首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Activation of ERK1 and ERK2 protein kinases has been implicated in diverse cellular processes, including the control of cell proliferation and cell differentiation (Marshall [1995] Cell 80:179). In human myeloblastoid leukemia HL60 cells rapid (ca. 15 min) but transient activation of ERK1/2 has been reported following induction of macrophage/monocyte differentiation by phorbol esters, or by very high (10(-6) M) concentrations of 1,25-dihydroxyvitamin D(3) (1,25D3), while retinoic acid-induced granulocytic differentiation was accompanied by sustained activation of ERK1/2. We report here that monocytic differentiation of HL60 cells induced by moderate (10(-9) to 10(-7) M) concentrations of 1,25D3 could be divided into at least two stages. In the first phase, which lasts 24-48 h, the cells continued in the normal cell cycle while expressing markers of monocytic phenotype, such as CD14. In the next phase the onset of G1 cell cycle block became apparent and expression of CD11b was prominent, indicating a more mature myeloid phenotype. The first phase was characterized by high levels of ERKs activated by phosphorylation, and these decreased as the cells entered the second phase, while the levels of p27/Kip1 increased at that time. Serum-starved or PD98059-treated HL60 cells had reduced growth rate and slower differentiation, but the G1 block also coincided with decreased levels of activated ERK1/2. The data suggest that the MEK/ERK pathway maintains cell proliferation during 1,25D3-induced monocytic differentiation of HL60 cells, but that ERK1/2 activity becomes suppressed during the later stages of differentiation, and the consequent G1 block leads to "terminal" differentiation.  相似文献   

4.
5.
The expression and activity of NADPH oxidase increase when HL‐60 cells are induced into terminally differentiated cells. However, the function of NADPH oxidase in differentiation is not well elucidated. With 150–500 μM H2O2 inducing differentiation of HL‐60 cells, we measured phagocytosis of latex beads and investigated cell electrophoresis. Two inhibitors of NADPH oxidase, DPI (diphenyleneiodonium) and APO (apocynin), blocked the differentiation potential of cells induced by 200 μM H2O2. However, H2O2 stimulated the generation of intracellular superoxide (O2 ? ?), which decreased in the presence of the two inhibitors. DPI also inhibited H2O2‐induced ERK (extracellular‐signal‐regulated kinase) activation, as detected by Western blotting. Furthermore, PD98059, the inhibitor of the ERK pathway, inhibited the differentiation of HL‐60 cells induced by H2O2. This shows that H2O2 can activate NADPH oxidase, leading to O2 ? ? production, followed by ERK activation and ultimately resulting in the differentiation of HL‐60 cells. The data indicate that NADPH oxidase is an important cell signal regulating cell differentiation.  相似文献   

6.
The response of three human leukemia cell lines, the proliferative promonocyte THP-1 and the promyeloid HL60 cells and the non-proliferative phorbol ester-treated HL60 cells (HL60/PMA), to oxidative stress induced by tert-butylhydroperoxide (t-BHP) treatment was analyzed by fluorescence microplate assay, anti-oxidant enzyme activity measurements, high performance liquid chromatography, yopro-1/PI incorporation, poly (ADP-ribose) polymerase and caspase 3 cleavages. After t-BHP treatment, the non-proliferative HL60/PMA cells exhibited a weak increase in reactive oxygen species (ROS) production, a better preservation of thiol content, a decrease of glutathione peroxidase activity and a high ability to undergo necrosis rather than apoptosis. Submitted to the same treatment, the proliferative HL60 and THP-1 cells exhibited a high increase of ROS production, a moderate thiol depletion and a high percentage of apoptosis. Under thiol depleting conditions, the oxidative treatment of the HL60/PMA cells resulted in a high ROS production that reached levels similar to those of the two other cell lines and in cell death mainly by necrosis. In conclusion, these results that show proliferative phenotype is essential for cell response towards oxidative stress, are of particular interest in chemotherapy involving an oxidative mechanism.  相似文献   

7.
This study examined, in the liver of young and old (3- and 24-month-old, respectively) healthy Wistar rats, the in vivo effect of dehydroepiandrosterone (DHEA) (10mg/kg body weight) administered subcutaneously for 5 weeks. Reduced (GSH) and oxidized (GSSG) glutathione levels, glucose-6-phosphate dehydrogenase (G6PDH), glutathione-S-transferase (GST), glutathione peroxidase (GPx) and catalase (CAT) activities, hydrogen peroxide concentration, GST and p-Akt/Akt immunocontent ratio were assessed in hepatic tissue. DHEA treatment significantly increased total glutathione content (17%) and GSH (22%) in 3- and 24-month-old treated groups when compared to control groups. The aging factor increased G6PDH (51%) and GPx (22%) activities as well as the hydrogen peroxide concentration (33%), independently of treatment. DHEA treatment increased p-Akt (54%) and p-Akt/Akt ratio (36%) immunocontents in both treated groups. Increased serum levels of alanine aminotransferase (ALT) in aged rats were reduced by DHEA treatment (34%).  相似文献   

8.
How anti-neoplastic agents induce MDR (multidrug resistance) in cancer cells and the role of GSH (glutathione) in the activation of pumps such as the MRPs (MDR-associated proteins) are still open questions. In the present paper we illustrate that a doxorubicin-resistant human colon cancer cell line (HT29-DX), exhibiting decreased doxorubicin accumulation, increased intracellular GSH content, and increased MRP1 and MRP2 expression in comparison with doxorubicin-sensitive HT29 cells, shows increased activity of the PPP (pentose phosphate pathway) and of G6PD (glucose-6-phosphate dehydrogenase). We observed the onset of MDR in HT29 cells overexpressing G6PD which was accompanied by an increase in GSH. The G6PD inhibitors DHEA (dehydroepiandrosterone) and 6-AN (6-aminonicotinamide) reversed the increase of G6PD and GSH and inhibited MDR both in HT29-DX cells and in HT29 cells overexpressing G6PD. In our opinion, these results suggest that the activation of the PPP and an increased activity of G6PD are necessary to some MDR cells to keep the GSH content high, which is in turn necessary to extrude anticancer drugs out of the cell. We think that our data provide a new further mechanism for GSH increase and its effects on MDR acquisition.  相似文献   

9.
10.
11.
Dehydroepiandrosterone (DHEA), a major steroid secreted by the adrenal gland which decreases with age after adolescence, is available as a nutritional supplement. DHEA is known to have antiproliferative effects but the mechanism is unclear. In this study using BV-2 cells, a murine microglial cell line, we investigated the effect of DHEA on cell viability and the interaction between DHEA and glucose concentrations in the medium. We showed that DHEA inhibited cell viability and G6PD activity in a dose-dependent manner and that the effect of DHEA on cell viability was inversely associated with glucose concentrations in the medium, i.e. lowered glucose strongly enhanced the inhibition of cell viability by DHEA. DHEA inhibited cell growth by causing cell cycle arrest primarily in the G0--G1 phase, and the effect was more pronounced at zero glucose (no glucose added, G0) than high glucose (4.5 mg/ml of the medium, G4.5). Glucose deprivation also enhanced apoptosis induced by DHEA. At G4.5, DHEA did not induce formation of DNA ladder until it reached 200 microM. However, at G0, 100 microM DHEA was able to induce apoptosis, as evidenced by the formation of DNA ladder, elevation of histone-associated DNA fragmentation and increase in cells positively stained with annexin V-FITC and annexin V-FITC/propidium iodide. The interactions between DHEA and glucose support the contention that DHEA exerts its antiproliferative effects through alteration of glucose metabolism, possibly by inhibition of G6PD activity leading to decreased supply of ribose-5-phosphate for synthesis of DNA and RNA. Although DHEA is only antiproliferative at pharmacological levels, our results indicate that its antiproliferative effect can be enhanced by limiting the supply of glucose such as by energy restriction. In addition, the present study shows that glucose concentration is an important factor to consider when studying the antiproliferative and toxicological effects of DHEA.  相似文献   

12.
The effects of adrenalectomy and dehydroepiandrosterone (DHEA) doses (0, 15, 30, 60, 120 and 240 mg/kg/day ip) on hepatic enzyme activity and lipid content and on the amount of epididymal fat pad lipid were studied in starved-refed BHE and Sprague-Dawley rats. BHE rats had significantly greater relative liver size, glucose-6-phosphate dehydrogenase (G6PD) and malic enzyme (ME) activities, and percentage liver lipid but less epididymal fat pad lipid than Sprague-Dawley rats. Adrenalectomized (ADX) rats consumed significantly less food, gained less weight per day, and had less lipid in their livers and fat pads than intact rats. As the level of DHEA increased from 0 to 240 mg/kg/day there was a significant linear decrease in average daily weight gain, food intake, G6PD activity, and percentage liver lipid. At the 15 mg/kg/day dose, G6PD activity was significantly reduced without reductions in the other parameters measured. At the 120 mg/kg/day dose, however, weight gain, food intake, G6PD activity, and percentage liver lipid were significantly lower than that of the controls. At this dose DHEA treatment reduced food intake by 17% whereas it diminished average daily weight gain and G6PD activity by 30 and 56%, respectively. The 240 mg/kg/day dose of DHEA significantly reduced food intake, weight gain, liver lipid, G6PD activity, and ME activity. Intact and ADX BHE rats reduced their G6PD activity and liver lipid more rapidly than Sprague-Dawley rats as the level of DHEA administered increased. ADX Sprague-Dawley rats receiving DHEA had greater liver lipid content and enzyme activity than their intact counterparts whereas the reverse situation was true in BHE rats. These data indicate that the effect of DHEA on body weight gain, food intake, and hepatic and peripheral adiposity are dependent on the strain of rat, the adrenal status, and the DHEA dose.  相似文献   

13.
Vascular smooth muscle cells (VSMC) may be subjected to mechanical forces, such as cyclic strain, that promote the formation of reactive oxygen species (ROS). We hypothesized that VSMC modulate this adverse milieu by increasing the expression of glucose-6-phosphate dehydrogenase (G6PDH) to maintain or restore intracellular glutathione (GSH) levels. Cyclic strain increased superoxide formation, which resulted in diminished GSH because of an increase in oxidized glutathione formation; there was also an increase in glutathione peroxidase and glutathione reductase activities. G6PDH activity and protein expression were enhanced concomitant with decreases in GSH levels and remained elevated until intracellular GSH levels were restored. To confirm the role of G6PDH in repleting GSH stores, we inhibited G6PDH activity with DHEA or inhibited enzyme expression with an antisense oligodeoxynucleotide. Diminished G6PDH activity or expression was associated with persistently depleted GSH levels and inhibition of the cyclic strain-mediated increase in glutathione reductase activity. These observations demonstrate that cyclic strain promotes oxidant stress in VSMC, which, in turn, induces G6PDH expression. When G6PDH is inhibited, GSH levels are not restored because of impaired glutathione reductase activity. These data suggest that G6PDH is a critical determinant of the response to oxidant stress in VSMC.  相似文献   

14.
Resistance to doxorubicin (DOX) remains a big challenge to breast cancer treatment especially for triple negative breast cancer (TNBC). Our previous study revealed that the antioxidant system plays an important role in conferring metastasis derived DOX resistance. In this study, we used two-dimensional difference gel electrophoresis (2D-DIGE) proteomics to compare the expression profiles of two generations of TNBC cell lines which have increased metastatic ability in nude mice and exhibited resistance to DOX. Through careful analyses, one antioxidant protein: glucose-6-phosphate dehydrogenase (G6PD) was identified with 3.2-fold higher level in metastatic/DOX-resistant 231-M1 than its parental 231-C3 cells. Analyses of clinical data showed that TNBC patients with higher G6PD levels exhibited lower overall survival than patients with lower G6PD level. Reducing G6PD expression by siRNA or inhibiting its activity with dehydroepiandrosterone (DHEA) significantly increased DOX''s cytotoxicity in both cell lines. Importantly, inhibiting G6PD''s activity with DHEA dramatically increased the apoptotic rate of 1.25 µM DOX from 2% to 54%. Our results suggest that high level of G6PD can help TNBC to resist DOX-induced oxidative stress. Thus, inhibiting G6PD shall be a good strategy to treat DOX-resistant TNBC.  相似文献   

15.
16.
Reactive oxygen species (ROS) including hydrogen peroxide (H(2)O(2)) are generated constitutively in mammalian cells. Because of its relatively long life and high permeability across membranes, H(2)O(2) is thought to be an important second messenger. Generation of H(2)O(2) is increased in response to external insults, including radiation. Catalase is located at the peroxisome and scavenges H(2)O(2). In this study, we investigated the role of catalase in cell growth using the H(2)O(2)-resistant variant HP100-1 of human promyelocytic HL60 cells. HP100-1 cells had an almost 10-fold higher activity of catalase than HL60 cells without differences in levels of glutathione peroxidase, manganese superoxide dismutase (MnSOD), and copper-zinc SOD (CuZnSOD). HP100-1 cells had higher proliferative activity than HL60 cells. Treatment with catalase or the introduction of catalase cDNA into HL60 cells stimulated cell growth. Exposure of HP100-1 cells to a catalase inhibitor resulted in suppression of cell growth with concomitant increased levels of intracellular H(2)O(2). Moreover, exogenously added H(2)O(2) or depletion of glutathione suppressed cell growth in HL60 cells. Extracellular signal regulated kinase 1/2 (ERK1/2) was constitutively phosphorylated in HP100-1 cells but not in HL60 cells. Inhibition of the ERK1/2 pathway suppressed the growth of HP100-1 cells, but inhibition of p38 mitogen-activated protein kinase (p38MAPK) did not affect growth. Moreover, inhibition of catalase blocked the phosphorylation of ERK1/2 but not of p38MAPK in HP100-1 cells. Thus our results suggest that catalase activates the growth of HL60 cells through dismutation of H(2)O(2), leading to activation of the ERK1/2 pathway; H(2)O(2) is an important regulator of growth in HL60 cells.  相似文献   

17.

Objectives

Gymnema montanum Hook, an Indian Ayurvedic medicinal plant, is used traditionally to treat a variety of ailments. Here, we report anti‐cancer effects and molecular mechanisms of ethanolic extract of G. montanum (GLEt) on human leukaemia HL‐60 cells, compared to peripheral blood mononuclear cells.

Materials and methods

HL‐60 cells were treated with different concentrations of GLEt (10–50 μg/ml) and cytotoxicity was assessed by MTT assay. Levels of lipid peroxidation, antioxidants, mitochondrial membrane potential and caspase‐3 were measured. Further, apoptosis was studied using annexin‐V staining and the cell cycle was analyzed by flow cytometry.

Results

GLEt had a potent cytotoxic effect on HL‐60 cells (IC50‐20 μg/ml), yet was not toxic to normal peripheral blood mononuclear cells. Exposure of HL‐60 cells to GLEt led to elevated levels of malonaldehyde formation, but to reduced glutathione, superoxide dismutase, catalase and glutathione peroxidase activities (P < 0.05). Induction of apoptosis was confirmed by observing annexin‐V positive cells, associated with loss of mitochondrial membrane potential. Cell cycle arrest at G0/G1 was observed in GLEt‐treated HL‐60 cells, indicating its potential at inducing their apoptosis.

Conclusions

Findings of the present study suggest that G. montanum induced apoptosis in the human leukaemic cancer cells, mediated by collapse of mitochondrial membrane potential, generation of reactive oxygen species and depletion of intracellular antioxidant potential.
  相似文献   

18.
In washed human platelets and in HL60 granulocytes phorbol myristate acetate (PMA, 1-2000nM) synergised with threshold concentrations of secretogogues to induce a sustained maximum secretory response. Likewise, superoxide production from HL60 cells maintained a maximal response at PMA concentrations between 30-300nM. At concentrations up to 10nM PMA also augmented calcium ionophore, A23187, stimulated histamine release from rat peritoneal mast cells. However, in the mast cell PMA concentrations above 10nM reduced maximum histamine release in a dose-dependent manner.  相似文献   

19.
Phorbol 12-myristate 13-acetate (PMA) induces the differentiation of the human promyelocytic cell line, HL60, towards adherent macrophage-like cells within 2 days. We have examined the early effects of PMA on inositol phosphates and on diacylglycerol production, two second messengers derived from inositol lipids. In proliferating HL60 cells, PMA induced a time- and concentration-dependent decrease in inositol phosphate levels. Maximal effects were seen after 1 h at 10 nM PMA. PMA also induced the translocation of protein kinase C from the cytosol to the membrane. Comparison between the differentiating effects of several phorbol esters and of 1-oleoyl-2-acetylglycerol with their ability to inhibit inositol phosphate formation suggests that the two effects are correlated.  相似文献   

20.
The activities of catalase (Cat), superoxide dismutase (SOD), glutathione peroxidase (GSHPx), glutathione transferase (GST), glucose-6-phosphate dehydrogenase (G6PD) and glyceraldehyde3-phosphate dehydrogenase (G3PD) were studied in tissue and hemolymph of susceptible (S) (EgBS(2)) and resistant (R) (EgBR(2)) Biomphalaria alexandrina snails. The results showed that CAT and GST were higher in the hemolymph of snails susceptible to Schistosoma mansoni than in that of snails resistant to infestation, while SOD and G3PD were lower in the susceptible snails. The role of these enzymes as free radical scavengers was traced 1 and 24 h after infection of the two snail lines with S. mansoni. Moreover, the activities of SOD and G3PD were also measured 2 and 4 weeks post infection. The results revealed that the overall enzymatic activities were higher in susceptible than in resistant snail tissues. After 1 h of infection, all enzymes were increased in R and S snails except GST and G6PD which decreased in S snails. After 24 h of infection, GST increased in S snails and G3PD decreased in both S and R snails while other enzymes reached normal levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号