首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sharma SS  Kumar A  Kaundal RK 《Life sciences》2008,82(11-12):570-576
Peripheral diabetic neuropathy is a heterogeneous group of disorders, and is known to affect 50-60% of diabetic patients. Poly (ADP-ribose) polymerase (PARP) activation has been identified as one of the key components in the pathogenesis of diabetic neuropathy. In the present study we have targeted PARP overactivation in diabetic neuropathy using a known PARP inhibitor, 4 amino 1, 8-napthalimide (4-ANI). Streptozotocin induced diabetic rats developed neuropathy within 6 weeks, which was evident from significant reduction in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) along with neuropathic pain and abnormal sensory perception. Six weeks after diabetes induction Sprague Dawley rats were treated with 4-ANI (3 and 10 mg/kg, p.o.) for a period of two weeks (seventh and eighth weeks). Two week treatment with 4-ANI showed improvement in nerve conduction, nerve blood flow and reduction in tail flick responses and mechanical allodynia in diabetic animals. 4-ANI also attenuated PAR immunoreactivity and NAD depletion in nerves of diabetic animals. Results of present study suggest the potential of PARP inhibitors like 4-ANI in the treatment of diabetic neuropathy.  相似文献   

2.
Peroxynitrite mediated nitrosative stress, an indisputable initiator of DNA damage and overactivation of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated after sensing DNA damage, are two crucial pathogenetic mechanisms in diabetic neuropathy. The intent of the present study was to investigate the effect of combination of a peroxynitrite decomposition catalyst (PDC), FeTMPyP and a PARP inhibitor, 4-ANI against diabetic peripheral neuropathy. The end points of evaluation of the study included motor nerve conduction velocity (MNCV) and nerve blood flow (NBF) for evaluating nerve functions; thermal hyperalgesia and mechanical allodynia for assessing nociceptive alterations, malondialdehyde and peroxynitrite levels to detect oxidative stress-nitrosative stress; NAD concentration in sciatic nerve to assess overactivation of PARP. Additionally immunohistochemical studies for nitrotyrosine and Poly(ADP-ribose) (PAR) was also performed. Treatment with the combination of FeTMPyP and 4-ANI led to significant improvement in nerve functions and pain parameters and also attenuated the oxidative-nitrosative stress markers. Further, the combination also reduced the overactivation of PARP as evident from increased NAD levels and decreased PAR immunopositivity in sciatic nerve microsections. Thus, it can be concluded that treatment with the combination of a PDC and PARP inhibitor attenuates alteration in peripheral nerves in diabetic neuropathy (DN).  相似文献   

3.
Kumar A  Kaundal RK  Iyer S  Sharma SS 《Life sciences》2007,80(13):1236-1244
Oxidative stress has been implicated in pathophysiology of diabetic neuropathy. All the pathways responsible for development of diabetic neuropathy are linked to oxidative stress in one way or the other. In the present study, we have targeted oxidative stress in diabetic neuropathy using resveratrol, a potent antioxidant. Eight weeks streptozotocin-diabetic rats developed neuropathy which was evident from significant reduction in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and increased thermal hyperalgesia. The 2-week treatment with resveratrol (10 and 20 mg/kg, i.p.) started 6 weeks after diabetes induction significantly ameliorated the alterations in MNCV, NBF, and hyperalgesia. Resveratrol also attenuated enhanced levels of malondialdehyde (MDA), peroxynitrite and produced increase in catalase levels in diabetic rats. There was marked reduction in DNA fragmentation observed after resveratrol treatment in diabetic rats as evident from decrease in Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in sciatic nerve sections. Results of the present study suggest the potential of resveratrol in treatment of diabetic neuropathy and its protective effect may be mediated through reduction in oxidative stress and DNA fragmentation.  相似文献   

4.
Oxidative stress has been implicated to play an important role in the pathogenesis of diabetic neuropathy, which is the most common complication of diabetes mellitus affecting more than 50% of diabetic patients. In the present study, we have investigated the effect of U83836E [(-)-2-((4-(2,6-Di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl)methyl)-3,4-dihydro-2,3,7,8-tetramethyl-2H-1-benzopyran-6-ol, 2HCl], a potent free radical scavenger in streptozotocin (STZ)-induced diabetic neuropathy in rats. STZ-induced diabetic rats showed significant deficit in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and thermal hyperalgesia after 8 weeks of diabetes induction, indicating development of diabetic neuropathy. Antioxidant enzyme (superoxide dismutase and catalase) levels were reduced and malondialdehyde (MDA) levels were significantly increased in diabetic rats as compared to the age-matched control rats, this indicates the involvement of oxidative stress in diabetic neuropathy. The 2-week treatment with U83836E (3 and 9 mg/kg, i.p.) started 6 weeks after diabetes induction significantly ameliorated the alterations in MNCV, NBF, hyperalgesia, MDA levels and antioxidant enzymes in diabetic rats. Results of the present study suggest the potential of U83836E in treatment of diabetic neuropathy.  相似文献   

5.
Evidence that poly(ADP-ribose) polymerase (PARP) activation plays an important role in diabetic complications is emerging. This study evaluated the role of PARP in rat and mouse models of advanced diabetic neuropathy. The orally active PARP inhibitor 10-(4-methylpiperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de]anthracen-3-one (GPI-15427; formulated as a mesilate salt, 30 mg kg(-1) day(-1) in the drinking water for 10 weeks after the first 2 weeks without treatment) at least partially prevented PARP activation in peripheral nerve and DRG neurons, as well as thermal hypoalgesia, mechanical hyperalgesia, tactile allodynia, exaggerated response to formalin, and, most importantly, intraepidermal nerve fiber degeneration in streptozotocin-diabetic rats. These findings are consistent with the lack of small sensory nerve fiber dysfunction in diabetic PARP -/- mice. Furthermore, whereas diabetic PARP +/+ mice displayed approximately 46% intraepidermal nerve fiber loss, diabetic PARP -/- mice retained completely normal intraepidermal nerve fiber density. In conclusion, PARP activation is an important contributor to intraepidermal nerve fiber degeneration and functional changes associated with advanced Type 1 diabetic neuropathy. The results support a rationale for the development of potent and low-toxicity PARP inhibitors and PARP inhibitor-containing combination therapies.  相似文献   

6.
The effects of resveratrol, a polyphenolic phytoalexin present in red wine have been investigated on hyperalgesia and cold allodynia in streptozotocin (STZ) induced diabetic rats. Diabetes was induced by a single intraperitoneal injection of streptozotocin (65mg/kg). After 4-weeks of STZ injection, diabetic rats exhibited a significant thermal hyperalgesia and cold allodynia along with increased plasma glucose and decreased body weights as compared with controls rats. Chronic treatment with resveratrol (10mg/kg orally) from week 4 to week 6 significantly attenuated the cold allodynia and thermal hyperalgesia. The results emphasize the role of oxidative stress in development of hyperalgesia and cold allodynia in diabetic animals and point towards the potential of resveratrol as an adjuvant therapy for the prevention and treatment of diabetic neuropathy.  相似文献   

7.
Diabetic neuropathy is one of the most common complications in diabetes mellitus. Thus far, effective therapeutic agents for restoring the impaired motor and sensory nerve functions in diabetic neuropathy are still lacking. The antioxidant and neuroprotective properties of tanshinone IIA make it a promising candidate for the treatment of diabetic neuropathy. Therefore, the present study investigated the possible beneficial effect of tanshinone IIA on the impaired nerve functions displayed by a rat diabetic model. Insulin-dependent diabetes in rats was developed by a single dose of streptozotocin (STZ) at 50 mg/kg. The diabetic rats were randomly divided into four groups (n = 10 in each group), and were intraperitoneally administrated daily for 4 weeks with tanshinone IIA (20 mg/kg, 50 mg/kg and 100 mg/kg), or normal saline from the fourth day after STZ injection, respectively. At the end of tanshinone IIA administration, thermal and mechanical nociceptive threshold were determined by a hot plate test and Von Frey hairs; motor nerve conducting velocity (MNCV) was determined by an electrophysiological method; nerve blood flow (NBF) was detected using a laser Doppler flow meter; Na+,K+ATPase activity, the level of superoxide dismutase (SOD), catalase and malondialdehyde (MDA) in sciatic nerves, and the serum total antioxidant capability were also determined. We found that tanshinone IIA was capable of restoring diabetes-induced deficit in nerve functions (MNCV and NBF), and impairment in thermal and mechanical nociceptive capability. In addition, tanshinone IIA significantly increased the serum total antioxidant capability, improved the activities of Na+,K+ATPase, increased the levels of SOD and catalase, and reduced the MDA level in sciatic nerves in diabetic rats. All the findings indicate the beneficial effect of tanshinone IIA on impaired nerve functions and raise the possibility of developing tanshinone IIA as a therapeutic agent for diabetic neuropathy.  相似文献   

8.
Pioglitazone, one of thiazolidinediones, a peroxisome proliferator-activated receptor (PPAR)-γ ligand, is known to have beneficial effects on macrovascular complications in diabetes, but the effect on diabetic neuropathy is not well addressed. We demonstrated the expression of PPAR-γ in Schwann cells and vascular walls in peripheral nerve and then evaluated the effect of pioglitazone treatment for 12 weeks (10 mg/kg/day, orally) on neuropathy in streptozotocin-diabetic rats. At end, pioglitazone treatment improved nerve conduction delay in diabetic rats without affecting the expression of PPAR-γ. Diabetic rats showed suppressed protein kinase C (PKC) activity of endoneurial membrane fraction with decreased expression of PKC-α. These alterations were normalized in the treated group. Enhanced expression of phosphorylated extracellular signal-regulated kinase detected in diabetic rats was inhibited by the treatment. Increased numbers of macrophages positive for ED-1 and 8-hydroxydeoxyguanosine-positive Schwann cells in diabetic rats were also corrected by the treatment. Pioglitazone lowered blood lipid levels of diabetic rats, but blood glucose and nerve sorbitol levels were not affected by the treatment. In conclusion, our study showed that pioglitazone was beneficial for experimental diabetic neuropathy via correction of impaired PKC pathway and proinflammatory process, independent of polyol pathway.  相似文献   

9.
Diabetic neuropathy is commonly observed complication in more than 50 % of type 2 diabetic patients. Histone deacetylases including SIRT1 have significant role to protect neuron from hyperglycemia induced damage. Formononetin (FMNT) is known for its effect to control hyperglycemia and also activate SIRT1. In present study, we evaluated effect of FMNT as SIRT1 activator in type 2 diabetic neuropathy. Type 2 diabetic neuropathy was induced in rats by modification of diet for 15 days using high fat diet and administration of streptozotocin (35 mg/kg/day, i. p.). FMNT treatment was initiated after confirmation of type 2 diabetes. Treatment was given for 16 weeks at 10, 20 and 40 mg/kg/day dose orally. FMNT treatment‐controlled hypoglycemia and reduced insulin resistance significantly in diabetic animals. FMNT treatment reduced oxidative stress in sciatic nerve tissue. FMNT treatment also reduced thermal hyperalgesia and mechanical allodynia significantly. It improved conduction velocity in nerve and unregulated SIRT1 and NGF expression in sciatic nerve tissue. Results of present study indicate that continuous administration of FMNT protected diabetic animals from hyperglycemia induced neuronal damage by controlling hyperglycemia and increasing SIRT1 and NGF expression in nerve tissue. Thus, FMNT can be an effective candidate for treatment of type 2 diabetic neuropathy.  相似文献   

10.
The effects of zenarestat, 3-(4-bromo-2-fluorobenzyl)-7-chloro-3,4-dihydro-2,4-dioxo-1(2H)-quinazolineacetic acid, an aldose reductase inhibitor (ARI), on F-wave conduction abnormalities, nerve blood flow (NBF) reduction and sorbitol accumulation were studied in streptozotocin-induced diabetic rats. Two weeks after the induction of diabetes, zenarestat was given once a day for two weeks. In diabetic control rats, marked accumulation of sorbitol, reduction of NBF and prolongation of minimal F-wave latency (FWL) were observed as compared to normal rats. Zenarestat, at a dose of 32 mg/kg, inhibited sorbitol concentration to nearly the normal rat level and significantly improved not only NBF but also minimal FWL. At a dose of 3.2 mg/kg, sorbitol accumulation was inhibited by approximately 40% and there was a tendency to increase in NBF; however, minimal FWL was not improved at all. These data suggest that a highly inhibition of the nerve sorbitol accumulation is requisite for the treatment of diabetic peripheral neuropathy.  相似文献   

11.
Astragaloside IV (AGS-IV), a new glycoside of cycloartane-type triterpene isolated from the root of Astragalus membranaceus (Fisch.) Bunge, has been used experimentally for its potent immune-stimulating, anti-inflammatory, and antioxidative actions. A recent study has shown AGS-IV to be an aldose-reductase inhibitor and a free-radical scavenger. This study examined the effects of AGS-IV on motor nerve conduction velocity (MNCV), tailflick threshold temperature, biochemical indexes, and the histology of the sural nerve after diabetes was induced in rats with 75 mg/kg streptozotocin (STZ). AGS-IV (3, 6, 12 mg/kg, twice a day) was administered by oral gavage for 12 weeks after diabetes was induced. Compared with control (nondiabetic) rats, obvious changes in physiological behaviors and a significant reduction in sciatic MNCV in diabetic rats were observed after 12 weeks of STZ administration. Morphological analysis showed that AGS-IV suppressed a decrease in myelinated fiber area, an increase in myelinated fiber density, and an increase in segmental demyelination in diabetic rats. The protective mechanism of AGS-IV involved a decrease in declining blood glucose concentration and HbA1C levels, and an increase in plasma insulin levels. AGS-IV increased the activity of glutathione peroxidase in nerves, depressed the activation of aldose reductase in erythrocytes, and decreased the accumulation of advanced glycation end products in both nerves and erythrocytes. Moreover, AGS-IV elevated Na+,K+-ATPase activity in both the nerves and erythrocytes of diabetic rats. These results indicate that AGS-IV exerts protective effects against the progression of peripheral neuropathy in STZ-induced diabetes in rats through several interrelated mechanisms.  相似文献   

12.
Cotter MA  Cameron NE 《Life sciences》2003,73(14):1813-1824
Upregulation of vascular NAD(P)H oxidase has been considered an important source for elevated levels of reactive oxygen species that contribute to several cardiovascular disease states, including the vascular complications of diabetes mellitus. Previous studies have shown that treatment with antioxidants corrects impaired nerve function and blood flow in diabetic rats. The aim was to assess the degree of involvement of NAD(P)H oxidase in experimental diabetic neuropathy. To this end, after 6 weeks of untreated streptozotocin-diabetes, rats were treated for 2 weeks with the NAD(P)H oxidase, apocynin. Two high doses (15 and 100 mg/kg) were used to ensure that maximal effects were registered. Diabetes caused a 20% reduction in sciatic nerve motor conduction velocity, and a 14% deficit for sensory saphenous nerve. Apocynin treatment corrected these defects by 32% and 48%, respectively: there were no significant differences between the effects of the 2 doses. Sciatic nerve nutritive endoneurial perfusion was measured by hydrogen clearance microelectrode polarography. Blood flow and vascular conductance were 47% and 40% reduced by diabetes, respectively. Both doses of apocynin had similar effects, correcting the blood flow deficit by 31% and conductance by 47%. Thus, the data show that NAD(P)H oxidase contributes to the neurovascular deficits in diabetic rats. While only accounting for part of the elevated reactive oxygen species production in diabetes, this mechanism could provide a novel therapeutic candidate for further investigation in diabetic neuropathy and vasculopathy.  相似文献   

13.
Hyperglycaemia-induced oxidative stress makes an important contribution to the aetiology of diabetic neuropathy. Elevated reactive oxygen species (ROS) cause cumulative damage to neurons and Schwan cells, however, they also have a deleterious effect on nerve blood flow causing endoneurial hypoxia, which is responsible for early nerve conduction velocity (NCV) deficits and contributes to an increase in resistance to ischaemic conduction failure (RICF). We tested whether antioxidants - stobadine, vitamin E or the combination of these drugs, could prevent the early signs of neural dysfunction in animal model of diabetes in 8-9 weeks old male Wistar rats, made diabetic by streptozotocin (55 mg/kg i.v.) 4 months prior to testing. Neuropathy was evaluated electrophysiologically by measuring motor NCV and RICF of sciatic nerve in vitro. We observed that treatment with the combination of stobadine and vitamin E significantly (p < 0.001) reduced the NCV slowing in diabetic rats, although it did not fully prevent the NCV impairment. Significant effect (p < 0.05) was observed also in stobadine monotherapy. The RICF elevated in diabetic animals was not affected by any drug applied. This study confirmed that treatment with appropriate antioxidants, especially their combination could partially prevented the decrease in NCV in diabetic rats.  相似文献   

14.
This study evaluated the role of poly(ADP-ribose) polymerase (PARP) in systemic oxidative stress and 4-hydoxynonenal adduct accumulation in diabetic peripheral neuropathy. Control and streptozotocin-diabetic rats were maintained with or without treatment with the PARP inhibitor, 1,5-isoquinolinediol, 3 mg kg(-1) day(-1), for 10 weeks after an initial 2 weeks. Treatment efficacy was evaluated by poly(ADP-ribosyl)ated protein content in peripheral nerve and spinal cord (Western blot analysis) and dorsal root ganglion neurons and nonneuronal cells (fluorescence immunohistochemistry), as well as by indices of peripheral nerve function. Diabetic rats displayed increased urinary isoprostane and 8-hydroxy-2'-deoxyguanosine excretion (ELISA) and 4-hydroxynonenal adduct accumulation in endothelial and Schwann cells of the peripheral nerve, neurons, astrocytes, and oligodendrocytes of the spinal cord and neurons and glial cells of the dorsal root ganglia (double-label fluorescence immunohistochemistry), as well as motor and sensory nerve conduction velocity deficits, thermal hypoalgesia, and tactile allodynia. PARP inhibition counteracted diabetes-induced systemic oxidative stress and 4-hydroxynonenal adduct accumulation in peripheral nerve and spinal cord (Western blot analysis) and dorsal root ganglion neurons (perikarya, fluorescence immunohistochemistry), which correlated with improvement of large and small nerve fiber function. The findings reveal the important role of PARP activation in systemic oxidative stress and 4-hydroxynonenal adduct accumulation in diabetic peripheral neuropathy.  相似文献   

15.
The present study investigated the effects of resveratrol (RV), a polyphenol with potent antioxidant properties, on oxidative stress parameters in liver and kidney, as well as on serum biochemical parameters of streptozotocin (STZ)-induced diabetic rats. Animals were divided into six groups (n = 8): control/saline; control/RV 10 mg/kg; control/RV 20 mg/kg; diabetic/saline; diabetic/RV10 mg/kg; diabetic/RV 20 mg/kg. After 30 days of treatment with resveratrol the animals were sacrificed and the liver, kidney and serum were used for experimental determinations. Results showed that TBARS levels were significantly increased in the diabetic/saline group and the administration of resveratrol prevented this increase in the diabetic/RV10 and diabetic/RV20 groups (P < 0.05). The activities of catalase (CAT), superoxide dismutase (SOD) and aminolevulinic acid dehydratase (δ-ALA-D) and the levels of non protein thiols (NPSH) and vitamin C presented a significant decrease in the diabetic/saline group when compared with the control/saline group (P < 0.05). The treatment with resveratrol was able to prevent these decrease improving the antioxidant defense of the diabetic/RV10 and diabetic/RV20 groups (P < 0.05). In addition, the elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and γ-glutamiltransferase (γ-GT) activities as well as in levels of urea, creatinine, cholesterol and triglycerides observed in the diabetic/saline group were reverted to levels close to normal by the administration of resveratrol in the diabetic/RV10 and diabetic/RV20 groups (P < 0.05). These findings suggest that resveratrol could have a protector effect against hepatic and renal damage induced by oxidative stress in the diabetic state, which was evidenced by the capacity of this polyphenol to modulate the antioxidant defense and to decrease the lipid peroxidation in these tissues.  相似文献   

16.
BackgroundPotential protection against the neurotoxic damages of high levels of fluoride on rats and SH-SY5Y cells by extract of Ginkgo biloba leaves, as well as underlying mechanisms, were examined.MethodsThe rats were divided randomly into 4 groups, i.e., control, treatment with the extract (100 mg/kg body weight, gavage once daily), treatment with fluoride (50 ppm F- in drinking water) and combined treatment with both; SH-SY5Y cells exposed to fluoride and fluoride in combination with the extract or 4-Amino-1,8-naphthalimide (4-ANI), an inhibitor of poly (ADP-ribose) polymerase-1 (PARP-1). Spatial learning and memory in the rats were assessed employing Morris water maze test; the contents of fluoride in brains and urine by fluoride ion-selective electrode; cytotoxicity of fluoride was by CCK-8 kit; the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the content of malondialdehyde (MDA) by appropriate kits; the level of 8-hydroxydeoxyguanosine (8-OHdG) was by ELISA; the content of ROS and frequency of apoptosis by flow cytometry; the expressions of phospho-histone H2A.X(Ser139), PARP-1, poly (ADP-ribose) (PAR) and Sirtuin-1 (SIRT1) by Western blotting or immunofluorescence.ResultsThe rats with prolong treatment of fluoride exhibited dental fluorosis, the increased contents of fluoride in brains and urine and the declined ability of learning and memory. In the hippocampus of the rats and SH-SY5Y cells exposed to fluoride, the levels of ROS, MDA, apoptosis, 8-OHdG and the protein expressions of histone H2A.X(Ser139), PARP-1 and PAR were all elevated; the activities of SOD and GSH-Px and the protein expression of SIRT1 reduced. Interestingly, the treatment of Ginkgo biloba extract attenuated these neurotoxic effects on rats and SH-SY5Y cells exposed to fluoride and the treatment of 4-ANI produced a neuroprotective effect against fluoride exposure.ConclusionGinkgo biloba extract attenuated neurotoxic damages induced by fluoride exposure to rats and SH-SY5Y cells and the underlying mechanism might involve the inhibition of PARP-1 and the promotion of SIRT1.  相似文献   

17.
Abstract: The composition and metabolism of rat sciatic nerve phospholipids were studied 20 weeks after induction of chronic diabetes by intraperitoneal injection of streptozotocin (50 mg/kg). On a wet weight basis the nerves from the diabetic animals showed a 7% decrease in total phospholipid from that of controls and a relative decrease in phosphatidylinositol. Incubations of isolated sciatic nerves of diabetic rats in a medium containing [33P]orthophosphate gave decreased labeling of phosphatidylinositol and substantial changes in the labeling pattern of phosphatidylinositol phosphate and 4,5-bisphosphate from that of controls. The ratio of label in these polyphosphoinositides decreased from 2.5 for normal nerve to about 1.0 for diabetic nerve within a 2-h incubation period. These metabolic alterations were not observed in acutely diabetic animals 5 days after streptozotocin (100 mg/kg) administration. Because polyphosphoinositides may be involved in the control of membrane permeability during axonal conduction, alterations in their relative amounts or turnover rates could be related to the physiological changes of early diabetic neuropathy.  相似文献   

18.
Diabetic peripheral neuropathy is one of the most common microvascular complications that occurs with both type 1 and type 2 diabetes mellitus. It has a significant negative impact on patients’ quality of life; as it starts with loss of limbs’ sensation and may lead to lower limb amputation. This study aimed at investigating the effect of liraglutide on peripheral neuropathy in diabetic rats. Experimental diabetes was induced by single intraperitoneal injections of nicotinamide (50 mg/kg) and streptozotocin (52.5 mg/kg). Rats were allocated into five groups. Two groups were given saline or liraglutide (0.8 mg/kg, s.c.). Three diabetic groups were either untreated or treated with liraglutide (0.8 mg/kg, s.c.) or pregabalin (10 mg/kg, i.p.). After 2 weeks of treatment, behavioral, biochemical, histopathological, and immunohistochemical investigations were performed. Treatment with liraglutide‐restored animals’ body weight, normalized blood glucose, decreased glycated hemoglobin, and increased insulin levels. In parallel, it normalized motor coordination and the latency withdrawal time of both tail flick and hind paw cold allodynia tests and reversed histopathological alterations. Treatment with liraglutide also normalized malondialdehyde, matrix metalloproteinase‐2 and ‐9 contents in sciatic nerve. Likewise, it decreased sciatic nerve nitric oxide and interleukin‐6 contents, DNA fragmentation and expression of cyclooxygenase‐2. Meanwhile, it increased superoxide dismutase and interleukin‐10 contents in sciatic nerve. These findings indicate the neuroprotective effect of liraglutide against diabetic peripheral neuropathy probably via modulating oxidative stress, inflammation, and extracellular matrix remodeling.

  相似文献   

19.
Studies of rats with experimental streptozotocin (STZ)-induced diabetes at 4 months have identified sciatic nerve trunk oligemia and hypoxia, but it is uncertain how early these abnormalities develop or which develops first. We studied young (4-week-old) rats after 6 or 16 weeks of STZ-induced diabetes (or after citrate buffer injection in controls) by recording multi-fiber conduction in three different nerve territories and by measuring sciatic endoneurial blood flow (NBF) and oxygen tension (PnO2) at end point. To evaluate the impact of sympathectomy on this diabetic model, separate animal groups were treated for 5 weeks with guanethidine monosulfate given at the onset of diabetes (group 1, end point 6 weeks) or after 6 weeks of diabetes (group 2, end point 16 weeks). Diabetes was associated with deficits in sensory and motor caudal conduction and increased resistance to ischemic conduction failure (RICF). NBF was comparable to control animals at both time points and was within the published normal range of NBF. In contrast, oxygen tensions were shifted to lower values in diabetic animals. Sympathectomy was associated with blunting of the RICF increase in group 2 but worsened caudal sensory conduction despite evidence of modest improvement in sciatic nerve oxygenation. Our findings support the concept that neuropathy occurs early in diabetes and that hypoxia develops before oligemia. Sympathectomy did not benefit this diabetic model.  相似文献   

20.
The influence of varying doses of streptozotocin and preventive insulin treatment on phospholipid metabolism in sciatic nerve in vitro from diabetic rats was studied. Animals were given 30, 45, and 60 mg/kg injections of streptozotocin and 10 weeks later nerves were removed and incubated in the presence of [32P]-orthophosphate. The quantity of isotope incorporated into phosphatidylinositol-4,5-bisphosphate (PIP2) was progressively greater with increasing drug dosage, whereas uptake of label into other phospholipids was unchanged. Rats were made diabetic and within 72 h were implanted with long-acting, insulin-containing osmotic minipumps and the incorporation of [32P]orthophosphate into phospholipids of intact and epineurium-free nerves was examined 8 weeks later. For whole nerve, increased labeling in nerves from diabetic animals occurred only in PIP2 and phosphatidylinositol-4-phosphate (PIP) and was completely prevented by insulin treatment. Isotope incorporation into polyphosphoinositides was also markedly elevated (greater than or equal to 100%) in desheathed diabetic nerves, but not in nerves from insulin-treated animals. Other phospholipids in epineurium-free nerves displayed some rise in isotope uptake, but the increases were not prevented by insulin treatment and appeared unrelated to hyperglycemia. Morphological examination of nerves extended previous findings that prolonged insulin treatment produces axonal degeneration. These observations indicate that abnormal nerve polyphosphoinositide metabolism is at least in part a consequence of hyperglycemia. The metabolic alterations may be intimately involved in reduced nerve conduction velocity, which is characteristic of diabetic neuropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号