首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular mechanisms of tetrahydrobiopterin (BH4) oxidation by peroxynitrite (ONOO-) was studied using ultra-weak chemiluminescence, electron paramagnetic resonance (EPR) and UV-visible diode-array spectrophotometry, and compared to BH4 oxidation by oxoferryl species produced by the myoglobin/hydrogen peroxide (Mb/H2O2) system. The oxidation of BH4 by ONOO- produced a weak chemiluminescence, which was altered by addition of 50 mM of the spin trap alpha-(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN). EPR spin trapping demonstrated that the reaction occurred at least in part by a radical pathway. A mixture of two spectra composed by an intense six-line spectrum and a fleeting weak nine-line one was observed when using ONOO-. Mb/H2O2 produced a short-living light emission that was suppressed by the addition of BH4. Simultaneous addition of POBN, BH4 and Mb/H2O2 produced the same six-line EPR spectrum, with a signal intensity depending on BH4 concentration. Spectrophotometric studies confirmed the rapid disappearance of the characteristic peak of ONOO- (302 nm) as well as substantial modifications of the initial BH4 spectrum with both oxidant systems. These data demonstrated that BH4 oxidation, either by ONOO- or by Mb/H2O2, occurred with the production of activated species and by radical pathways.  相似文献   

2.
Simple acidification of aqueous alkaline peroxynitrite quantitatively generates singlet (1Δg) molecular oxygen, detected and quantitated spectroscopically (1270 nm). This observation provides a chemical basis for physiological cytotoxicity of ONOO? generated in the diffusion - controlled reaction of cellular NO? and O. The experiments consist of (i) chemical generation of ONOO? from NO? gas and KO2 powder in alkaline aqueous solution; (ii) absorption spectral identification of ONOO? in the near-UV with maximum at 302 nm; (iii) spectroscopic identification of 1O2 by its emission band at 1200–1340 nm with maximum at 1275 nm; and (iv) quantitation of 1O2 generated in ONOO?/H+ reaction by comparison of the chemiluminescence intensity at 1270 nm with that from H2O2/OCl? reaction that generates 1O2 with unit efficiency at alkaline pH. 1O2 was generated with unit efficiency with respect to ONOO? concentration by the ONOO?/H+ reaction.  相似文献   

3.
Acetoacetate (AA) and 2-methylacetoacetate (MAA) are accumulated in metabolic disorders such as diabetes and isoleucinemia. Here we examine the mechanism of AA and MAA aerobic oxidation initiated by myoglobin (Mb)/H2O2. We propose a chemiluminescent route involving a dioxetanone intermediate whose thermolysis yields triplet α-dicarbonyl species (methylglyoxal and diacetyl). The observed ultraweak chemiluminescence increased linearly on raising the concentration of either Mb (10-500 μM) or AA (10-100 mM). Oxygen uptake studies revealed that MAA is almost a 100-fold more reactive than AA. EPR spin-trapping studies with MNP/MAA revealed the intermediacy of an α-carbon-centered radical and acetyl radical. The latter radical, probably derived from triplet diacetyl, is totally suppressed by sorbate, a well-known quencher of triplet carbonyls. Furthermore, an EPR signal assignable to MNP-AA adduct was observed and confirmed by isotope effects. Oxygen consumption and α-dicarbonyl yield were shown to be dependent on AA or MAA concentrations (1-50 mM) and on H2O2 or tert-butOOH added to the Mb-containing reaction mixtures. That ferrylMb is involved in a peroxidase cycle acting on the substrates is suggested by the reaction pH profiles and immunospin-trapping experiments. The generation of radicals and triplet dicarbonyl products by Mb/H2O2/β-ketoacids may contribute to the adverse health effects of ketogenic unbalance.  相似文献   

4.
Nitric oxide, a gaseous free radical, is poorly reactive with most biomolecules but highly reactive with other free radicals. Its ability to scavenge peroxyl and other damaging radicals may make it an important antioxidant in vivo, particular in the cardiovascular system, although this ability has been somewhat eclipsed in the literature by a focus on the toxicity of peroxynitrite, generated by reaction of O·-2 with NO· (or of NO- with O2). On balance, experimental and theoretical data support the view that ONOO- can lead to hydroxyl radical (OH·) generation at pH 7.4, but it seems unlikely that OH· contributes much to the cytotoxicity of ONOO-. The cytotoxicity of ONOO- may have been over-emphasized: its formation and rapid reaction with antioxidants may provide a mechanism of using NO· to dispose of excess O·-2, or even of using O·-2 to dispose of excess NO·, in order to maintain the correct balance between these radicals in vivo. Injection or instillation of “bolus” ONOO- into animals has produced tissue injury, however, although more experiments generating ONOO- at steady rates in vivo are required. The presence of 3-nitrotyrosine in tissues is still frequently taken as evidence of ONOO- generation in vivo, but abundant evidence now exists to support the view that it is a biomarker of several “reactive nitrogen species”. Another under-addressed problem is the reliability of assays used to detect and measure 3-nitrotyrosine in tissues and body fluids: immunostaining results vary between laboratories and simple HPLC methods are susceptible to artefacts. Exposure of biological material to low pH (e.g. during acidic hydrolysis to liberate nitrotyrosine from proteins) or to H2O2 might cause artefactual generation of nitrotyrosine from NO-2 in the samples. This may be the origin of some of the very large values for tissue nitrotyrosine levels quoted in the literature. Nitrous acid causes not only tyrosine nitration but also DNA base deamination at low pH: these events are relevant to the human stomach since saliva and many foods are rich in nitrite. Several plant phenolics inhibit nitration and deamination in vitro, an effect that could conceivably contribute to their protective effects against gastric cancer development.  相似文献   

5.
O- 2 produced by the autoxidation of respiratory chain electron carriers, and other cellular reductants, inactivates bacterial and mammalian iron-sulfur-containing (de)hydratases including the citric acid cycle enzyme aconitase. Release of the solvent-exposed iron atom and oxidation of the [4Fe-4S]2+ cluster accompanies loss of catalytic activity. Rapid reactivation is achieved by iron-sulfur cluster reduction and Fe2+ insertion. Inactivation-reactivation is a dynamic and cyclical process which modulates aconitase and (de)hydratase activities in Escherichia coli and mammalian cells. The balance of inactive and active aconitase provides a sensitive measure of the changes in steady-statO- 2 levels occuring in living cells and mitochondria under stress conditions. Aconitases are also inactivated by other oxidants including O2, H2O2, NO., and ONOO which are associated with inflammation, hyperoxia and other pathophysiological conditions. Loss of aconitase activity during oxidant stress may impair energy production, and the liberation of reactive iron may further enhance oxidative damage. Iron-sulfur center cycling may also serve adaptive functions by modulating gene expression or by signaling metabolic quiescence.  相似文献   

6.
Nitric oxide synthase (NOS) inhibitors have been reported to modulate luminol-dependent chemiluminescence (CL) in rat macrophages, whereas the potent oxidant peroxynitrite (ONOO-) was shown to react with luminol to yield CL in a cellfree system. We evaluated the role of the -arginine/NOS pathway in luminol CL by phorbol ester-activated human polymorpho-nuclear (PMN) leukocytes using the NOS inhibitors NG-monomethyl- -arginine ( -NMMA) and N-iminoethyl- -omithine ( -NIO). Nitric oxide (·NO) release was determined by oxidation of oxymyoglobin. In addition, the effect of NOS inhibitors on superoxide anion O2-) production was measured. Luminol CL was notably diminished by -NMMA in a dose-dependent manner. Superoxide dismutase (SOD) also decreased luminol CL and -NMMA potentiated light emission decrease produced by SOD. Nitric oxide and O2·- production was significantly decreased by -NMMA; moreover, luminol-dependent CL but not O2·- production was attenuated by -NIO. These data suggest that products of catalytic activity of both ·NO synthase and NADPH oxidase are required to elicit maximal luminol CL in this system. These studies demonstrate that the NOS synthase pathway is involved in luminol CL by human PMN, and they suggest that ONOO would be an unrecognized mediator in this phenomenon.  相似文献   

7.
《Free radical research》2013,47(4):478-486
Abstract

New techniques and probes are routinely emerging for detecting short-lived free radicals such as superoxide radical anion (O2?–), nitric oxide (?NO), and transient oxidants derived from peroxynitrite (ONOO/ONOOH). Recently, we reported the profiles of oxidation products (2-hydroxyethidium, ethidium, and various dimeric products) of the fluorogenic probe hydroethidine (HE) in the ?NO/O2?– system (Zielonka et al. 2012). In this study, we used HPLC analyses of HE oxidation products in combination with continuous wave electron paramagnetic resonance (CW-EPR) spin trapping with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BMPO) to define the identity of the oxidizing species formed in the ?NO/O2?– system. EPR spin-trapping technique is still considered as the gold standard for characterization of free radicals and their intermediates. We monitored formation of BMPO-superoxide (BMPO-?OOH) and BMPO-hydroxyl (BMPO-?OH) radical adducts. Simultaneous analyses of results from EPR spin-trapping and HPLC measurements are helpful in the interpretation of the mechanism of formation of products of HE oxidation.  相似文献   

8.
《Free radical research》2013,47(12):1496-1513
In endothelial cell dysfunction, the uncoupling of eNOS results in higher superoxide (O2??) and lower NO production and a reduction in NO availability. Superoxide reacts with NO to form a potent oxidizing agent peroxynitrite (ONOO?) resulting in nitrosative and nitroxidative stresses and dismutates to form hydrogen peroxide. Studies have shown superoxide dismutase (SOD) plays an important role in reduction of O2?? and ONOO? during eNOS uncoupling. However, the administration or over-expression of SOD was ineffective or displayed deleterious effects in some cases. An understanding of interactions of the two enzyme systems eNOS and SOD is important in determining endothelial cell function. We analyzed complex biochemical interactions involving eNOS and SOD in eNOS uncoupling. A computational model of biochemical pathway of the eNOS-related NO and O2?? production and downstream reactions involving NO, O2??, ONOO?, H2O2 and SOD was developed. The effects of SOD concentration on the concentration profiles of NO, O2??, ONOO? and H2O2 in eNOS coupling/uncoupling were investigated. The results include (i) SOD moderately improves NO production and concentration during eNOS uncoupling, (ii) O2?? production rate is independent of SOD concentration, (iii) Increase in SOD concentration from 0.1 to 100 μM reduces O2?? concentration by 90% at all [BH4]/[TBP] ratios, (iv) SOD reduces ONOO? concentration and increases H2O2 concentration during eNOS uncoupling, (v) Catalase can reduce H2O2 concentration and (vi) Dismutation rate by SOD is the most sensitive parameter during eNOS uncoupling. Thus, SOD plays a dual role in eNOS uncoupling as an attenuator of nitrosative/nitroxidative stress and an augmenter of oxidative stress.  相似文献   

9.
Barry Halliwell 《Planta》1978,140(1):81-88
The enzyme horseradish peroxidase (EC 1.11.1.7) catalyses oxidation of NADH. NADH oxidation is prevented by addition of the enzyme superoxide dismutase (EC 1.15.1.1) to the reaction mixture before adding peroxidase but addition of dismutase after peroxidase has little inhibitory effect. Catalase (EC 1.11.1.6) inhibits peroxidase-catalysed NADH oxidation when added at any time during the reaction. Apparently the peroxidase uses hydrogen peroxide (H2O2) generated by non-enzymic breakdown of NADH to catalyse oxidation of NADH to a free-radical, NAD., which reduces oxygen to the superoxide free-radical ion, O2 .-. Some of the O2 .- reacts with peroxidase to give peroxidase compound III, which is catalytically inactive in NADH oxidation. The remaining O2 .- undergoes dismutation to O2 and H2O2. O2 .- does not react with NADH at significant rates. Mn2+ or lactate dehydrogenase stimulate NADH oxidation by peroxidase because they mediate a reaction between O2 .- and NADH. 2,4-Dichlorophenol, p-cresol and 4-hydroxycinnamic acid stimulate NADH oxidation by peroxidase, probably by breaking down compound III and so increasing the amount of active peroxidase in the reaction mixture. Oxidation in the presence of these phenols is greatly increased by adding H2O2. The rate of NADH oxidation by peroxidase is greatest in the presence of both Mn2+ and those phenols which interact with compound III. Both O2 .- and H2O2 are involved in this oxidation, which plays an important role in lignin synthesis.  相似文献   

10.
Recent reports suggest that intramolecular electron transfer reactions can profoundly affect the site and specificity of tyrosyl nitration and oxidation in peptides and proteins. Here we investigated the effects of methionine on tyrosyl nitration and oxidation induced by myeloperoxidase (MPO), H2O2 and NO2 and peroxynitrite (ONOO) or ONOO and bicarbonate (HCO3) in model peptides, tyrosylmethionine (YM), tyrosylphenylalanine (YF) and tyrosine. Nitration and oxidation products of these peptides were analyzed by HPLC with UV/Vis and fluorescence detection, and mass spectrometry; radical intermediates were identified by electron paramagnetic resonance (EPR)-spin-trapping. We have previously shown (Zhang et al., J. Biol. Chem. 280 (2005) 40684-40698) that oxidation and nitration of tyrosyl residue was inhibited in tyrosylcysteine(YC)-type peptides as compared to free tyrosine. Here we show that methionine, another sulfur-containing amino acid, does not inhibit nitration and oxidation of a neighboring tyrosine residue in the presence of ONOO (or ONOOCO2) or MPO/H2O2/NO2 system. Nitration of tyrosyl residue in YM was actually stimulated under the conditions of in situ generation of ONOO (formed by reaction of superoxide with nitric oxide during SIN-1 decomposition), as compared to YF, YC and tyrosine. The dramatic variations in tyrosyl nitration profiles caused by methionine and cysteine residues have been attributed to differences in the direction of intramolecular electron transfer in these peptides. Further support for the interpretation was obtained by steady-state radiolysis and photolysis experiments. Potential implications of the intramolecular electron transfer mechanism in mediating selective nitration of protein tyrosyl groups are discussed.  相似文献   

11.
《Free radical research》2013,47(6):377-385
Electron spin resonance spectroscopy and the spin trapping technique were used to study the formation of the superoxide radical in pyridine. 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was employed as a trapping agent. Superoxide radical was generated using chemical (potassium superoxide) and photochemical methods with anthralin, benzanthrone, rose bengal, 1,8-dihydroxyanthraquinone and zinc tetraphenylporphyrine as photoactive pigments. Hyperfine coupling (hf) constants for DMPO/O2- were determined to be aN = 12.36 G, aβH= 9.85G, aγH = 1.34 G. The aN and aβH constants are in good agreement with values calculated from a previously determined relationship between hf constants and solvent acceptor number (Reszka et al., (1992) Free Radical Res. Commun., in press). When concentrated hydrogen peroxide was added to DMPO in pyridine a similar EPR spectrum was observed. It is suggested that in this case the DMPO/'O2H adduct is formed by nucleophilic addition of H2O2 to DMPO to give a hydroxylamine, followed by oxidation to the respective nitroxide. The EPR spectrum observed when tetrapropylammonium hydroxide and H2O2 were added to DMPO in pyridine had hf couplings aN = 13.53 G, aβH = 11.38 G, aγH = 0.79 G and it was assigned to a DMPO/'OH adduct. This assignment was based on similarity of this spectrum to the one produced by UV photolysis of hydrogen peroxide and DMPO in aqueous solution and subsequent transfer to pyridine.  相似文献   

12.
The formation of radical species during the reaction of tert-butyl hydroperoxide and hypochlorous acid has been investigated by spin trapping and chemiluminescence. A superposition of two signals appeared incubating tert-butyl hydroperoxide with hypochlorous acid in the presence of the spin trap &#102 -(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN). The first signal (aN = 1.537mT, a&#103H = 0.148mT) was an oxidation product of POBN caused by the action of hypochlorous acid. The second spin adduct (aN = 1.484mT, a&#103H = 0.233mT) was derived from a radical species that was formed in the result of reaction of tert-butyl hydroperoxide with hypochlorous acid. Similarly, a superposition of two signals was also obtained using the spin trap N-tert-butyl- &#102 -phenylnitrone (PBN). tert-Butyl hydroperoxide was also treated with Fe2+ or Ce4+ in the presence of POBN. Using Fe2+ a spin adduct with a N= 1.633mT and a&#103H = 0.276mT was observed. The major spin adduct formed with Ce4+ was characterised by αN = 1.480mT and a&#103H = 0.233mT. The reaction of tert-butyl hydroperoxide with hypochlorous acid was accompanied by a light emission, that time profile and intensity were identical to those emission using Ce4+. The addition of Fe2+ to tert-butyl hydroperoxide yielded a much smaller chemiluminescence. Thus, tert-butyl hydroperoxide yielded in its reaction with hypochlorous acid or Ce4+ the same spin adduct and the same luminescence profile. Because Ce4+ is known to oxidise organic hydroperoxides to peroxyl radical species, it can be concluded that a similar reaction takes place in the case of hypochlorous acid.  相似文献   

13.
《Free radical research》2013,47(3-6):297-302
The ability of horseradish peroxidase (E.C. 1.11.1.7. Donor: H2O2 oxidoreductase) to catalytically oxidize 2-deoxyribose sugars to a free radical species was investigated. The ESR spin-trapping technique was used to denionstrate that free radical species were formed. Results with the spin trap 3.5-dibronio-4-nitrosoben-zene sulphonic acid showed that horseradish peroxidase can catalyse the oxidation of 2-deoxyribose to produce an ESR spectrum characteristic of a nitroxide radical spectrum. This spectrum was shown to be a composite of spin adducts resulting from two carbon-centered species, one spin adduct being characterized by the hyperfine coupling constants aN = 13.6GandaHβ = 11.0G, and the other by aN = 13.4G and aH = 5.8 G. When 2-deoxyribose-5-phosphate was used as the substrate, the spectrum produced was found to be primarily one species characterized by the hyperfine coupling constants aN = 13.4G and aH= 5.2. All the radical species produced were carbon-centered spin adducts with a β hydrogen, suggesting that oxidation occurred at the C(2) or C(5) moiety of the sugar. Interestingly, it was found that under the same experimental conditions, horseradish peroxidase apparently did not catalyze the oxidation of either 3-deoxyribose or D-ribose to a free radical since no spin adducts were found in these cases.

It can be readily seen that 2-deoxyribose and 2-deoxyribose-5-phosphate can be oxidized by HRP/H2O2 to form a free radical species that can be detected with the ESR spin-trapping technique. There are two probable sites for the formation of a CH type radical on the 2-deoxyribose sugar, these being the C(2) and the C(5) carbons. The fact that there is a species produced from 2-deoxy-ribose, but not 2-deoxy-ribose-5-phosphate, suggests that there is an involvement of the C(5) carbon in the species with the 1 1.0G β hydrogen. In the spectra formed from 2-deoxy-ribose, there is a big difference in the hyperfine splitting of the β hydrogens, suggesting that the radicals are formed at different carbon centers, while the addition of a phosphate group to the C(5) carbon seems to inhibit radical formation at one site. In related work, the chemiluminescence of monosaccharides in the presence of horseradish peroxidase was proposed to be the consequence of carbon-centered free radical formation (10).  相似文献   

14.
《Luminescence》2003,18(1):49-57
The chemiluminescence reaction of lucigenin (Luc2+?2NO3?, N,N′‐dimethyl‐9,9′‐biacridinium dinitrate) at gold electrodes in dioxygen‐saturated alkaline aqueous solutions (pH 10) was investigated in detail by the use of electrochemical emission spectroscopy. We noted that both O2 and Luc2+ are reduced on a gold electrode in aqueous solution of pH 10 in almost the same potential region. From this fact, we expected chemiluminescence based on a radical–radical coupling reaction of superoxide ion (O2·?) and one‐electron reduced form of Luc2+ (Luc·+, a radical cation). Chemiluminescence was actually observed in the potential range where O2 and Luc2+ were simultaneously reduced at the electrodes. The effects were examined upon addition of enzymes, i.e. superoxide dismutase (SOD) and catalase, into the solution and the substitution of heavy water (D2O) for light water (H2O) as a solvent on the chemiluminescence. In the presence of native and active SOD, chemiluminescence was completely absent. On the other hand, chemiluminescence was observed, unchanged in the presence of either denatured and inert SOD or catalase. In addition, the amount of chemiluminescence in D2O solution was about three times greater than that in H2O solution. These results, together with cyclic voltammetric results, suggest that O2·? participates directly in the chemiluminescence but H2O2 does not, and the chemiluminescence results from the coupling reaction between O2·? and Luc·+ under the present experimental conditions. These chemically unstable species, O2·? and Luc·+, are produced during the simultaneous electroreduction of O2 and Luc2+. The coupling reaction between those radical species would lead to the formation of a dioxetane‐type intermediate and, finally, to chemiluminescence. The chemiluminescence reaction mechanism is discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Inducible NOS (iNOS) is induced in diseases associated with inflammation and oxidative stress, and questions remain regarding its regulation. We demonstrate that reactive oxygen/nitrogen species (ROS/RNS) dose-dependently regulate iNOS function. Tetrahydrobiopterin (BH4)-replete iNOS was exposed to increasing concentrations of ROS/RNS and activity was measured with and without subsequent BH4 addition. Peroxynitrite (ONOO) produced the greatest change in NO generation rate, ∼95% decrease, and BH4 only partially restored this loss of activity. Superoxide () greatly decreased NO generation, however, BH4 addition restored this activity. Hydroxyl radical (OH) mildly decreases NO generation in a BH4-dependent manner. iNOS was resistant to H2O2 with only slightly decreased NO generation with up to millimolar concentrations. In contrast to the inhibition of NO generation, ROS enhanced production from iNOS, while ONOO had the opposite effect. Thus, ROS promote reversible iNOS uncoupling, while ONOO induces irreversible enzyme inactivation and decreases both NO and production.  相似文献   

16.
Peroxynitrite (ONOO-) is a reactive oxidant formed from superoxide (?O2-) and nitric oxide (?NO), that can oxidize several cellular components, including essential protein, non-protein thiols, DNA, low-density lipoproteins (LDL), and membrane phospholipids. ONOO- has contributed to the pathogenesis of diseases such as stroke, heart disease, Alzheimer's disease, and atherosclerosis. Because of the lack of endogenous enzymes to thwart ONOO- activation, developing a specific ONOO- scavenger is remarkably important. In this study, the ability of hesperetin (3′,5,7-trihydroxy-4-methoxyflavanone) to scavenge ONOO- and to protect cells against ONOO- and ROS was investigated. The data gained show that hesperetin can efficiently scavenge authentic ONOO-. In spectrophotometric analysis, the data revealed that hesperetin led to declined ONOO--mediated nitration of tyrosine through electron donation. Hesperetin exhibited significant inhibition on the nitration of bovine serum albumin (BSA) by ONOO- in a dose-dependent manner. Hesperetin also manifested cytoprotection from cell damage induced by ONOO- and ROS. The present study suggests that hesperetin is a powerful ONOO- scavenger and promotes cellular defense activity in the protection against ONOO- involved diseases.  相似文献   

17.
The present in vitro study was designed to examine the antioxidative activity of red cabbage anthocyanins (ATH) in the protection of blood plasma proteins and lipids against damage induced by oxidative stress. Fresh leaves of red cabbage were extracted with a mixture of methanol/distilled water/0.01% HCl (MeOH/H2O/HCl, 50/50/1, v/v/w). Total ATH concentration [μM] was determined with cyanidin 3-glucoside as a standard. Phenolic profiles in the crude red cabbage extract were determined using the HPLC method. Plasma samples were exposed to 100 μM peroxynitrite (ONOO) or 2 mM hydrogen peroxide (H2O2) in the presence/absence of ATH extract (5–15 μM); oxidative alterations were then assessed. Pre-incubation of plasma with ATH extract partly reduced oxidative stress in plasma proteins and lipids. Dose-dependent reduction of both ONOO and H2O2-mediated plasma protein carbonylation was observed. ATH extract partly inhibited the nitrative action of ONOO, and significantly decreased plasma lipid peroxidation caused by ONOO or H2O2. Our results demonstrate that anthocyanins present in red cabbage have inhibitory effects on ONOO and H2O2-induced oxidative stress in blood plasma components. We suggest that red cabbage ATH, as dietary antioxidants, should be considered as potentially usable nutraceuticals in the prevention of oxidative stress-related diseases.  相似文献   

18.
Endothelial dysfunction is associated with increase in oxidative stress and low NO bioavailability. The endothelial NO synthase (eNOS) uncoupling is considered an important factor in endothelial cell oxidative stress. Under increased oxidative stress, the eNOS cofactor tetrahydrobiopterin (BH4) is oxidized to dihydrobiopterin, which competes with BH4 for binding to eNOS, resulting in eNOS uncoupling and reduction in NO production. The importance of the ratio of BH4 to oxidized biopterins versus absolute levels of total biopterin in determining the extent of eNOS uncoupling remains to be determined. We have developed a computational model to simulate the kinetics of the biochemical pathways of eNOS for both NO and O2•− production to understand the roles of BH4 availability and total biopterin (TBP) concentration in eNOS uncoupling. The downstream reactions of NO, O2•−, ONOO, O2, CO2, and BH4 were also modeled. The model predicted that a lower [BH4]/[TBP] ratio decreased NO production but increased O2•− production from eNOS. The NO and O2•− production rates were independent above 1.5 μM [TBP]. The results indicate that eNOS uncoupling is a result of a decrease in [BH4]/[TBP] ratio, and a supplementation of BH4 might be effective only when the [BH4]/[TBP] ratio increases. The results from this study will help us understand the mechanism of endothelial dysfunction.  相似文献   

19.
The present study demonstrates that manganese superoxide dismutase (MnSOD) (Escherichia coli), binds nitric oxide (NO) and stimulates its decay under both anaerobic and aerobic conditions. The results indicate that previously observed MnSOD-catalyzed NO disproportionation (dismutation) into nitrosonium (NO+) and nitroxyl (NO? ) species under anaerobic conditions is also operative in the presence of molecular oxygen. Upon sustained aerobic exposure to NO, MnSOD-derived NO? species initiate the formation of peroxynitrite (ONOO? ) leading to enzyme tyrosine nitration, oxidation and (partial) inactivation. The results suggest that both ONOO? decomposition and ONOO? -dependent tyrosine residue nitration and oxidation are enhanced by metal centre-mediated catalysis. We show that the generation of ONOO? is accompanied by the formation of substantial amounts of H2O2. MnSOD is a critical mitochondrial antioxidant enzyme, which has been found to undergo tyrosine nitration and inactivation in various pathologies associated with the overproduction of NO. The results of the present study can account for the molecular specificity of MnSOD nitration in vivo. The interaction of NO with MnSOD may represent a novel mechanism by which MnSOD protects the cell from deleterious effects associated with overproduction of NO.  相似文献   

20.
Biological oxidants participate in many processes in the human body. Their excessive production causes organelle damage, which may result in the accumulation of cytotoxic mediators and cell degradation and may manifest itself in various diseases. Peroxynitrite (ONOO), hypochlorous acid (HOCl), hydrogen peroxide (H2O2), and peroxymonocarbonate (HOOCO2) are important oxidants in biology, toxicology, and various pathologies. Derivatives of coumarin, containing an oxidant-sensitive boronate group, have been recently developed for the fluorescent detection of inflammatory oxidants. Here, we report the synthesis and characterization of 4-[2-(morpholin-4-yl)-2-oxoethyl]-2-oxo-2H-chromen-7-yl boronic acid ( MpC-BA ) as a fluorescent probe for the detection of oxidants, with better solubility in water, high stability and fast response time toward peroxynitrite and hypochlorous acid. The effectiveness of the MpC-BA probe for the detection of peroxynitrite was measured by adding bolus ONOO or using the co-generating superoxide and nitrogen oxide system. MpC-BA is oxidized by ONOO to 7-hydroxy-4-[2-(morpholin-4-yl)-2-oxoethyl]-2H-chromen-2-one ( MpC-OH ). However, peroxynitrite-specific product ( MpC-H ) is formed in the minor reaction pathway. MpC-OH is also yielded in the reaction of MpC-BA with HOCl, and the subsequent formation of a chlorinated MpC-OH gives a specific product for HOCl ( MpC-OHCl ). H2O2 slowly oxidizes MpC-BA . However, the addition of NaHCO3 increased the MpC-OH formation rate. We conclude that MpC-BA is potentially an improved fluorescent probe detecting peroxynitrite and hypochlorite in biological settings. Complementation of the fluorescence measurements by HPLC-based identification of chlorinated and reduced coumarin(s) will help identify the oxidants detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号