首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress is involved in the pathogenesis of numerous diseases. Nevertheless, no optimal natural antioxidant has been found for therapeutics, therefore polyphenol antioxidants have been looked for in myrtle leaves, a plant that in folk medicine has been used as anti-inflammatory drug. Antioxidant-rich fractions were prepared from myrtle (Myrtus communis L.) leaves liquid-liquid extraction (LLE) with different solvents. All myrtle extracts were very rich in polyphenols. In particular, hydroalcoholic extracts contain galloyl-glucosides, ellagitannins, galloyl-quinic acids and flavonol glycosides; ethylacetate extract and aqueous residues after LLE are enriched in flavonol glycosides and hydrolysable tannins (galloyl-glucosides, ellagitannins, galloyl-quinic acids), respectively. Qualitative and quantitative analysis for the single unidentified compound was also performed. Human LDL exposed to copper ions was used to evaluate the antioxidant activity of the myrtle extracts. Addition of these extracts did not affect the basal oxidation of LDL but dose-dependently decreased the oxidation induced by copper ions. Moreover, the myrtle extracts reduce the formation of conjugated dienes. The antioxidant effect of three myrtle extracts decreased in the following order: hydroalcoholic extracts, ethylacetate and aqueous residues after LLE. The extracts had the following IC50: 0.36, 2.27 and 2.88 μM, when the sum of total phenolic compounds was considered after the correction of molecular weight based on pure compounds. Statistical analysis showed a significant difference among hydroalcoholic extracts vs. the ethylacetate and aqueous residues after LLE. These results suggest that the myrtle extracts have a potent antioxidant activity mainly due to the presence of galloyl derivatives.  相似文献   

2.
The aim of this study was to investigate the efficiency of the pentagalloic acid compound in inhibiting the metal ions and cell lines that mediate in low density lipoprotein (LDL) oxidation. Pentagalloic acid prolonged the lag time preceeding the onset of conjugated diene formation. In chemically induced LDL oxidation by Cu2+ plus hydrogen peroxide or peroxyl radical generated by 2, 2′-azo-bis (2-amidino propane) hydrochloride (AAPH), pentagalloic acid inhibited LDL oxidation as monitored by measuring the thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA), and gel electrophoretic mobility. The physiological relevance of the antioxidative activity was validated at the cellular level where pentagalloic acid inhibited mouse macrophage J774 and endothelial cell-mediated LDL oxidation. When compared with several other antioxidants, pentagalloic acid showed a much higher ability than naturally occuring antioxidants, α-tocopherol and ascorbic acid, and the synthetic antioxidant, probucol.  相似文献   

3.
Myrtle (Myrtus communis L.), a culinary spice and flavouring agent for alcoholic beverages widespread in the Mediterranean area and especially in Sardinia, contains the structurally unique oligomeric non-prenylated acylphloroglucinols, semimyrtucommulone and myrtucommulone A, whose antioxidant activity was investigated during the oxidative modification of lipid molecules implicated in the onset of cardiovascular diseases. Both acylphloroglucinols showed powerful antioxidant properties during the thermal (140 degrees C), solvent-free degradation of cholesterol. Moreover, the pre-treatment with semimyrtucommulone and myrtucommulone A significantly preserved LDL from oxidative damage induced by Cu(2+) ions at 2h of oxidation, and showed remarkable protective effect on the reduction of polyunsaturated fatty acids and cholesterol, inhibiting the increase of their oxidative products (conjugated dienes fatty acids hydroperoxides, 7beta-hydroxycholesterol, and 7-ketocholesterol). Taking into account the widespread culinary use of myrtle leaves, the results of the present work qualify the natural compounds semimyrtucommulone and myrtucommulone A as interesting dietary antioxidants with potential antiatherogenicity.  相似文献   

4.
Lipid oxidation in LDL may play a role in atherogenesis. It has been shown that sulfite - a compound in the aqueous fraction of wine - could inhibit free radical (AAPH) mediated oxidation of plasma. Thus, sulfite has been proposed as an antioxidant. In contrast, the aqueous phase of wine has recently been shown to contain not fully identified compounds promoting transition metal ion (Cu(2+)) initiated LDL oxidation. As transition metal ions can catalyse the auto-oxidation of sulfite, we studied the influence of sulfite on Cu(2+) initiated LDL oxidation. The results show that sulfite at concentrations found in vivo strongly facilitated LDL oxidation by Cu(2+). The LDL-oxidase activity of ceruloplasmin was also stimulated by sulfite. ROS formation by Cu(2+)/SO(3)(2-) was not inhibited by SOD but by catalase. We propose that formation of Cu(+), sulfite radicals (SO(3)*(-)) and hydroxyl radicals (OH(*)) is a mechanism by which sulfite could act as a pro-atherogenic agent in presence of transition metal ions.  相似文献   

5.
A crucial and causative role in the pathogenesis of atherosclerosis is believed to be the oxidative modification of low density lipoprotein (LDL). The oxidation of LDL involves released free radical driven lipid peroxidation. Several lines of evidence support the role of oxidized LDL in atherogenesis. Epidemiologic studies have demonstrated an association between an increased intake of dietary antioxidant vitamins, such as vitamin E and vitamin C and reduced morbidity and mortality from coronary artery diseases. It is thus hypothesized that dietary antioxidants may help prevent the development and progression of atherosclerosis. The oxidation of LDL has been shown to be reduced by antioxidants, and, in animal models, improved antioxidants may offer possibilities for the prevention of atherosclerosis. The results of several on going long randomized intervention trials will provide valuahle information on the efficacy and safety of improved antioxidants in the prevention of atherosclerosis. This review a evaluates current literature involving antioxidants and vascular disease, with a particular focus on the potential mechanisms.  相似文献   

6.
Copper-induced LDL oxidation is characterized by an 'induction phase' (lag phase) during which the endogenous antioxidants are consumed, followed by a 'propagation phase' in which the LDL-associated polyunsaturated fatty acids are oxidized. Oxidation products may play an important role in the propagation of the oxidative process in the arterial intima as they increase the permeability of the damaged endothelium to various plasma components, including LDL. We therefore found it of interest to investigate the kinetics of LDL oxidation in vitro under conditions where LDL is sequentially exposed to Cu2+-induced oxidation.

The results of our studies demonstrate that when native LDL is exposed to copper oxidation in a medium containing oxidized LDL, oxidation of the added LDL may be almost instantaneous. Furthermore, even when native LDL is added to 'oxidizing LDL' towards the end of the lag phase or during the propagation phase it becomes oxidized after a very short lag. This oxidation process, occurring in spite of the possible protective effect of the antioxidants present in the newly added LDL, indicates that although antioxidants prolong the latency period by preventing the formation of active free radicals, when such radicals are present in the system, oxidation propagates. These results lend strong support to the generally accepted paradigm regarding the mechanism of propagation of lipid oxidation.

In view of the effect of oxidation products on the permeability of the endothelium, the observed shortening of the lag period may result in a vicious cycle, independent of the LDL-associated antioxidants, leading to continuing oxidation and foam cell formation.  相似文献   

7.
Nakamura YK  Omaye ST 《Life sciences》2004,74(10):1265-1275
Oxidation of low-density lipoprotein (LDL) may be a prelude to atherogenesis and directly age related. To assess whether there may be relationship between age and plasma lipoprotein (LP) oxidation, we studied copper-mediated LP oxidation isolated from the blood of 2 months, 7 months, and 15 months old rats. We determined whether the susceptibility of LP to oxidation might be related to vitamin C levels in serum, vitamin E levels in LP, or the total antioxidant capacity (TAC) of serum or LP. Serum vitamin C content was inversely related to age, malondialdehyde (MDA) propagation rate, and maximum change of MDA concentrations. However, there were no significant relationships between age and serum TAC, LP TAC, serum vitamin E, or the ratio of LP vitamin E to serum vitamin C content. The lag phase of MDA formation was significantly decreased with age and the ratio of LP vitamin E content to serum vitamin C content, increased with age. Maximum change of MDA concentration was positively correlated with the ratio of LP vitamin E contents to serum vitamin C concentration. Thus, as the rat ages, vitamin C status decreases with an increased LP susceptibility to oxidation. It is tempting to speculate that enhanced LP oxidation in older rats may reflect a reduced amount of recycling of LDL vitamin E by serum vitamin C.  相似文献   

8.
Policosanol is a mixture of long-chain primary aliphatic saturated alcohols. Previous studies in humans and animals have shown that these compounds improved lipoprotein profiles. However, more-recent placebo-controlled studies could not confirm these promising effects. Octacosanol (C28), the main component of sugarcane-derived policosanol, is assumed to be the bioactive component. This has, however, never been tested in an in vivo study that compared individual policosanol components side by side. Here we present that neither the individual policosanol components (C24, C26, C28, or C30) nor the natural policosanol mixture (all 30 mg/100 g diet) lowered serum cholesterol concentrations in LDL receptor knock-out (LDLr(+/-)) mice. Moreover, there was no effect on gene expression profiles of LDLr, ABCA1, HMG-CoA synthase 1, and apolipoprotein A-I (apoA-I) in hepatic and small intestinal tissue of female LDLr(+/-) mice after the 7 week intervention period. Finally, none of the individual policosanols or their respective long-chain fatty acids or aldehydes affected de novo apoA-I protein production in vitro in HepG2 and CaCo-2 cells. Therefore, we conclude that the evaluated individual policosanols, as well as the natural policosanol mixture, have no potential for reducing coronary heart disease risk through effects on serum lipoprotein concentrations.  相似文献   

9.
Ten crude extracts and their solvent partition fractions from five species of Terminalia collected in Tanzania were assessed for antimycobacterial effects using Mycobacterium smegmatis ATCC 14468 as a model organism. We report here, for the first time, on antimycobacterial effects of root and stem bark extracts of Terminalia sambesiaca and Terminalia kaiserana as well as of fruit extracts of Terminalia stenostachya and leaf extracts of Terminalia spinosa. T. sambesiaca gave the best effects of all the investigated species in terms of the sizes of the inhibitory zones of root and stem bark extracts. A crude methanol root extract of T. sambesiaca gave lower MIC values (1250 μg/ml) than its aqueous and butanol soluble fractions (MIC 2500 μg/ml). Our preliminary HPLC–DAD data indicates that methanol and aqueous extracts of T. sambesiaca roots are rich in ellagitannins and ellagic acid glycosides. Particularly, one polar ellagitannin at tR 10.3–10.9 min dominates the extracts quantitatively and thus may be responsible for their good antimycobacterial effects. In contrast to the more polar fractions, a chloroform soluble fraction of the roots of T. sambesiaca was devoid of antimycobacterial activity. Also crude methanol and aqueous extracts of the stem bark of T. sambesiaca gave promising antimycobacterial effects (MIC 1250 μg/ml). All fractions of T. kaiserana roots, except from the aqueous insoluble gave good antimycobacterial effects (MIC 1250 μg/ml) and the aqueous extract showed the best effects of the fractions in terms of the size of inhibition zones. These results justify the uses of hot water decoctions of the roots of T. kaiserana for treatment of cough, one of the symptoms of TB. According to HPLC–DAD data methanol extracts of T. kaiserana roots and their aqueous fractions are rich in polar ellagitannins and ellagic acid glycosides. Quantitatively, the ellagitannins dominate these extracts and therefore the good antimycobacterial activity of the methanol and aqueous extracts is assumed to be due to these compounds. Sephadex LH-20 CC fractions of a methanol extract of the roots of T. kaiserana inhibited the growth of M. smegmatis, giving MIC values of 1000 μg/ml. Ellagic acid glycosides in these fractions must be responsible for their good antimycobacterial effects since they are present in high concentrations. Good antimycobacterial effects were also obtained with a root extract of Terminalia sericea, and especially the butanol soluble fraction was a good inhibitor of the growth of M. smegmatis (MIC 1562 μg/ml). Our preliminary HPLC–DAD results show that the roots of T. sericea are rich in ellagitannins, ellagic acid glycosides and at least one stilbene compound. Extracts of the fruits of T. stenostachya gave good antimycobacterial effects, butanol extracts being the most active. Also the leaves of T. stenostachya, and especially the butanol soluble extracts, give good antimycobacterial effects. Our HPLC–DAD data indicate that T. stenostachya leaves contain large quantities of gallic acid, ellagitannins and ellagic acid glycosides. Our results indicate that many of the investigated species of Terminalia might contain leads for development of anti-TB drugs. Standardized extracts of T. sambesiaca, T. kaiserana and T. sericea roots could be used as easily available and cheap medicines for treatment of TB in remote regions of East and South Africa.  相似文献   

10.
Scavenger receptor-mediated uptake of oxidized LDL (oxLDL) is thought to be the major mechanism of foam cell generation in atherosclerotic lesions. Recent data has indicated that native LDL is also capable of contributing to foam cell formation via low-affinity receptor-independent LDL particle pinocytosis and selective cholesteryl ester (CE) uptake. In the current investigation, Cu2+-induced LDL oxidation was found to inhibit macrophage selective CE uptake. Impairment of selective CE uptake was significant with LDL oxidized for as little as 30 min and correlated with oxidative fragmentation of apoB. In contrast, LDL aggregation, LDL CE oxidation, and the enhancement of scavenger receptor-mediated LDL particle uptake required at least 3 h of oxidation. Selective CE uptake did not require expression of the LDL receptor (LDL-R) and was inhibited similarly by LDL oxidation in LDL-R−/− versus WT macrophages. Inhibition of selective uptake was also observed when cells were pretreated or cotreated with minimally oxidized LDL, indicating a direct inhibitory effect of this oxLDL on macrophages. Consistent with the effect on LDL CE uptake, minimal LDL oxidation almost completely prevented LDL-induced foam cell formation. These data demonstrate a novel inhibitory effect of mildly oxidized LDL that may reduce foam cell formation in atherosclerosis.  相似文献   

11.
Our investigation of phenolic constituents of fruits, flower buds, and leaves of Feijoa sellowiana led to the isolation of twenty-one phenolics including three new gossypetin glycosides 13, and also the purification of a proanthocyanidin fraction. A high-performance liquid chromatography method for simultaneous analysis of phenolic constituents was established and then used to investigate the phenolic profiles of the parts of the plant species, to show the presence of characteristic flavonoids and ellagic acid derivatives or ellagitannins in the extracts from fruits, flower buds, and leaves. The branch extract profile also suggested the presence of alkylated ellagic acids as characteristic constituents. Inhibitory effects of feijoa flavonoids on mushroom tyrosinase were seen, although in some cases this may have resulted from direct interaction with the enzyme. Cytotoxic effect of the proanthocyanidin fraction was also shown.  相似文献   

12.
Selective modification of arginine residues of LDL by cyclohexanedione or acetylation of lysine residues of LDL deminishes their high affinity binding and internalisation by human skin fibroblast up to 50% as compared with native LDL. The enhanced negative charge of the modified LDL particles results in an accelerated electrophoretic mobility towards the anode. Neuraminidase treatment of cyclohexanedione-modified LDL and acetyllysine-LDL normalizes not only their electrophoretic mobility, but also restores more than 80% of the original binding and uptake capacity, the specificity of this effect being indicated by using fibroblasts deficient in LDL receptor and by competitive binding and internalization experiments.  相似文献   

13.
Low density lipoproteins (LDL) of human blood, once oxidized, provoke cholesterol accumulation in cells of arterial wall, which favors the development of atherosclerosis. Oxidative modification of LDL can result from their interaction with hypochlorous acid produced in the halogenation cycle of myeloperoxidase (MPO). On account that MPO is able to form complexes with LDL it seems important to learn the forces promoting such contacts and to spot the likely binding sites for the enzyme on the surface of LDL particles. In this study affinity chromatography on MPO-Sepharose showed that MPO-LDL complexes are uncoupled at ionic strength above 0.3 M NaCl or when pH of solution goes below 3.6. This is an evidence of ionic interaction between MPO and LDL. We used spin probes of lipid nature embedded in phospholipid monolayer so that a variety of distances between the surface of an LDL particle and the paramagnetic center of a spin probes was provided. Since MPO interaction with labeled LDL caused no alteration of EPR spectra it was concluded that lipid components of LDL are not involved in MPO binding. Analysis of Mn2+ distribution between LDL surface and the aqueous milieu showed that the surface negative charge of LDL is not considerably changed upon interaction with MPO. It can be suggested that interaction of LDL with MPO does not involve phospholipids that are the principal carriers of the surface charge. Among synthetic oligopeptides with amino acid sequences mimicking those of apoB-100 fragments – 1EEEMLEN7, 53VELEVPQ59 and 445EQIQDDCTGDED456 – only the latter could replace MPO in the complex with LDL. It is concluded that the likely site of interaction with MPO is the amino acid stretch 445–456 of apoB-100 in LDL.  相似文献   

14.
Low-molecular-weight aldehydes (glyoxal, methylglyoxal, 3-deoxyglucosone) generated on autooxidation of glucose under conditions of carbonyl stress react much more actively with amino groups of L-lysine and epsilon-amino groups of lysine residues of apoprotein B-100 in human blood plasma low density lipoproteins (LDL) than their structural analogs (malonic dialdehyde (MDA), 4-hydroxynonenal) resulting on free radical oxidation of lipids under conditions of oxidative stress. Glyoxal-modified LDL aggregate in the incubation medium with a significantly higher rate than LDL modified by MDA, and MDA-modified LDL are markedly more poorly absorbed by cultured human macrophages and significantly more slowly eliminated from the rat bloodstream upon intravenous injection. Studies on kinetics of free radical oxidation of rat liver membrane phospholipids have shown that ubiquinol Q(10) is the most active lipid-soluble natural antioxidant, and suppression of ubiquinol Q(10) biosynthesis by beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitors (statins) is accompanied by intensification of lipid peroxidation in rat liver biomembranes and in LDL of human blood plasma. Injection of ubiquinone Q(10) protects the human blood plasma LDL against oxidation and prevents oxidative stress-induced damages to rat myocardium. A unified molecular mechanism of atherogenic action of carbonyl-modified LDL in disorders of lipid and carbohydrate metabolism is discussed.  相似文献   

15.
The aim of the present study was to verify the extent of oxidative stress induced by a meal at plasma and LDL level, and to investigate the capacity of red wine to counteract this action. In two different sessions, six healthy men ate the same test meal consisting of "Milanese" meat and fried potatoes. The meal was taken either with 400 ml red wine or with an isocaloric hydroalcoholic solution. Oxidative stress at plasma level was estimated through the measure of ascorbic acid, alpha-tocopherol, protein SH groups, uric acid, and antioxidant capacity, measured before and 1 and 3 h after the meal. The change in the resistance of LDL to oxidative modification was taken as an index of exposure to pro-oxidants. The susceptibility to Cu(II)-catalyzed oxidation of baseline and postprandial LDL was measured as conjugated dienes formation, tryptophan residues, and relative electrophoretic mobility. The experimental meal taken with wine provoked a significant increase in the total plasma antioxidant capacity and in the plasma concentration of alpha-tocopherol and SH groups. Postprandial LDL was more susceptible to metal-catalyzed oxidation than the homologous baseline LDL after the ethanol meal. On the contrary, postprandial LDL obtained after the wine meal was as resistant or more resistant to lipid peroxidation than fasting LDL.  相似文献   

16.
A novel flavonol glycoside named camellianoside and three known flavonol glycosides were isolated from the leaves of Camellia japonica. The structure of camellianoside was established as quercetin-3-O-beta-D-xylopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->6)-O-beta-D-glucopyranoside by spectroscopic and chemical methods. The antioxidant activities of these glycosides evaluated by the diphenylpicrylhydrazyl (DPPH) radical scavenging reaction was higher than those of L-cysteine and L-ascorbic acid used as the reference antioxidants.  相似文献   

17.
Hypericin and pseudohypericin are polycyclic–phenolic structurally related compounds found in Hypericum perforatum L. (St John's wort). As hypericin has been found to bind to LDL one may assume that it can act as antioxidant of LDL lipid oxidation, a property which is of prophylactic/therapeutic interest regarding atherogenesis as LDL oxidation may play a pivotal role in the onset of atherosclerosis. Therefore, in the present paper hypericin, pseudohypericin and hyperforin, an other structurally unrelated constituent in St John's wort were tested in their ability to inhibit LDL oxidation. LDL was isolated by ultracentrifugation and oxidation was initiated either by transition metal ions (copper), tyrosyl radical (myeloperoxidase/hydrogen peroxide/tyrosine) or by endothelial cells (HUVEC). LDL modification was monitored by conjugated diene and malondialdehyde formation. The data show that all compounds (hypericin, pseudohypericin and hyperforin) at doses as low as 2.5 μmol/l are potent antioxidants in the LDL oxidation systems used. The results indicate that the derivatives found in Hypericum perforatum have possible antiatherogenic potential.  相似文献   

18.
Antioxidant Properties of the Major Polyphenolic Compounds in Broccoli   总被引:5,自引:0,他引:5  
We have examined the antioxidant activity of the major phenolic compounds in Broccoli: two flavonol glycosides (quercetin 3-O-sophoroside and kaemp-ferol 3-O-sophoroside) and four hydroxycinnamic acid esters (1,2'-disinapoyl-2-feruloyl gentiobiose, 1-sinapoyl-2-feruloyl gentiobiose, 1,2,2'-trisinapoyl gentiobiose and 1,2-disinapoyl gentiobiose). The Trolox C equivalent antioxidant capacity (TEAC) and inhibition of iron/ascorbate-induced lipid per-oxidation of phosphatidyl choline vesicles were measured. In the aqueous phase TEAC assay, the two flavonol glycosides were less active than their respective aglycones. TEAC values for the hydroxycinnamic acid esters were less than the sum of their constituent hydroxycinnamic acids on a molar basis. Quercetin 3-O-sophoroside was a potent inhibitor of lipid peroxidation, in contrast to kaempferol 3-O-sophoroside. The hydroxycinnamic acid esters were highly effective at preventing lipid damage with the exception of 1,2,2'-trisinapoyl gentiobiose. The six compounds analysed herein demonstrate the antioxidant activity of the major phenolics in broccoli and indicate the effect on antioxidant activity of sugar substitutions in the phenolic B ring.  相似文献   

19.
We studied phenolic metabolism and plant growth in birch seedlings at the beginning of their development by inhibiting phenylalanine ammonia lyase (PAL), which is the first committed step in phenylpropanoid metabolism. Betula pubescens (Ehrh.) seeds were germinated in inhibitor-free media and the seedlings were transferred to hydroponic culture at the cotyledon stage. They were 6 days old at the start of the experiment, which lasted for 3 weeks. PAL activity was inhibited by three different concentrations of 2-aminoindane-2-phosphonic acid monohydrate (AIP) in the growing media. At the end of 3 weeks, phenolics in all plant parts (roots, stem, cotyledons, first, second and third true leaves) were determined. AIP inhibited strongly the accumulation of phenolic acids, salidroside, rhododendrins, ellagitannins and their precursors, flavan-3-ols, and soluble condensed tannins. The accumulation of lignin and flavonol glycoside derivatives was moderately inhibited. The accumulation of flavonol glycosides, such as quercetin glycosides and kaempferol glycosides, was not generally inhibited, even in leaves that emerged during the experiment, while the accumulation of insoluble condensed tannins was inhibited only slightly and not in all plant parts. This suggests that flavonol glycosides, which may have a UV-B protective role, and insoluble condensed tannins, which may have structural functions, are prioritized in seedling development. Inhibition of PAL with AIP decreased seedling growth and possible reasons for this are discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
We analyse LDL oxidation in vitro in the presence of copper (II) ions and differentiate a lag phase and a rapid peroxidation phase. We demonstrate that a physiological concentration of albumin does not alter the kinetics of the dienes in the oxidizing LDL but reduces the fluorescence of the oxidizing LDL and alters the biological properties of oxidized LDL. We find in rats after intravenous administration of oxidized LDL, that it is rapidly cleared from the circulating blood. The presence of albumin during the peroxidation phase, however, reduces the fraction of oxidized LDL with rapid blood clearance. We propose that some lipid peroxidation products formed in oxidizing LDL are hydrophilic enough to diffuse into the aqueous buffer from where they react either with the s-amino-groups of apolipoprotein B or albumin. Effective scavengers for these hydrophilic endproducts of the LDL oxidation pathways such as albumin might reduce modification of the LDL and might be useful to reduce its atherogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号