首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Rat liver xanthine oxidase type D (NAD(+)-dependent) and chick liver xanthine oxidase are inhibited by NADH, which competes with NAD(+). 2. The addition of a NADH-reoxidizing system in the assay of these enzyme activities is proposed. 3. Rat liver xanthine oxidase type O (oxygen-dependent) is not affected by NADH.  相似文献   

2.
Fraxamoside, a macrocyclic secoiridoid glucoside featuring a hydroxytyrosol group, was recently identified as a xanthine oxidase inhibitor (XOI) comparable in potency in vitro to the standard antigout drug allopurinol. However, this activity and its considerably higher value than its derivatives oleuropein, oleoside 11-methyl ester, and hydroxytyrosol are not explained by structure–activity relationships (SARs) of known XOIs. To exclude allosteric mechanisms, we first determined the inhibition kinetic of fraxamoside. The resulting competitive mechanism prompted a computational SAR characterization, combining molecular docking and dynamics, which fully explained the behavior of fraxamoside and its derivatives, attributed the higher activity of the former to conformational properties of its macrocycle, and showed a substantial contribution of the glycosidic moiety to binding, in striking contrast with glycoside derivatives of most other XOIs. Overall, fraxamoside emerged as a lead compound for a new class of XOIs potentially characterized by reduced interference with purine metabolism.  相似文献   

3.
The dynamics of the induction of nuclear tri-iodothyronine receptors and mitochondrial alpha-glycerophosphate dehydrogenase were studied in rat liver after a single injection of tri-iodothyronine. The maximal binding capacity (C(max.)) and association constant (K(a)) of the nuclear receptors were determined by Scatchard analyses with and without correction for the endogenous tri-iodothyronine measured by radioimmunoassay. The administration of tri-iodothyronine induced sequential increases in the concentration of nuclear receptors and alpha-glycerophosphate dehydrogenase activity in the liver. The nuclear-receptor concentration was increased to 2.5 times that in the hypothyroid rat 1 day after the administration of hormone, and then decreased, with a half-life of about 2 days. alpha-Glycerophosphate dehydrogenase activity changed in parallel with the nuclear-receptor concentration, showing a delayed response. The total amount of non-histone protein in the liver was significantly increased 3 days after the administration. It seems likely therefore that the tri-iodothyronine-induced increase in nuclear-receptor concentration is responsible, at least in part, for the induction of this enzyme. The possibility is also suggested that nuclear receptors may be one of the non-histone proteins selectively synthesized at an early stage of the hormonal stimulation. Throughout the time course, the K(a) values of the nuclear receptors for tri-iodothyronine remained unchanged, when corrected for endogenous tri-iodothyronine bound to the non-histone proteins, although they were apparently changed when the correction was not made. The results obtained provide further evidence for hormonal modulation of the nuclear receptors which is closely linked with the hormonal effect.  相似文献   

4.
The effect of eugenol on xanthine oxidase (XO) xanthine(X)-Fe+3-ADP mediated lipid peroxidation was studied in liver microsomal lipid liposomes. Eugenol inhibited the lipid peroxidation in a dose dependent manner as assessed by formation of thiobarbituric acid reactive substances. When tested for its effect on XO activity per se, (by measuring uric acid formation) eugenol inhibited the enzyme to an extent of 85% at 10 µm concentration and hence formation of O2 also However, the concentration of eugenol required for XO inhibition was more in presence of metal chelators such as EDTA, EGTA and DETAPAC, but not in presence of deferoxamine, ADP and citrate. The antiperoxidative effect of eugenol was about 35 times more and inhibition of XO was about 5 times higher as compared to the effect of allopurinol. Eugenol did not scavenge O2 generated by phenazine methosulfate and NAD but inhibited propagation of peroxidation catalyzed by Fe2+ EDTA and lipid hydroperoxide containing liposomes. Eugenol inhibits XO-X-Fe+3 ADP mediated peroxidation by inhibiting the XO activity per se in addition to quenching various radical species. (Mol Cell Biochem 166: 65-71, 1997)  相似文献   

5.
The conditions for the solubilization of 17β-hydroxysteroid dehydrogenase from a rat liver microsomal preparation with the non-ionic detergent Triton X-100 were studied. The recoveries of 17β-hydroxysteroid dehydrogenase activity and of proteins in the solubilized form were determined as a function of detergent concentration, of pH and temperature, of incubation time and of saline concentration. The soluble fraction obtained under the optimal conditions contained 80% of the proteins and 75% of the enzymatic activity of initial microsomes. The presence of Triton X-100 in the solubilized proteins was not essential for enzyme activity.  相似文献   

6.
3α-Hydroxysteroid dehydrogenase and related enzymes play important roles in the metabolism of endogenous compounds including androgens, corticosteroid, prostaglandins and bile acids, as well as drugs and xenobiotics such as benzo(a)pyrene. Complementary DNA clones encoding 3α-hydroxysteroid dehydrogenase were isolated from a rat liver cDNA lambda gt11 expression library using monoclonal antibodies as probes. A full-length cDNA clone of 1286 base pairs contained an open reading frame encoding a protein of 322 amino acids with an estimated M(w) of 37 kD. When expressed in E. coli, the encoded protein migrated to the same position on SDS-polycrylamide gels as the enzyme in rat liver cytosols. The protein expressed in bacteria was highly active in androsterone oxidation in the presence of NAD as cofactor and this activity was inhibited by indomethacin, a potent inhibitor of 3α-hydroxysteroid dehydrogenase. The predicted amino acid sequence of 3α-hydroxysteroid d dehydrogenase was related to sequences of several other aldo-keto reductases such as bovine prostaglandin F synthase, human chlordecone reductase, human aldose reductase, human aldehyde reductase and frog lens epsilon-crystallin, suggesting that these proteins belong to the same gene family. Recently, we have found that monoclonal antibodies against 3α-hydroxysteroid dehydrogenase also recognized multiple antigenically related proteins in rat lung, kidney and testis. Further screening of liver, lung and kidney cDNA libraries using these monoclonal antibodies as probes resulted in the isolation of additional five different cDNAs encoding proteins with high degree of structural homology to rat liver 3α-hydroxysteroid dehydrogenase.  相似文献   

7.
Evidence is presented to suggest that in chick liver, xanthine dehydrogenase and aldehyde oxidase activities are associated with only one protein species. The results of SDS electrophoresis of the purified material indicate a subunit MW of 120 000.  相似文献   

8.
5α-Dihydrotestosterone, 17-hydroxyprogesterone caproate, 2-methoxyestrone and a number of nonsteroidal antiestrogens (clomiphene citrate, nafoxidine hydrochloride, tamoxifen, MER-25) were tested for their ability to block estradiol-mediated repression of the androgen-dependent 3β-hydroxy-steroid dehydrogenase activity of male rat liver. With the exception of 5α-dihydrotestosterone, which induced activity in females, none of these substances affected 3β-hydroxy-steroid dehydrogenase activity when administered alone to otherwise untreated male and female rats. Tamoxifen (100 or 500 μg/day) was the only substance which prevented a decrease in enzyme activity when given simultaneously with estradiol (5 μg/day). The estradiol-mediated decrease in activity was not antagonized by a 100-fold higher dose of androgen (5α-dihydrotestosterone, 0.5 mg/day), demonstrating the potent antiandrogenic effect of estradiol on this hepatic androgen-dependent enzyme activity.  相似文献   

9.
The interconversion of estradiol-17β and estrone in the rat uterus is due to the action of 17β-hydroxysteroid dehydrogenase. Whole uteri or 800 × g supernatant fractions of the uteri were incubated in the presence of [3H] estradiol-17β and NAD at 37°C for 3 h or 1 h, respectively. In the mature rat uterus the oxidation of estradiol-17β and estrone was dependent on the stage of the estrous cycle, suggesting hormonal control. The 17β-hydroxysteroid dehydrogenase activity was highest at estrus (200 fmol estrone) and lowest at diestrus (80 fmol estrone). An enhancement of activity occurred when adult rats at each stage of the estrous cycle were administered estradiol-17β, while progesterone administration at each stage resulted in decreased enzyme activity. The uterine 17β-hydroxysteroid dehydrogenase activity of estradiol-17β treated ovariectomized rats was time and dose dependent but decreased when progesterone was administered with or without estradiol-17β administration. These results suggest that estradiol-17β caused an increase in enzyme activity that was inhibitable by progesterone in the rat uterus. The increased 17β -hydroxysteroid dehydrogenase activity may reflect a specific response of the rat uterus to estradiol-17β.  相似文献   

10.
Summary The substrate specificity and the intraperoxisomal localization of -hydroxyacid oxidase in rat liver has been investigated cytochemically by the cerium technique and biochemically with a luminometric assay. Rat liver is fixed by perfusion with a low concentration (0.25%) of glutaraldehyde and vibratome sections are incubated for 60 min at 37°C in a medium containing 3 mM CeCl3, 100 mM NaN3 and 5 mM of an -hydroxyacid in 0.1M of one of the following buffers: Pipes, Mops, Na-cacodylate,Tris-maleate, all adjusted to pH 7.8. Ten different -hydroxyacids with a chain length between 2 and 8 carbon atoms were tested. The best results were obtained with glycolic, argininic andl--isocaproic acids. These cytochemical findings were confirmed also biochemically using purified peroxisomal fractions isolated by gradient centrifugation in metrizamide. The pattern of the intraperoxisomal localization of the enzyme was influenced markedly by the type of buffer used for the cytochemical incubation. Whereas in theTris-maleate medium both the cores and the matrix stained with the same intensity, with all other buffers the reaction in cores was more prominent. The staining of cores was abolished by pretreating sections inTris-maleate (pH 7.8) or alkaline pyrophosphate buffers. These observations establish the substrate specificity of -hydroxyacid oxidase in rat liver and demonstrate the delicate association of this enzyme with the crystalline cores and the matrix of peroxisomes in rat liver.Abbreviations -HAOX l-hydroxyacid oxidase - Argininic acid l--hydroxy--guanidinovaleric acid - Pipes piperazine-N,N-bis(2ethane sulfonic acid) - Mops 3(N-morpholino) propane sulfonic acid - Tris tris-(hydroxymethyl)-aminomethane - Luminol 5-amino-2,3 dihydrophthalazine-1,4-dione - GA glutaraldehyde  相似文献   

11.
Xanthine oxidase-catalyzed hydroxylation reactions of the anticancer drug 6-mercaptopurine (6-MP) and its analog 2-mercaptopurine (2-MP) as well as 6-thioxanthine (6-TX) and 2-thioxanthine (2-TX) have been studied using UV-spectroscopy, high pressure liquid chromatography, photodiode array, and liquid chromatography-based mass spectral analysis. It is shown that 6-MP and 2-MP are oxidatively hydroxylated through different pathways. Enzymatic hydroxylation of 6-MP forms 6-thiouric acid in two steps involving 6-TX as the intermediate, whereas 2-MP is converted to 8-hydroxy-2-mercaptopurine as the expected end product in one step. Surprisingly, in contrast to the other thiopurines, enzymatic hydroxylation of 2-MP showed a unique hyperchromic effect at 264 nm as the reaction proceeded. However, when 2-TX is used as the substrate, it is hydroxylated to 2-thiouric acid. The enzymatic hydroxylation of 2-MP is considerably faster than that of 6-MP, while 6-TX and 2-TX show similar rates under identical reaction conditions. The reason why 2-MP is a better substrate than 6-MP and how the chemical nature and position of the functional groups present on the thiopurine substrates influence xanthine oxidase activity are discussed.  相似文献   

12.
13.
β-Alanine aminotransferase from rat liver was purified to electrophoretic homogeneity. The immunological and kinetic properties of this enzyme were similar to those of the enzyme from rat brain. However, the liver enzyme transaminates from β-alanine to 2-oxoglutaric acid, while the brain enzyme transaminates from γ-aminobutyric acid. β-Alanine aminotransferase activity in regenerating rat liver was lower than that in control rat liver. Activity of this enzyme, as well as of other uracil-catabolizing enzymes (Weber, G., Queener, S.F. and Ferdinandus, A. (1970) in Advances in Enzyme Regulation (Weber, G., ed.), Vol. 9, pp. 63–95, Pergamon Press, Oxford), was low in newborn rat liver and increased about 5-fold, reaching the level observed in adult rat liver. β-Alanine and prednisolone induced β-alanine aminotransferase in rat liver.  相似文献   

14.
Summary The localization of L--hydroxy acid oxidase activity in rat liver peroxisomes was studied using slight modifications of the Shnitka and Talibi (1971) method. Best results were obtained with formaldehyde fixation and incubation with glycolate as substrate. Following incubation the copper ferrocyanide reaction product was amplified with 3,3-diaminobenzidine according to Hanker et al. (1972a, b). Dense reaction product was visible in hepatocyte peroxisomes by light and electron microscopy. Some diffusion of enzyme and/or reaction product into the adjacent cytoplasm occurred around the peroxisomes. Apparent non-specific deposits occurred on the plasmalemma, in the nucleus, and occasionally over mitochondria. Glutaraldehyde fixation severely inhibited enzymatic activity, and the enzyme showed less activity toward L-lactate and DL--hydroxybutyrate.  相似文献   

15.
Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.  相似文献   

16.
  • 1.1. The aromatic circular dichroism of diphosphofructose phosphatase of the albino rat, golden Syrian hamster and New Zealand rabbit were used to compare their conformations.
  • 2.2. The conformational transitions incited by Na+, K+, pH, and spontaneous denaturation were compared and studied.
  • 3.3. From a comparative analysis of the tertiary structure of the phosphatases, as it is revealed by circular dichroism, it was concluded that the strong interactions of tyrosyl residues with non-polar micro-environments confer to the hamster enzyme a degree of rigidity which was found unmatched in the isofunctional protein of the rat.
  相似文献   

17.
The use of enzymes in industrial applications is limited by their instability, cost and difficulty in their recovery and re-use. Immobilisation is a technique which has been shown to alleviate these limitations in biocatalysis. Here we describe the immobilisation of two biocatalytically relevant co-factor recycling enzymes, glucose dehydrogenase (GDH) and NADH oxidase (NOD) on aldehyde functional ReSyn? polymer microspheres with varying functional group densities. The successful immobilisation of the enzymes on this new high capacity microsphere technology resulted in the maintenance of activity of ~40% for GDH and a maximum of 15.4% for NOD. The microsphere variant with highest functional group density of ~3500 μmol g?1 displayed the highest specific activity for the immobilisation of both enzymes at 33.22 U mg?1 and 6.75 U mg?1 for GDH and NOD with respective loading capacities of 51% (0.51 mg mg?1) and 129% (1.29 mg mg?1). The immobilised GDH further displayed improved activity in the acidic pH range. Both enzymes displayed improved pH and thermal stability with the most pronounced thermal stability for GDH displayed on ReSyn? A during temperature incubation at 65 °C with a 13.59 fold increase, and NOD with a 2.25-fold improvement at 45 °C on the same microsphere variant. An important finding is the suitability of the microspheres for stabilisation of the multimeric protein GDH.  相似文献   

18.
1. Rat liver and heart major isoenzymes of NADP-isocitrate dehydrogenase have each been purified about 100-fold by a combination of ammonium sulphate fractionation and chromatography on ion-exchange cellulose and their properties compared. 2. The properties were similar in respect of pH, inhibition by Hg(2+) and Michaelis constants for isocitrate and NADP. 3. Some of the properties of the isoenzymes were different. 4. The heart isoenzyme was activated about 210% by 0.8m-ammonium sulphate whereas the liver isoenzyme was unaffected. The heart isoenzyme showed greater sensitivity to inactivation by heat (30 degrees C for 30min), whereas the liver isoenzyme was more sensitive to inactivation by p-chloromercuribenzoate and by Cu(2+). 5. The Michaelis constants with 3-acetylpyridine-adenine dinucleotide phosphate showed a twofold difference between liver and heart isoenzyme. 6. The differential sensitivity to heat and its mainly non-cytoplasmic location may be an explanation of the failure of plasma isocitrate dehydrogenase activity to increase after a myocardial infarction.  相似文献   

19.
Summary In rat liver, three different enzymes with peroxidatic activity are demonstrated with modifications of the DAB-technique: peroxidase in the endoplasmic reticulum of Kupffer cells, catalase in peroxisomes and cytochrome oxidase in mitochondria. The major problem of the DAB-methods is their limited specifity so that often in tissues incubated for one enzyme the other two proteins are also stained simultaneously. We have studied the conditions for selective staining of each of these three enzymes in rat liver fixed either by perfusion with glutaraldehyde or by immersion in a modified Karnovsky's glutaraldehyde-formaldehyde fixative. The observations indicate that in perfusion fixed material selective staining can be obtained by reduction of the incubation time (5 min) and the use of optimal conditions for each enzyme. In livers fixed by immersion the distribution of the staining is patchy and irregular and usually longer incubation times (15–30 min) are required. Selective staining of peroxidase in Kupffer cells was obtained by brief incubation at room temperature in a medium containing 2.5 mM DAB in cacodylate buffer pH 6.5 and 0.02% H2O2. The exclusive staining for cytochrome oxidase in cristae of mitochondria was achieved after short incubation in 2.5 mM DAB in phosphate buffer pH 7.2 containing 0.05% cytochrome c. For selective demonstration of catalase in peroxisomes the tissue was incubated in 5 mM DAB in Teorell-Stenhagen (or glycine-NaOH) butffer at pH 10.5 and 0.15% H2O2. The prolongation of the incubation time in peroxidase medium caused marked staining of both mitochondria and peroxisomes. In the cytochrome oxidase medium longer incubations led to slight staining of peroxisomes. The catalase medium was quite selective for this enzyme so that even after incubation for 120 min only peroxisomes stained.  相似文献   

20.
After injection of horseradish peroxidase into the soleus (slow twitch) and extensor digitorum longus (fast twitch) muscles, glycolytic enzyme activity as reflected by -glycerophosphate dehydrogenase activity of labeled motoneurons in the neuron pool was examined. No differences were found in glycolytic enzyme activity of motoneurons between slow twitch and fast twitch neuron pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号