‐9) and rendered the vte1 SPS1oex plants tolerant to photooxidative stress, indicating that PQ‐9 can replace tocopherol and PC‐8 in photoprotection. High total PQ‐9 levels were associated with a noticeable decrease in 1O2 production and higher levels of Hydroxyplastoquinone (PQ‐C), a 1O2‐specific PQ‐9 oxidation product. The extra PQ‐9 molecules in the vte1 SPS1oex plants were stored in the plastoglobules and the chloroplast envelopes, rather than in the thylakoid membranes, whereas PQ‐C was found almost exclusively in the thylakoid membranes. Upon exposure of wild‐type plants to high light, the thylakoid PQ‐9 pool decreased, whereas the extrathylakoid pool remained unchanged. In vte1 and vte1 SPS1oex plants, the PQ‐9 losses in high light were strongly amplified, affecting also the extrathylakoid pool, and PQ‐C was found in high amounts in the thylakoids. We conclude that the thylakoid PQ‐9 pool acts as a 1O2 scavenger and is replenished from the extrathylakoid stock.  相似文献   

17.
Abstract

The photochemical fate of riboflavin (vitamin B2) in the presence of barbituric acid was examined employing polarographic detection of dissolved oxygen and steady-state and time-resolved spectroscopy. Under visible light, riboflavin reacts with barbituric acid – the latter being transparent to this type of photo-irradiation – via radicals and reactive oxygen species, such as singlet molecular oxygen [O2(1Δg)] and superoxide radical anion, which are generated from the excited triplet state of the vitamin. As a result, both the vitamin and barbituric acid are photodegraded. Kinetic and mechanistic studies on the photoreactions of riboflavin in the presence of barbituric acid indicate the excellent quenching ability of the latter towards O2(1Δg).  相似文献   

18.
19.
Singlet oxygen (1O2) has been shown to play an important role in salivary defense system, but its generation process and level from human saliva remain uncertain due to the lack of a reliable detection method. We have previously reported 4,4′(5′)-bis[2-(9-anthryloxy)ethylthio]tetrathiafulvalene (BAET) as a novel chemiluminescence probe for 1O2. In this work, the probe is successfully used to characterize H2O2-dependent generation of 1O2 from saliva in real time. However, the yield of 1O2 is found to be very low, for example, being about 0.13 nmol from 200 μL saliva in the presence of 1 mM of hydrogen peroxide over a 5-s reaction period. The result is also compared with that obtained with another 1O2 probe 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-a]pyrazin-3-one (CLA), demonstrating that, besides 1O2, the other reactive oxygen species such as hydroxyl radical may also be involved in the reaction of saliva with H2O2. Furthermore, the present study shows that the selectivity of BAET for 1O2 is much higher than that of CLA and thus BAET is highly suited for the detection of 1O2 in the presence of other reactive oxygen species in biological systems.  相似文献   

20.
《Free radical research》2013,47(8):657-663
Abstract

Here, we determined the electron spin resonance (ESR) spectra of standard reaction mixtures (I) containing 25 μM flavin mononucleotide (FMN), 0.018% tea tree (Melaleuca alternifolia) oil, 1.9 M acetonitrile, 20 mM phosphate buffer (pH 7.4), 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN), and 1.0 mM FeSO4(NH4)2SO4 irradiated with 436 nm visible light (7.8 J/cm2). Prominent ESR signals (αN = 1.58 mT and αHβ = 0.26 mT) were detected, suggesting that free radicals form in the standard reaction. In order to know whether singlet oxygen (1O2) is involved in the radical formation or not, ESR measurement was performed for the standard D2O reaction mixture (I) which contained 25 μM FMN, 0.0036% tea tree oil, 1.9 M acetonitrile-d3, 20 mM phosphate buffer (pH 7.4), 0.1 M 4-POBN and 1.0 mM FeSO4 in D2O. The ESR peak height of the standard D2O reaction increased to 169 ± 24% of the control. Thus, 1O2 seems to be involved in the formation of the radicals because D2O increases the lifetime of singlet oxygen. High-performance liquid chromatography-ESR-mass spectrometry analyses detected 1-methylethyl and methyl radicals in the standard reaction. The radicals appear to form through the reaction of ferrous ion with α-terpinene endoperoxide (ascaridole), which generated from the reaction of α-terpinene with 1O2. The 1-methylethyl and methyl radicals may exert a pro-oxidant effect under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号