首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To date, there is no report on the effect of antioxidants on endothelial progenitor cells (EPCs). This study shows that in vitro incubation of EPCs with vitamin C and E reverted the already well documented lowering effect of TNF-alpha on EPC number and increased p-p38 expression levels. In order to document major changes of gene expression levels and gain insight into signalling pathways, microarray analysis was performed and a significant variation of the expression of 5389 genes in EPCs following antioxidant treatment was detected. Also in vivo evidence is provided about the positive effect of antioxidant vitamins on EPCs, since vitamin C and E supplementation potentiated the physical training-induced increase of EPC number and VEGF levels. Together, these data indicate that antioxidant treatment ameliorates EPC number and causes major changes of gene expression within these cells in vitro. Furthermore, concomitant antioxidant supplementation and physical training in vivo raised the levels of circulating EPCs and serum VEGF more than physical training alone.  相似文献   

2.
Endothelial progenitor cells (EPCs) are applied in the treatment of ischemic diseases. In ex vivo culture of human cord-blood derived EPCs, H1152, (S)-(+)-2-methyl-1-[(4-methyl-5-iso-quinolinyl) sulfonyl]-homopiperazine, markedly increased the number of EPCs. It also induced EPC migration, stimulated the phosphorylation of AKT, and reduced the expression of p27 in the EPCs. Thus H1152 can be used effectively in ex vivo expansion of EPCs.  相似文献   

3.
Recently, the dipeptidyl peptidase‐4 (DPP‐4) inhibitor sitagliptin, a major anti‐hyperglycaemic agent, has received substantial attention as a therapeutic target for cardiovascular diseases via enhancing the number of circulating endothelial progenitor cells (EPCs). However, the direct effects of sitagliptin on EPC function remain elusive. In this study, we evaluated the proangiogenic effects of sitagliptin on a diabetic hind limb ischaemia (HLI) model in vivo and on EPC culture in vitro. Treatment of db/db mice with sitagliptin (Januvia) after HLI surgery efficiently enhanced ischaemic angiogenesis and blood perfusion, which was accompanied by significant increases in circulating EPC numbers. EPCs derived from the bone marrow of normal mice were treated with high glucose to mimic diabetic hyperglycaemia. We found that high glucose treatment induced EPC apoptosis and tube formation impairment, which were significantly prevented by sitagliptin pretreatment. A mechanistic study found that high glucose treatment of EPCs induced dramatic increases in oxidative stress and apoptosis; pretreatment of EPCs with sitagliptin significantly attenuated high glucose‐induced apoptosis, tube formation impairment and oxidative stress. Furthermore, we found that sitagliptin restored the basal autophagy of EPCs that was impaired by high glucose via activating the AMP‐activated protein kinase/unc‐51‐like autophagy activating kinase 1 signalling pathway, although an autophagy inhibitor abolished the protective effects of sitagliptin on EPCs. Altogether, the results indicate that sitagliptin‐induced preservation of EPC angiogenic function results in an improvement of diabetic ischaemia angiogenesis and blood perfusion, which are most likely mediated by sitagliptin‐induced prevention of EPC apoptosis via augmenting autophagy.  相似文献   

4.
The aim of this study was to investigate whether nicotine affects 6-phosphogluconate dehydrogenase (6PGD) enzyme activity in some rat tissues, and to see the modulatory effects of vitamin E on this effect in vivo. In addition, the effects of nicotine and vitamin E on 6PGD activity were also tested in vitro. The groups were: nicotine [0.5 mg/kg/day, intraperitoneal (i.p.)]; nicotine + vitamin E [75 mg/kg/day, intragastric (i.g.)]; and control group (receiving only vehicles). There were eight rats per group and supplementation period was 3 weeks. The results of in vivo study showed that nicotine activated the muscle, lungs, and testicular 6PGD enzyme activity but had no effect on heart and liver 6PGD activity. Also, nicotine + vitamin E activated the muscle, testicle, and liver 6PGD enzyme activity, while this combination had no effect on heart, and lungs in vivo. When nicotine is administered with vitamin E the increase in 6PGD enzyme activity in muscle and testicles were lower. On the other hand the increase in 6PGD enzyme activity was eliminated by vitamin E in lungs, while 6PGD enzyme activity was increased by vitamin E, which was not affected by nicotine only. In vitro results correlated well with in vivo experimental results. Our results suggest that vitamin E may favourably increase 6PGD enzyme activity in liver in nicotine treated rats, while it has negligible effects on this enzyme activity in other tissues.  相似文献   

5.
We have shown previously that estrogen (estradiol, E2) supplementation enhances voluntary alcohol consumption in ovariectomized female rodents and that increased alcohol consumption impairs ischemic hind limb vascular repair. However, the effect of E2-induced alcohol consumption on post-infarct myocardial repair and on the phenotypic/functional properties of endothelial progenitor cells (EPCs) is not known. Additionally, the molecular signaling of alcohol-estrogen interactions remains to be elucidated. This study examined the effect of E2-induced increases in ethanol consumption on post-infarct myocardial function/repair. Ovariectomized female mice, implanted with 17β-E2 or placebo pellets were given access to alcohol for 6 weeks and subjected to acute myocardial infarction. Left ventricular functions were consistently depressed in mice consuming ethanol compared with those receiving only E2. Alcohol-consuming mice also displayed significantly increased infarct size and reduced capillary density. Ethanol consumption also reduced E2-induced mobilization and homing of EPCs to injured myocardium compared with the E2-alone group. In vitro, exposure of EPCs to ethanol suppressed E2-induced proliferation, survival, and migration and markedly altered E2-induced estrogen receptor-dependent cell survival signaling and gene expression. Furthermore, ethanol-mediated suppression of EPC biology was endothelial nitric oxide synthase-dependent because endothelial nitric oxide synthase-null mice displayed an exaggerated response to post-acute myocardial infarction left ventricular functions. These data suggest that E2 modulation of alcohol consumption, and the ensuing EPC dysfunction, may negatively compete with the beneficial effects of estrogen on post-infarct myocardial repair.  相似文献   

6.
We investigated whether reactive oxygen species (ROS) are involved in heart adaptive responses administering a vitamin E-enriched diet to trained rats. Using the homogenates and/or mitochondria from rat hearts we determined the aerobic capacity, tissue level of mitochondrial proteins, and expression of cytochrome c and factors (PGC-1, NRF-1, and NRF-2) involved in mitochondrial biogenesis. We also determined the oxidative damage, glutathione peroxidase (GPX) and reductase activities, glutathione content, mitochondrial ROS release rate, and susceptibility to in vitro oxidative challenge. Glutathione (GSH) content was not affected by both training and antioxidant supplementation. Conversely, antioxidant supplementation prevented metabolic adaptations to training, such as the increases in oxidative capacity, tissue content of mitochondrial proteins, and cytochrome c expression, attenuated some protective adaptations, such as the increase in antioxidant enzyme activities, and did not modify the decrease in ROS release by succinate supplemented mitochondria. Moreover, vitamin E prevented the training-linked increase in tissue capacity to oppose an oxidative attach. The antioxidant effects were associated with decreased levels of PGC-1, NRF-1, and NRF-2 expression. Our results support the idea that some heart adaptive responses to training depend on ROS produced during the exercise sessions and are mediated by the increase in PGC-1 expression which is involved in both the regulation of respiratory capacity and antioxidant protection. However, vitamin inability to prevent some adaptations suggests that other signaling pathways impinging on PGC-1 can modify the response to the antioxidant integration.  相似文献   

7.
Endothelial progenitor cells (EPCs) in the circulatory system have been suggested to maintain vascular homeostasis and contribute to adult vascular regeneration and repair. These processes require that EPCs break down the extracellular matrix (ECM), migrate, differentiate and undergo tube morphogenesis. Evidently, the ECM plays a critical role by providing biochemical and biophysical cues that regulate cellular behaviour. Using a chemically and mechanically tunable hydrogel to study tube morphogenesis in vitro, we show that vascular endothelial growth factor (VEGF) and substrate mechanics co‐regulate tubulogenesis of EPCs. High levels of VEGF are required to initiate tube morphogenesis and activate matrix metalloproteinases (MMPs), which enable EPC migration. Under these conditions, the elasticity of the substrate affects the progression of tube morphogenesis. With decreases in substrate stiffness, we observe decreased MMP expression while increased cellular elongation, with intracellular vacuole extension and coalescence to open lumen compartments. RNAi studies demonstrate that membrane type 1‐MMP (MT1‐MMP) is required to enable the movement of EPCs on the matrix and that EPCs sense matrix stiffness through signalling cascades leading to the activation of the RhoGTPase Cdc42. Collectively, these results suggest that coupled responses for VEGF stimulation and modulation of substrate stiffness are required to regulate tube morphogenesis of EPCs.  相似文献   

8.
Dysfunction and reduction of circulating endothelial progenitor cell (EPC) is correlated with the onset of cardiovascular disorders including coronary artery disease (CAD). VEGF is a known mitogen for EPC to migrate out of bone marrow to possess angiogenic activities, and the plasma levels of VEGF are inversely correlated to the progression of CAD. Circulating microRNAs (miRNAs) in patient body fluids have recently been considered to hold the potential of being novel disease biomarkers and drug targets. However, how miRNAs and VEGF cooperate to regulate CAD progression is still unclear. Through the small RNA sequencing (smRNA-seq), we deciphered the miRNome patterns of EPCs with different angiogenic activities, hypothesizing that miRNAs targeting VEGF must be more abundant in EPCs with lower angiogenic activities. Candidates of anti-VEGF miRNAs, including miR-361-5p and miR-484, were enriched in not only diseased EPCs but also the plasma of CAD patients. However, we found out only miR-361-5p, but not miR-484, was able to suppress VEGF expression and EPC activities. Reporter assays confirmed the direct binding and repression of miR-361-5p to the 3′-UTR of VEGF mRNA. Knock down of miR-361-5p not only restored VEGF levels and angiogenic activities of diseased EPCs in vitro, but further promoted blood flow recovery in ischemic limbs of mice. Collectively, we discovered a miR-361-5p/VEGF-dependent regulation that could help to develop new therapeutic modalities not only for ischemia-related diseases but also for tumor angiogenesis.  相似文献   

9.
Cellular therapeutic neovascularization has been successfully performed in clinical trials for patients with ischaemia diseases. Despite the vast knowledge of cardiovascular disease and circadian biology, the role of the circadian clock in regulating angiogenesis in myocardial infarction (MI) remains poorly understood. In this study, we aimed to investigate the role and underlying mechanisms of Period 2 (Per2) in endothelial progenitor cell (EPC) function. Flow cytometry revealed lower circulating EPC proportion in per2−/− than in wild-type (WT) mice. PER2 was abundantly expressed in early EPCs in mice. In vitro, EPCs from per2−/− mice showed impaired proliferation, migration, tube formation and adhesion. Western blot analysis demonstrated inhibited PI3k/Akt/FoxO signalling and reduced C-X-C chemokine receptor type 4 (CXCR4) protein level in EPCs of per2−/− mice. The impaired proliferation was blocked by activated PI3K/Akt/FoxO signalling. Direct interaction of CXCR4 and PER2 was detected in WT EPCs. To further study the effect of per2 on in vivo EPC survival and angiogenesis, we injected saline or DiI-labelled WT or per2−/− EPC intramyocardially into mice with induced MI. Per2−/− reduced the retention of transplanted EPCs in the myocardium, which was associated with significantly reduced DiI expression in the myocardium of MI mice. Decreased angiogenesis in the myocardium of per2−/− EPC-treated mice coincided with decreased LV function and increased infarct size in the myocardium. Per2 may be a key factor in maintaining EPC function in vitro and in therapeutic angiogenesis in vivo.  相似文献   

10.
Late-outgrowth endothelial progenitor cells (EPCs) are stress-resistant and responsible for reparative functions in the cardiovascular system. Oxidized-LDL (oxLDL) plays a critical role in cardiovascular disease pathogenesis. However, it is largely unknown what the impacts of oxLDL are on late-outgrowth EPCs. This study aimed to investigate the concentration-related effects of oxLDL on EPC functions and related angiogenesis, in vitro and in vivo. In this study, early and late-outgrowth EPCs were generated from circulating human mononuclear cells. oxLDL may regulate EPC vasculogenic function via the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). Lower concentrations (5 μg/mL) of oxLDL can potentiate EPC tube formation in vitro and in vivo by activating eNOS mechanisms, which are mediated by p38 MAPK- and SAPK/JNK-related pathways. Higher concentrations of oxLDL (10-50 μg/mL) impaired EPC function via the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase pathways and consequent inhibition of eNOS activity, which could be reversed by anti-oxidants (diphenylene iodonium and apocynin) and gp91phox siRNA. In conclusion, oxLDL has concentration-dependent biphasic effects on human late-outgrowth EPC tube formation in vitro and in vivo.  相似文献   

11.
It has been claimed that coenzyme Q10 (Q10) would be an effective plasma antioxidant since it can regenerate plasma vitamin E. To test separate effects and interaction between Q10 and vitamin E in the change of plasma concentrations and in the antioxidative efficiency, we carried out a double-masked, double-blind clinical trial in 40 subjects with mild hypercholesterolemia undergoing statin treatment. Subjects were randomly allocated to parallel groups to receive either Q10 (200 mg daily), d-α-tocopherol (700 mg daily), both antioxidants or placebo for 3 months. In addition we investigated the pharmacokinetics of Q10 in a separate one-week substudy. In the group that received both antioxidants, the increase in plasma Q10 concentration was attenuated. Only vitamin E supplementation increased significantly the oxidation resistance of isolated LDL. Simultaneous Q10 supplementation did not increase this antioxidative effect of vitamin E. Q10 supplementation increased and vitamin E decreased significantly the proportion of ubiquinol of total Q10, an indication of plasma redox status in vivo. The supplementations used did not affect the redox status of plasma ascorbic acid. In conclusion, only vitamin E has antioxidative efficiency at high radical flux ex vivo. Attenuation of the proportion of plasma ubiquinol of total Q10 in the vitamin E group may represent in vivo evidence of the Q10-based regeneration of the tocopheryl radicals. In addition, Q10 might attenuate plasma lipid peroxidation in vivo, since there was an increased proportion of plasma ubiquinol of total Q10.  相似文献   

12.
Natural vitamin E consists of four different tocopherol and four different tocotrienol homologues (α, β, γ, δ) that all have antioxidant activity. However, recent data indicate that the different vitamin E homologues also have biological activity unrelated to their antioxidant activity. In this review, we discuss the anti-inflammatory properties of the two major forms of vitamin E, α-tocopherol (αT) and γ-tocopherol (γT), and discuss the potential molecular mechanisms involved in these effects. While both tocopherols exhibit anti-inflammatory activity in vitro and in vivo, supplementation with mixed (γT-enriched) tocopherols seems to be more potent than supplementation with αT alone. This may explain the mostly negative outcomes of the recent large-scale interventional chronic disease prevention trials with αT only and thus warrants further investigation.  相似文献   

13.
Abstract

Some 80 years after its discovery, vitamin E has experienced a renaissance which is as surprising as it is trivial. Although vitamin E is essential for reproduction, in rats at least, and deficiency causes neurological disorders in humans, the main interest in the last decades has concentrated on its antioxidant functions. This focus has highly underestimated the biological importance of vitamin E, which by far exceeds the need for acting as a radical scavenger. Only recently has it become clear that vitamin E can regulate cellular signaling and gene expression. Out of the eight different tocols included in the term vitamin E, α-tocopherol often exerts specific functions, which is also reflected in its selective recognition by proteins such as the α-tocopherol transfer protein and α-tocopherol-associated proteins. Vitamin E forms other than α-tocopherol are very actively metabolised, which explains their low biopotency. In vivo, metabolism may also attenuate the novel functions of γ-tocopherol and tocotrienols observed in vitro. On the other hand, metabolites derived from individual forms of vitamin E have been shown to exert effects by themselves. This article focuses on the metabolism and novel functions of vitamin E with special emphasis on differential biological activities of individual vitamin E forms.  相似文献   

14.
《Free radical research》2013,47(6):485-493
Forty-five mutant male ODs rats, unable to synthesize ascorbic acid, were fed nine diets containing 5, 50 or 250 mg of vitamin E/kg diet and 150,300 or 900 mg of vitamin C/kg diet for 21 days. The concentrations of vitamins C and E increased in liver and plasma in relation to the level of these vitamins in the diet. Vitamin C dietary supplementation increased the plasma vitamin E content at low levels of vitamin E intake, supporting the concept of an in vivo synergism between both antioxidant vitamins. Vitamin C, at the dietary levels studied, did not affect the lipid peroxidation. Vitamin E decreased liver and plasma endogenous levels of thiobarbituric acid-reactive substances and liver sensitivity to non-enzymatic lipid peroxidation. This was confirmed by a highly specific assay of lipid hydroperoxides using high performance liquid chromatography with chemiluminescence detection. The hepatic concentration of both phosphatidylcholine and phosphatidylethanolamine hydroperoxides decreased as the vitamin E content of the diet increased. The results show for the first time the capacity of vitamin E to protect against peroxidation of major phospho-lipids in vivo under basal unstressed conditions.  相似文献   

15.
Although the use of vitamin E supplements has been associated with a reduction in coronary events, assumed to be due to lowered lipid peroxidation, there are no previous long-term clinical trials into the effects of vitamin C or E supplementation on lipid peroxidation in vivo. Here, we have studied the long-term effects of vitamins C and E on plasma F2-isoprostanes, a widely used marker of lipid peroxidation in vivo. As a study cohort, a subset of the “Antioxidant Supplementation in Atherosclerosis Prevention” (ASAP) study was used. ASAP is a double-masked placebo-controlled randomized clinical trial to study the long-term effect of vitamin C (500 mg of slow release ascorbate daily), vitamin E (200 mg of d-α-tocopheryl acetate daily), both vitamins (CellaVie®), or placebo on lipid peroxidation, atherosclerotic progression, blood pressure and myocardial infarction (n = 520 at baseline). Lipid peroxidation measurements were carried out in 100 consecutive men at entry and repeated at 12 months. The plasma F2-isoprostane concentration was lowered by 17.3% (95% CI 3.9–30.8%) in the vitamin E group (p = 0.006 for the change, as compared with the placebo group). On the contrary, vitamin C had no significant effect on plasma F2-isoprostanes as compared with the placebo group. There was also no interaction in the effect between these vitamins. In conclusion, long-term oral supplementation of clinically healthy, but hypercholesterolemic men, who have normal vitamin C and E levels with a reasonable dose of vitamin E lowers lipid peroxidation in vivo, but a relatively high dose of vitamin C does not. This observation may provide a mechanism for the observed ability of vitamin E supplements to prevent atherosclerosis.  相似文献   

16.
《Free radical research》2013,47(6-7):526-534
Abstract

Although endothelial progenitor cells (EPCs) have been used to promote revascularization after peripheral or myocardial ischemia, excess amounts of reactive oxygen species (ROS) are often involved in senescence and apoptosis of EPCs, thereby causing defective neovascularization and reduced or failed recovery. Here, we examined the cytoprotective effect of Ecklonia cava-derived antioxidant dieckol (DK) on oxidative stress-induced apoptosis in EPCs to improve EPC bioactivity for vessel repair. Although H2O2 (10 ? 3 M) increased the intracellular ROS level in EPCs, DK (10ug/ml) pretreatment suppressed the H2O2-induced ROS increase and drastically reduced the ratios of apoptotic cells. H2O2-induced ROS increased the phosphorylation of p38 MAPK and JNK; this was inhibited by DK pretreatment. H2O2 treatment increased the phosphorylation of NF-κB, which was blocked by pretreatment with SB 203580, a p38 MAPK inhibitor, or SP 600125, a JNK inhibitor. H2O2 decreased the cellular levels of Bcl-2 and c-IAPs, cellular inhibitors of apoptosis proteins, but increased caspase-3 activation. However, all these effects were inhibited by pretreatment with DK. Injection of DK-mixed EPCs (DK + EPCs) into myocardial ischemic sites in vivo induced cellular proliferation and survival of cells at the ischemic sites and, thereby, enhanced the secretion of angiogenic cytokines at the ischemic sites. These results show that DK + EPC exhibit markedly enhanced anti-apoptotic and antioxidative capabilities, unlike that shown by EPCs alone; thus, they contribute to improved repair of ischemic myocardial injury through cell survival and angiogenic cytokine production.  相似文献   

17.
Endothelial progenitor cells (EPCs) play a significant role in physiological and pathological hypoxia resistance and neovascularization processes. The ability to mobilize EPCs from bone marrow usually indicates a prognostic endpoint of several vascular diseases. Thus, it is of great value to study possible approaches for activating functional EPCs. The mobilization/homing of EPCs from bone marrow is signalled by stromal‐derived factor‐1 (SDF‐1), which is regulated by the hypoxia‐inducible factor‐1α (HIF‐1α). This study investigated the effects of directly manipulating HIF‐1α on human EPCs in vitro. EPCs were isolated from human umbilical cord blood. Lentiviral vectors carrying HIF‐1α and shRNA targeting HIF‐1α were constructed for gene modification of the EPCs. Results demonstrated that after overexpression of HIF‐1α by lentiviral transfection, the proliferative capacity of EPCs was elevated while the apoptosis was inhibited and vice versa. On the other hand, the expression of angiogenic‐related cytokines including SDF‐1 was upregulated on both gene and protein levels when EPCs were transfected with HIF‐1α. These results indicate that direct HIF‐1α manipulation over human EPCs is an effective method to promote EPC function and mobilization, thus suggest that drugs or reagents that elevate HIF‐1α expression are capable of treating ischemic diseases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of this study was to investigate the effects of supplemental antioxidant vitamins and minerals on lipid peroxidation and on the antioxidant systems in rabbits exposed to X-rays. The rabbits were divided into two experimental groups and one control group, each group containing seven rabbits. The first group (VG) received daily oral doses of vitamin E (460 mg/kg live weight) and vitamin C (100 mg/kg live weight). The second group (MG) was fed a mineral-enriched diet that contained 60 mg manganese chloride, 40 mg zinc sulfate, and 5 mg copper sulfate per kilogram of feed. The third group served as controls and received only a standard diet. Blood samples were obtained before and after the supplementation with vitamins or minerals, as well as before and after irradiation with a total dose of 550-rad X-rays. The blood samples were analyzed for their content of malondialdehyde (MDA), plasma vitamins C and E, retinol, reduced glutathione (GSH), and glutathione peroxidase activity (GPx). After irradiation, the control group showed increased levels of MDA and activity of GPx (p<0.05), whereas the levels of GSH, vitamin C, and vitamin E were decreased. In the VG, the concentration of MDA was lower (p<0.05), and the concentration of GSH and vitamins C and E were higher (p<0.05) when compared to controls. In the MG, the concentrations of MDA, GSH, vitamin C, and retinol were not affected by the mineral administration and radiation. The level of vitamin E in the MG increased with mineral administration (p<0.05), but decreased after irradiation (p<0.05). For the control group, the level of GSH was higher than in the two experimental groups. After irradiation, the VG animals had vitamin E and C levels that were higher than in MG and control groups (p<0.05). The activity of GPx was not affected by vitamin or mineral supplementation or by irradiation. We conclude that the supplementation with antioxidant vitamins and minerals may serve to reinforce the antioxidant systems, thus having a protective effect against cell damage by X-rays.  相似文献   

19.
20.
  • Vitamin E is a general term used to describe a group of eight lipophilic compounds known as tocochromanols. These vitamin E variants are chemically categorised into two classes formed by α‐, β‐, γ‐ and δ‐ tocopherols and tocotrienols isoforms, respectively.
  • The present study describes the concurrent regulation of genes and metabolites orchestrating vitamin E biosynthesis in olive drupes of five distinctive Greek olive cultivars. A combination of analytical, biochemical and molecular approaches was employed in order to carry out comparative analyses, including real‐time RT‐qPCR for gene expression levels and HPLC analysis of metabolite content.
  • Findings indicated that tocochromanol levels and composition, oil content, gene expression levels as well as total antioxidant activity were highly dependent on cultivar and, to a lesser extent, on fruit developmental stage. Specifically, cultivars ‘Kalokairida’ and ‘Lianolia Kerkyras’ demonstrated the highest vitamin E content. The latter possessed high tocochromanol content combined with highest overall antioxidant activity in all developmental stages, concomitant with the up‐regulation expression profile of HPPD.
  • The genotypic imprint versus the temporal contribution to vitamin E levels, as well as the potential link to lipid peroxidation amelioration, are discussed.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号