首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solutions of N-nitrosamines, N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosomorpholine and N-nitrosopyrrolidine in phosphate buffer (pH 7.4) were irradiated by ultraviolet (UV) light at room temperature. The N-nitrosamines were extensively degraded due to irradiation for 120 min in a time-dependent fashion as monitored by UV-absorption or high performance liquid chromatographic analysis. Carbon-centered radicals were generated from four N-nitrosamines during the short time irradiation of 10-60 s as monitored by electron spin resonance (ESR) technique using 5,5-dimethyl-1-pyrroline N-oxide and N-tert-butyl-alpha-phenylnitrone as spin traps. Nitric oxide (NO) was generated during the short time irradiation as monitored by ESR technique using cysteine-Fe(II) complex, N-methyl-D-glucamine dithiocarbamate and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Significant amounts of nitrite (4-16%) from four N-nitrosamines and also a significant amount of nitrate (4%) was produced from N-nitrosodimethylamine during the irradiation time of 120 min. Released NO from the N-nitrosamines must be converted into nitrite through intermediary reactive nitrogen oxide species including nitrogen dioxide and dinitrogen trioxide in contact with dissolved oxygen.  相似文献   

2.
N-Nitrosodimethylamine (NDMA) in phosphate buffer was rapidly decomposed by Fenton reagent composed of H2O2, and Fe(II) ion. Electron spin resonance (ESR) studies using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) showed that characteristic four line 1:2:2:1 ESR signals due to the DMPO-OH adduct formed on treatment of DMPO with Fenton reagent disappeared in the presence of NDMA, and N-nitrosodiethylamine (NDEA), suggesting the interaction of the N-nitrosamines with Fenton reagent. Treatment of the N-nitrosamines with Fenton reagent generated nitric oxide (NO) as estimated by ESR technique using cysteine–Fe(II), and N-methyl- -glucaminedithiocarbamate (MGD)–Fe(II) complexes. Characteristic 3, and single line signals due to 2 cysteine–Fe(II)–NO, and 2 cysteine–Fe(II)–2 NO complexes, respectively, and three line signals due to MGD–Fe(II)–NO were observed. Considerable amount of NO were liberated as determined by NO2, the final oxidation product of NO formed by reaction with dissolved oxygen in the aqueous medium. Spontaneous release of a small amount of NO from the N-nitrosamines was observed only on incubation in neutral buffers. Above results indicate that the N-nitrosamines were decomposed accompanying concomitant release of NO on contact with reactive oxygen species.  相似文献   

3.
We investigated aqueous solutions containing nitrite ions and DMPO (5,5-dimethyl-1-pyrroline-N-oxide) by electron spin resonance (ESR) in the pH range from 1 to 6. A DMPO-OH signal was observed below pH 3.0 in the presence of nitrite ions, whereas in the absence of nitrite ion, an extremely weak signal was observed below pH 1.5. Addition of methanol, a hydroxyl radical scavenger, to this system did not lead to the appearance of a detectable DMPO-CH2OH signal. The possibility of this DMPO-OH signal being due to a genuine spin trapping process with hydroxyl radical was, therefore, ruled out. The reactivities of reactive nitrogen species (RNS) in this system with DMPO have also been investigated by density functional theory (DFT) at the IEFPCM (water)/B3LYP/6–311?+?G ** level of theory. On the basis of the pH dependence of the signal intensity and the redox potential (versus SHE) calculated by DFT theory, we propose that the origin of this signal is “inverted spin trapping” via one-electron oxidation of DMPO by H2ONO+, followed by the nucleophilic addition of water. Prevention of these false-positive results when detecting hydroxyl radical using ESR spin trapping requires an awareness of both the presence of nitrite ions in the solution and the solution pH.  相似文献   

4.
《Free radical research》2013,47(9):1122-1128
Abstract

Spin trapping with cyclic nitrones coupled to electron spin resonance (ESR) is recognized as a specific method of detection of oxygen free radicals in biological systems, especially in culture cells. In this case, the detection is usually performed on cell suspensions, which is however unsuitable when adhesion influences free radical production. Here, we performed ESR detection of superoxide with four spin traps (5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide, DEPMPO; 5-diisopropoxyphosphoryl-5-methyl-1-pyrroline N-oxide, DIPPMPO; (4R*, 5R*)-5-(diisopropyloxyphosphoryl)-5-methyl-4-[({[2-(triphenylphosphonio)ethyl]carbamoyl}oxy)methyl]pyrroline N-oxide bromide, Mito-DIPPMPO; and 6-monodeoxy-6-mono-4-[(5-diisopropoxyphosphoryl-5-methyl-1-pyrroline-N-oxide)-ethylenecarbamoyl-(2,3-di-O-methyl) hexakis (2,3,6-tri-O-methyl)]-β-cyclodextrin, CD-DIPPMPO) directly on RAW 264.7 macrophages cultured on microscope coverslip glasses after phorbol 12-myristate 13-acetate (PMA) stimulation. Distinct ESR spectra were obtained with each spin trap using this method. CD-DIPPMPO, a recently published phosphorylated cyclic nitrone bearing a permethylated β-cyclodextrin moiety, was confirmed as the most specific spin trap of the superoxide radical, with exclusive detection of the superoxide adduct. ESR detection performed on cells attached to coverslips represents significant advances over other methods in terms of simplicity, speed, and measurement under near-physiological conditions. It thus opens the way for numerous applications, such as medium-throughput screening of antioxidants and reactive oxygen species (ROS)-modulating agents.  相似文献   

5.
Nitric oxide (NO) is well known to have a wide variety of biological and physiological functions in animals. On the basis of the fact that Fe(II)-dithiocarbamates react with NO, a Fe(II)-N-(dithiocarboxy)sarcosine complex (Fe(II)-DTCS) was proposed as a trapping agent for endogenous NO. However, quantitative pharmacokinetic investigation for NO-Fe(II)-dithiocarbamate complexes in experimental animals has been quite limited. This paper describes the results on the quantitative pharmacokinetic features of a NO-Fe(II)-N-DTCS in both the blood and bile of rats following intravenous (i.v.) administration of the complex. For this purpose, we applied two in vivo methods, i.e. (1) in vivo blood circulation monitoring-electron spin resonance (BCM-ESR) which previously developed, and (2) in vivo biliary excretion monitoring-electron spin resonance (BEM-ESR). We monitored real-time ESR signals due to nitrosyl-iron species in the circulating blood and bile flow. The ESR signal due to NO-Fe(II)-DTCS was stable in biological systems such as the fresh blood and bile. In in vivo BCM- and BEM-ESR, the pharmacokinetic parameters were calculated on the basis of the two-compartment and hepatobiliary transport models. The studies also revealed that the compound is widely distributed in the peripheral organs and partially excreted into the bile. We named a kinetic method to follow spin concentrations as spinnokinetics and this method will be useful for detecting and quantifying the endogenously generated NO in Fe(II)-DTCS administered animals.  相似文献   

6.
This study compared the superoxide detection abilities of four spin traps, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO), 5-(diphenylphosphinoyl)-5-methyl-1pyrroline N-oxide (DPPMPO) and 5-(2,2-dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO) in living cells. Electron spin resonance (ESR) signals of the superoxide adducts were observed when spin traps were added to a suspension of human oral polymorphonuclear leukocytes (OPMNs) stimulated by phorbol 12-myristate 13-acetate. The ESR signal of the CYPMPO-superoxide adduct (CYPMPO-OOH) increased for 24 min after the initiation of the reaction, whereas the signals from DMPO-OOH and DPPMPO-OOH peaked at 6 and 10 min, respectively. The maximum concentrations of DMPO-OOH, DPPMPO-OOH and CYPMPO-OOH in OPMNs were 1.9, 6.0 and 10.7 µM, respectively. Furthermore, CYPMPO could more efficiently trap superoxide in blood PMNs compared with DEPMPO. From these results, it was concluded that CYPMPO performs better than DMPO, DPPMPO and DEPMPO for superoxide measurements in living cell systems because it has lower cytotoxicity and its superoxide adduct has a longer lifetime.  相似文献   

7.
Tobacco smoke is a complex chemical mixture including pyridine alkaloids and N-nitrosamines, with the concentration of the former several orders of magnitude higher than that of the N-nitrosamines. The major biologically important N-nitrosamines present in tobacco smoke are N-nitrosodimethylamine (NDMA), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and N-nitrosonornicotine (NNN). These nitrosamines require metabolic activation by cytochrome P-450s for the expression of mutagenicity. Although nicotine, the major pyridine alkaloid in tobacco, has been shown to inhibit the metabolic activation of NNK, its effect on the mutagenicity of NNK and other N-nitrosamines has not been reported. In the present study, the ability of three pyridine alkaloids (nicotine, cotinine, nornicotine) and aqueous cigarette smoke condensate extract (ACE) to inhibit the mutagenicity of tobacco-related N-nitrosamines was tested on Salmonella typhimurium strain TA1535 in the presence of a metabolic activation system (S9). All three of the pyridine alkaloids tested, as well as ACE, inhibited the mutagenicity of NDMA and NNK, but not NNN, in a concentration-dependent manner. The induction of SCEs in mammalian cells (CHO) by NNK in the presence of metabolic activation was also significantly reduced by nicotine and cotinine. None of the observed reductions in mutagenicity could be explained by cytotoxicity. These results demonstrate that tobacco smoke contains chemicals, pyridine alkaloids and other unidentified constituent(s), which inhibit the mutagenicity of N-nitrosamines.  相似文献   

8.
The location of the dissimilatory nitrite reductase and orientation of its reducing site of the Grampositive denitrifier, Bacillus firmus NIAS 237 were examined. Approximately 90% of the total dissimilatory nitrite reductase activity with ascorbate-reduced phenazine methosulfate (PMS) as the electron donor was on the protoplast membrane. Nitrite induced with intact Bacillus cells an alkalinization in the external medium, followed by acidification. The electron transfer inhibitor, 2-heptyl-4-hydroxyquinoline-N-oxide, which blocked nitrite reduction with endogenous substrates, inhibited the acidification, but not the alkalinization. Alkalinization was not affected with ascorbate-reduced PMS as the artificial electron donor. This indicated that the alkalinization is not associated with proton consumption outside the cytoplasmic membrane by the extracellular nitrite reduction. The dissimilatory nitrite reductase of B. firmus NIAS 237 was located on the cytoplasmic membrane, and its reducing site is suggested to be on the inner side of this membrane.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - HOQNO 2-heptyl-4-hydroxyquinoline-N-oxide - PMS phenazine methosulfate - H+/NO inf2 sup- ratio number of consumed protons in the external medium per one ion of NO inf2 sup- reduced  相似文献   

9.
The interaction of NO and O?2free radicals generated from PMA (phorbol myristate acetate)-stimulated PMN (polymorphonuclear leukocytes) was studied by a nitroxide spin trap, DMPO (5,5-dimethyl-1-pyrroline-1-oxide). It was found that addition of L-arginine to the system would significantly decrease the trapped O?2by DMPO and addition of NG-monomethyl-arginine (NGMA) would significantly increase the trapped O?2by DMPO. It was proved that the formation of ONOO?by the reaction of NO and O?2was the main reason for the decrease of trapped O?2in the experiment with xanthine/xanthine oxidase and irradiation of riboflavin systems. The yield of NO during this process was calculated. The generation dynamic of NO was studied by a luminol-dependent chemiluminescence technique and it was found that after stimulation of PMN by PMA, there would be an immediate, significant chemi-luminescence, which came mainly from the active oxygen free radicals generated by PMN. If L-arginine was added to this system, the chemiluminescence would increase about 100-fold, but NGMA inhibited the increase of the chemiluminescence. Ten minutes after addition of L-arginine, this increase did not change, the chemiluminescence peak decreased gradually, but the half life increased. The ESR and chemiluminescence properties of NO and ONOO?synthesized were also studied in model systems.  相似文献   

10.
Chemolithoautotrophically growing cells of Nitrosomonas europaea quantitatively oxidized ammonia to nitrite under aerobic conditions with no loss of inorganic nitrogen. Significant inorganic nitrogen losses occurred when cells were growing mixotrophically with ammonium, pyruvate, yeast extract and peptone. Under oxygen limitation the nitrogen losses were even higher. In the absence of oxygen pyruvate was metabolized slowly while nitrite was consumed concomitantly. Nitrogen losses were due to the production of nitric oxide and nitrous oxide. In mixed cultures of Nitrosomonas and Nitrobacter, strong inhibition of nitrite oxidation was reproducibly measured. NO and ammonium were not inhibitory to Nitrobacter. First evidence is given that hydroxylamine, the intermediate of the Nitrosomonas monooxygenase-reaction, is formed. 0.2 to 1.7 M NH2OH were produced by mixotrophically growing cells of Nitrosomonas and Nitrosovibrio. Hydroxylamine was both a selective inhibitory agent to Nitrobacter cells and a strong reductant which reduced nitrite to NO and N2O. It is discussed whether chemodenitrification or denitrification is the most abundant process for NO and N2O production of Nitrosomonas.  相似文献   

11.
The antioxidant effects of chlorophyllin (CHL), a water-soluble analog of the green plant pigment chlorophyll, on different reactive oxygen species (ROS) were investigated by electron spin resonance (ESR) spectroscopy. As a standard, we have used the ability of CHL to scavenge the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. CHL inhibits the formation of 5,5-dimethyl-1-pyrroline-N-oxide adduct with hydroxyl radical (DMPO-OH adduct) generated by γ-radiation in a dose-dependent manner. At a concentration of 1 mM, CHL caused more than 90% inhibition of ESR signal intensity of this adduct. However, the results obtained with the Fenton reaction were different. We also found evidence for the inhibition of 1O2-dependent formation of the 2,2,6,6-tetramethyl-piperidine oxide (TEMPO) radical during photosensitization of methylene blue with visible light. CHL was also able to inhibit hydrogen peroxide induced oxidation of phenol red. The rate constant of the reaction of CHL with H2O2 was found to be 2.7×106 M-1s-1. In conclusion, CHL has potent antioxidant ability involving scavenging of various physiologically important ROS.  相似文献   

12.
Oxygen free radicals have been proposed to be major causative agents in secondary brain damage in traumatic and ischemic brain injury. Edarabone (3-methyl-1-phenyl-2-pyrazolin-5-one), a powerful antioxidative radical scavenger, is the only drug currently available in clinical practice for the treatment of cerebral infarction. There has been increasing interest in the role of nitric oxide (NO(*)) as a causative agent in brain injury. In the present study, we investigated the scavenging effect of Edarabone on nitric oxide (NO(*)), using an electron spin resonance (ESR) method. NO(*) was generated from 1-hydroxy-2-oxo-3-(N-3-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC-7), and analyzed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy (carboxy-PTI) produced from the reaction between 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (carboxy-PTIO) and NO(*). Edarabone directly scavenged NO(*) in a dose-dependent manner. These ESR studies indicate that Edarabone has a direct NO(*) scavenging activity and the additional possibility of novel neuroprotective activities against brain injury and focal cerebral ischemia.  相似文献   

13.
N-Nitrosodialkylamines are known to be potent indirect-acting mutagens/carcinogens, which are activated by cytochrome P450. The reaction product of N-nitroso-N-methylbutylamine (NMB) with modified Fenton’s reagent supplemented with copper salt (Fe2+–Cu2+–H2O2) was reported to be mutagenic in Salmonella typhimurium TA1535 without S9 mix. In this study, the NMB activation mechanism was investigated by ESR spectroscopy with radical trapping agents to detect radical species and also by observing changes in mutagenic potency with a Salmonella strain in the Ames assay in the presence of radical trapping agents. In ESR spectroscopy experiments, the hydroxyl radical generated from the modified Fenton’s reagent was detected using the hydroxyl radical trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Since the amount of the DMPO–OH adduct decreased with the addition of NMB, hydroxyl radical was presumed to react with NMB followed by the generation of nitric oxide (NO), which was detected as CarboxyPTI through reaction with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (CarboxyPTIO). The mutagenicity of the reaction extract decreased following the addition of DMPO or CarboxyPTIO. Furthermore, the mutagenicity of the reaction product in the presence of DMPO was enhanced by the addition of NO. The reaction product from NMB with Fe2+–Cu2+–NO in the absence of H2O2 was mutagenic, and this activity increased with the introduction of additional NO. These findings suggest that hydroxyl radical takes part in the generation of NO from NMB and that NO plays an important role in NMB activation in the presence of Fe2+ and Cu2+.  相似文献   

14.
The photoreduction of 2′-7′-dichlorofluorescein (DCF) was investigated in buffer solution using direct electron spin resonance (ESR) and the ESR spin-trapping technique. Anaerobic studies of the reaction of DCF in the presence of reducing agents demonstrated that during visible irradiation (λ > 300 nm) 2′-7′-dichlorofluorescein undergoes one-electron reduction to produce a semiquinone-type free radical as demonstrated by direct ESR. Spin-trapping studies of incubations containing DCF, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and either reduced glutathione (GSH) or reduced NADH demonstrate, under irradiation with visible light, the production of the superoxide dismutase-sensitive DMPO/·OOH adduct. In the absence of DMPO, measurements with a Clark-type oxygen electrode show that molecular oxygen is consumed in a light-dependent process. The semiquinone radical of DCF, when formed in an aerobic system, is immediately oxidized by oxygen, which regenerates the dye and forms superoxide.  相似文献   

15.
Summary Intact cells obtained from Thiobacillus denitrificans grown autotrophically with thiosulfate as the oxidizable substrate and nitrate as the final electron acceptor catalyzed the reduction of nitrate, nitrite and nitric oxide stoichiometrically to nitrogen gas with the concomitant oxidation of thiosulfate. In addition, nitrous oxide was also capable of acting as the terminal oxidant of the respiratory chain with thiosulfate as the reductant. The anaerobic oxidation of thiosulfate by NO3 -, NO, and N2O was sensitive to the flavoprotein inhibitors, antimycin A or NHQNO, and cyanide or azide thus, implicating the participation of flavins, and cytochromes of b-, c-, and a-types in the denitrification process. The nitrite reductase system, however, was not markedly affected by the electron transport chain inhibitors. The experimental observations suggest that the dissimilatory nitrate reduction in the chemoautotroph T. denitrificans involves nitrite, nitric oxide, and nitrous oxide as theintermediates with nitrogen gas as the final reduction product.Non-Standard Abbreviations TTFA Thenoyltrifluoroacetone - NHQNO 2-n-nonyl-4-hydroxyquinoline N-oxide  相似文献   

16.
Nitrate reductase (NR), a key enzyme in nitrogen metabolism, has been implicated in the production of nitric oxide (NO) in plants. The effect of photosynthetic electron transport chain inhibitors and NO scavengers or donors on NR activity of Gracilaria chilensis was studied under experimental laboratory conditions. Effective quantum yield (Φ PSII) and NR activity were significantly diminished by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, two photosynthetic electron flux inhibitors of photosystem (PS) II and PSI, respectively, but not by diphenyleneiodonium, a NADPH oxidase inhibitor, indicating a direct dependence of NR activity on the PSII and PSI electron flux. Nitrate reductase activity was sensitive to a decrease or increase of NO levels when NO scavenger (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and NO donor (sodium nitroprusside) were added. Moreover, the addition of 8Br-cGMP, a secondary signal molecule, stimulated NR activity. These results evidence a modulation of the photosynthetic electron transport chain and NO balance on G. chilensis NR activity. This association could be linked to the crucial tight modulation of nitrogen assimilation and carbon metabolism to guarantee nitrite incorporation into organic compounds and to avoid toxicity by nitrite, reactive oxygen species, or nitric oxide in the cells. Nitric oxide showed to be an important signaling molecule regulating NR activity and cGMP could participate as secondary messenger on this regulation by phosphorylation and desphosphorylation processes.  相似文献   

17.
Nitrosamines are carcinogenic and mutagenic only after metabolic activation via endoplasmic reticulum bound mixed function oxidase enzyme systems. Rencently a new photochemical process has been discovered by which nitrosamines are converted into unknown mutagenic compounds by irradiation with long wavelength UV light (> 335 nm) in the presence of phosphate ion at neutral pH. The mutagenic activity is detected by Ames Salmonella Typhimurium strain TA100 in the absence of rat liver microsomes. We have shown that mutagen production with nitrosomorpholine is inhibited in the presence of light by various spin trapping agents (N-t-butyl-phenylnitrone, etc.). Concurrent with this inhibition a stable free radical signal has been detected whose kinetics of formation is similar to the time course of mutagen formation during irradiation in the absence of spin trap. The free radical signal is formed only when phosphate or similar ions are present in the reaction mixture. Monomethylphosphate and dimethylphosphate can substitute for phosphate ion but with small ESR signals and mutagen formation. Trimethylphosphate gives a weak, time independent ESR signal and does not cause mutagen formation. The ESR splitting constants (aN and aH) for signals generated with each of the different phosphate species show differences which suggest that these ions may be components of some intermediate free radical species that is involved in stable mutagen formation. Arsenate ion inhibits mutagen formation in the presence of phosphate but is able in the absence of phosphate to form a ESR signal similar to that observed with phosphate ion.  相似文献   

18.
Orally administered nitrite exerts antihypertensive effects associated with increased gastric nitric oxide (NO) formation. While reducing agents facilitate NO formation from nitrite, no previous study has examined whether antioxidants with reducing properties improve the antihypertensive responses to orally administered nitrite. We hypothesized that TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) could enhance the hypotensive effects of nitrite in hypertensive rats by exerting antioxidant effects (and enhancing NO bioavailability) and by promoting gastric nitrite-derived NO generation. The hypotensive effects of intravenous and oral sodium nitrite were assessed in unanesthetized freely moving rats with L-NAME (Nω-nitro-L-arginine methyl ester; 100 mg/kg; po)-induced hypertension treated with TEMPOL (18 mg/kg; po) or vehicle. While TEMPOL exerted antioxidant effects in hypertensive rats, as revealed by lower plasma 8-isoprostane and vascular reactive oxygen species levels, this antioxidant did not affect the hypotensive responses to intravenous nitrite. Conversely, TEMPOL enhanced the dose-dependent hypotensive responses to orally administered nitrite, and this effect was associated with higher increases in plasma nitrite and lower increases in plasma nitrate concentrations. In vitro experiments using electrochemical and chemiluminescence NO detection under variable pH conditions showed that TEMPOL enhanced nitrite-derived NO formation, especially at low pH (2.0 to 4.0). TEMPOL signal evaluated by electron paramagnetic resonance decreased when nitrite was reduced to NO under acidic conditions. Consistent with these findings, increasing gastric pH with omeprazole (30 mg/kg; po) attenuated the hypotensive responses to nitrite and blunted the enhancement in plasma nitrite concentrations and hypotensive effects induced by TEMPOL. Nitrite-derived NO formation in vivo was confirmed by using the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (C-PTIO), which blunted the responses to oral nitrite. Our results showed that TEMPOL promotes nitrite reduction to NO in the stomach and enhanced plasma nitrite concentrations and the hypotensive effects of oral sodium nitrite through mechanisms critically dependent on gastric pH. Interestingly, the effects of TEMPOL on nitrite-mediated hypotension cannot be explained by increased NO formation in the stomach alone, but rather appear more directly related to increased plasma nitrite levels and reduced nitrate levels during TEMPOL treatment. This may relate to enhanced nitrite uptake or reduced nitrate formation from NO or nitrite.  相似文献   

19.
Under strong illumination of a photosystem II (PSII) membrane, endogenous superoxide anion, hydrogen peroxide, and hydroxyl radical were successively produced. These compounds then cooperatively resulted in a release of manganese from the oxygen-evolving complex (OEC) and an inhibition of oxygen evolution activity. The OEC inactivation was initiated by an acceptor-side generated superoxide anion, and hydrogen peroxide was most probably responsible for the transportation of reactive oxygen species (ROS) across the PSII membrane from the acceptor-side to the donor-side. Besides ROS being generated in the acceptor-side induced manganese loss; there may also be a ROS-independent manganese loss in the OEC of PSII. Both superoxide anion and hydroxyl radical located inside the PSII membrane were directly identified by a spin trapping-electron spin resonance (ESR) method in combination with a lipophilic spin trap, 5-(diethoxyphosphoryl)-5-phenethyl-1-pyrroline N-oxide (DEPPEPO). The endogenous hydrogen peroxide production was examined by oxidation of thiobenzamide.  相似文献   

20.
Production of nitric oxide in Nitrosomonas europaea by reduction of nitrite   总被引:1,自引:0,他引:1  
Nitrosomonas europaea and Nitrosovibrio sp. produced NO and N2O during nitrification of ammonium. Less then 15% of the produced NO was due to chemical decomposition of nitrite. Production of NO and especially of N2O increased when the bacteria were incubated under anaerobic conditions at decreasing flow rates of air, or at increasing cell densities. Low concentrations of chlorite (10 M) inhibited the production of NO and N2, but not of nitrite indicating that NO and N2O were not produced during the oxidative conversion of ammonium to nitrite. NO and N2O were produced during reduction of nitrite with hydrazine as electron donor in almost stoichiometric quantities indicating that reduction of nitrite was the main source of NO and N2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号