首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitroxide stable radicals generally serve for probing molecular motion in membranes and whole cells, transmembrane potential, intracellular oxygen and pH, and are tested as contrast agents for magnetic resonance imaging. Recently nitroxides were found to protect against oxidative stress. Unlike most low molecular weight antioxidants (LMWA) which are depleted while attenuating oxidative damage, nitroxides can be recycled. In many cases the antioxidative activity of nitroxides is associated with switching between their oxidized and reduced forms. In the present work, superoxide radicals were generated either radiolytically or enzymatically using hypoxanthine/xanthine oxidase. Electron paramagnetic resonance (EPR) spectrometry was used to follow the exchange between the nitroxide radical and its reduced form; whereas, pulse radiolysis was employed to study the kinetics of hydroxylamine oxidation. The results indicate that: a) The rate constant of superoxide reaction with cyclic hydroxylamines is pH-independent and is lower by several orders of magnitude than the rate constant of superoxide reaction with nitroxides; b) The oxidation of hydroxylamine by superoxide is primarily responsible for the non-enzymatic recycling of nitroxides; c) The rate of nitroxides restoration decreases as the pH decreases because nitroxides remove superoxide more efficiently than is hydroxylamine oxidation; d) The hydroxylamine reaction with oxidized nitroxide (comproportionation) might participate in the exchange among the three oxidation states of nitroxide. However, simulation of the time-dependence and pH-dependence of the exchange suggests that such a comproportionation is too slow to affect the rate of non-enzymatic nitroxide restoration. We conclude that the protective activity of nitroxides in vitro can be distinguished from that of common LMWA due to hydroxylamine oxidation by superoxide, which allows nitroxide recycling and enables its catalytic activity.  相似文献   

2.
Abstract

Nitroxides are widely used in biology as antioxidants, spin labels, functional spin probes for pH, oxygen and thiol levels, and tissue redox status imaging using electron paramagnetic resonance (EPR); however, biological applications of nitroxides is hindered by fast bioreduction to EPR-silent hydroxylamines and rapid clearance. In this work, we have studied pyrrolidine nitroxides with acetoxymethoxycarbonyl groups which can undergo hydrolysis by cellular esterases to hydrophilic carboxylate derivatives resistant to bioreduction. Nitroxides containing acetoxymethoxycarbonyl groups were rapidly absorbed by cells from the media, 3,4-bis-(acetoxymethoxycarbonyl)-proxyl (DCP-AM2) and 3-(2-(bis(2-(acetoxymethoxy)-2-oxoethyl)amino)acetamido)-proxyl (DCAP-AM2) showing the strongest EPR signal of the cellular fraction. Remarkably, the EPR parameters of 3,4-dicarboxy-proxyl (DCP) and its mono- and di-acetoxymethyl esters are different, and consequent intracellular hydrolysis of acetoxymethoxycarbonyl groups in DCP-AM2 can be followed by EPR. To elucidate intracellular location of the resultant DCP, the mitochondrial fraction has been isolated. EPR measurements showed that mitochondria were the main place where DCP was finally accumulated. TEMPO derivatives showed expectedly much faster decay of EPR signal in the cellular fraction, compared to pyrrolidine nitroxides. It was found that supplementation of endothelial cells with 50?nM of DCP-AM2 completely normalised the mitochondrial superoxide level. Moreover, administration of DCP-AM2 to mice (1.4?mg/kg/day) resulted in substantial nitroxide accumulation in the tissues and significantly reduced hypertension. We found that hydroxylamine derivatives of dicarboxyproxyl nitroxide DCP-AM-H can be used for the detection of superoxide in vivo in angiotensin II model of hypertension. Infusion of DCP-AM-H in mice leads to accumulation of persistent EPR signal of nitroxide in the blood and vascular tissue in angiotensin II-infused wild-type but not in SOD2 overexpressing mice. Our data demonstrate that acetoxymethoxycarbonyl group containing nitroxides accumulate in mitochondria and demonstrate site-specific antioxidant activity.  相似文献   

3.
Potassium ferricyanide (PF), routinely employed for the oxidation of sterically-hindered hydroxylamines to nitroxides, is considered to be chemically inert towards the latter. In the present study, we report on an unexpected oxidative fragmentation of the imidazolidine nitroxides containing hydrogen atom in the 4-position of the heterocycle (HIMD) by PF resulting in the loss of the EPR signal. The mechanistic EPR, spectrophotometric, electrochemical and HPLC-MS studies support the assumption that the HIMD fragmentation is facilitated by the proton abstraction from the 4-position of the oxoammonium cation formed as a result of the initial one-electron HIMD oxidation. Increase in steric hindrance around the radical fragment by introducing ethyl substituents decreased the rate of ascorbate-induced HIMD reduction by more than 20 times, but did not affect the rate of ferricyanide-induced HIMD oxidation. This preferential sensitivity of HIMDs to oxidative processes has been used to detect peroxyl radicals in the presence of high concentration of the reducing agent, ascorbate. HIMD-based EPR probes capable to discriminate oxidative and reductive processes might find application in biomedicine and related fields for monitoring the oxidative stress and reactive radical species in biological systems.  相似文献   

4.
It is well known that oxygen enhances Che relaxation of free radical EPR probes through spin lattice and Heisenberg spin-spin interactions with consequent effect on the line height and width. The two relaxation processes have opposing effects on the signal heights and depend on the concentration of oxygen, the incident microwave power, and the presence of other paramagnetic species. During EPR studies of chemical, biochemical, and cellular processes involving free radicals, molecular oxygen has significant magnetic influence on the EPR signal intensity of the free radical species under investigation in addition to affecting the rates of production of the primary species and the stability of the spin adduct nitroxides. These effects are often overlooked and can cause artifacts and lead to erroneous interpretation. In the present study, the effects of oxygen and ferricyanide on the EPR signal height of stable and persistent spin adduct nitroxides at commonly employed microwave powers were examined. The results show that under commonly adopted EPR spectrometer instrumental conditions, artifactual changes in the EPR signal of spin adducts occur and the best way to avoid them is by keeping the oxygen level constant using a gas-permeable cell.  相似文献   

5.
《Free radical research》2013,47(9):1115-1122
Abstract

Potassium ferricyanide (PF), routinely employed for the oxidation of sterically-hindered hydroxylamines to nitroxides, is considered to be chemically inert towards the latter. In the present study, we report on an unexpected oxidative fragmentation of the imidazolidine nitroxides containing hydrogen atom in the 4-position of the heterocycle (HIMD) by PF resulting in the loss of the EPR signal. The mechanistic EPR, spectrophotometric, electrochemical and HPLC–MS studies support the assumption that the HIMD fragmentation is facilitated by the proton abstraction from the 4-position of the oxoammonium cation formed as a result of the initial one-electron HIMD oxidation. Increase in steric hindrance around the radical fragment by introducing ethyl substituents decreased the rate of ascorbate-induced HIMD reduction by more than 20 times, but did not affect the rate of ferricyanide-induced HIMD oxidation. This preferential sensitivity of HIMDs to oxidative processes has been used to detect peroxyl radicals in the presence of high concentration of the reducing agent, ascorbate. HIMD-based EPR probes capable to discriminate oxidative and reductive processes might find application in biomedicine and related fields for monitoring the oxidative stress and reactive radical species in biological systems.  相似文献   

6.
The use of triarylmethyl (trityl) free radical, TAM OX063, for detection of superoxide in aqueous solutions by electron paramagnetic resonance (EPR) spectroscopy was investigated. TAM is paramagnetic (EPR active), highly soluble in water and exhibits a single sharp EPR peak in aqueous media. It is also highly stable in presence of many oxidoreductants such as ascorbate and glutathione that are present in the biological systems. TAM reacts with superoxide with an apparent second order rate constant of 3.1 × 103 M−1 s−1. The specific reactivity of TAM with superoxide, which leads to loss of EPR signal, was utilized to detect the generation of superoxide in various chemical (light/riboflavin/electron/donor), enzymatic (xanthine/xanthine oxidase), and cellular (stimulated neutrophils) model systems. The changes in the EPR line-width, induced by molecular oxygen, were utilized in the simultaneous determination of consumption of oxygen in the model systems. The effects of flux of superoxide and concentration of TAM on the efficiency of detection of superoxide were studied. The use of TAM for detection of superoxide offers unique advantages namely, (i) the utilization of very low concentration of the probe, (ii) its stability to bioreduction, and (iii) its use in the simultaneous determination of concentrations of superoxide and oxygen.  相似文献   

7.
Electron paramagnetic resonance imaging (EPRI) allows detection and localization of paramagnetic spin probes in vivo and in real time. We have shown that nitroxide spin probes entrapped in the intracellular milieu can be imaged by EPRI. Therefore, with the development of a tumor-targetable vehicle that can efficiently deliver nitroxides into cells, it should be possible to use nitroxide spin probes to label and image cells in a tumor. In this study, we assess the potential of liposomes as a delivery vehicle for imaging probes. We demonstrate that liposomes can stably encapsulate nitroxides at very high concentrations (> 100 mM), at which nitroxides exhibit concentration-dependent quenching of their EPR signal—a process analogous to the quenching of fluorescent molecules. The encapsulating liposomes thus appear spectroscopically “dark”. When the liposomes are endocytosed and degraded by cells, the encapsulated nitroxides are liberated and diluted into the much larger intracellular volume. The consequent relief of quenching generates a robust intracellular nitroxide signal that can be imaged. We show that through endocytosis of nitroxide-loaded liposomes, CV1 cells can achieve intracellular nitroxide concentrations of ∼ 1 mM. By using tissue phantom models, we verify that this concentration is more than sufficient for in vivo EPR imaging.  相似文献   

8.
The respiratory burst and production of oxygen radicals by lymphocytes stimulated with phorbol myristate acetate (PMA) was studied and compared with that of polymorphonuclear leukocytes (PMN) by electron paramagnetic resonance (EPR) and spin trapping technique. Superoxide anion and hydroxyl radicals spin adducts of DMPO were detected in the stimulated PMN system, but only hydroxyl radical spin adducts of DMPO were detected in the stimulated lymphocyte system. It was proved by superoxide dismutase (SOD) and catalase that the hydroxyl radicals produced in the stimulated lymphocyte system came from superoxide anions, just like the hydroxyl radicals produced in the stimulated PMN.  相似文献   

9.
Fifteen chromonylrhodamine derivatives (CRs) were synthesized and the antioxidant activity levels were evaluated for the first time. The antioxidant activity potencies of these chromone derivatives were evaluated towards superoxide anion radicals, hydroxyl radicals and 2,2‐diphenyl‐1‐picrylhydrazyl radicals. Also, the total antioxidant capacity of the tested compounds was measured using the ferric‐ferrozine assay. The antioxidant activities were investigated using a chemiluminescence (CL) assay, spectrophotometry measurements, direct electron paramagnetic resonance (EPR) and the EPR spin‐trapping technique. The 5,5‐dimethyl‐ 1‐pyrroline‐1‐oxide (DMPO) was applied as spin trap. Eleven of the 15 chromone compounds exhibited a decrease in the CL accompanying the superoxide anion radical produced in anhydrous dimethylsulfoxide (DMSO), ranging from 71–94% at concentration of 1 mmol /L; four of these compounds enhanced light emission in the range 231–672%. Similarly, these compounds caused 28–58% inhibition in the intensity of the DMPO‐OOH radical EPR signal and the DMPO‐OH radical (from 12–48%). Furthermore, three of these compounds showed very good antioxidant response towards the DPPH radical (EC50: 0.51–0.56 µmol/L) and the high reduction potentials. These findings demonstrate that the chromone compounds tested may be considered as effective free radicals scavengers, a finding that is of great pharmacological importance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide (H2O2), have a diverse array of physiological and pathological effects within living cells depending on the extent, timing, and location of their production. For measuring ROS production in cells, the ESR spin trapping technique using cyclic nitrones distinguishes itself from other methods by its specificity for superoxide and hydroxyl radical. However, several drawbacks, such as the low spin trapping rate and the spontaneous and cell-enhanced decomposition of the spin adducts to ESR-silent products, limit the application of this method to biological systems. Recently, new cyclic nitrones bearing a triphenylphosphonium (Mito-DIPPMPO) or a permethylated β-cyclodextrin moiety (CD-DIPPMPO) have been synthesized and their spin adducts demonstrated increased stability in buffer. In this study, a comparison of the spin trapping efficiency of these new compounds with commonly used cyclic nitrone spin traps, i.e., 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and analogs BMPO, DEPMPO, and DIPPMPO, was performed on RAW 264.7 macrophages stimulated with phorbol 12-myristate 13-acetate. Our results show that Mito-DIPPMPO and CD-DIPPMPO enable a higher detection of superoxide adduct, with a low (if any) amount of hydroxyl adduct. CD-DIPPMPO, especially, appears to be a superior spin trap for extracellular superoxide detection in living macrophages, allowing measurement of superoxide production in unstimulated cells for the first time. The main rationale put forward for this extreme sensitivity is that the extracellular localization of the spin trap prevents the reduction of the spin adducts by ascorbic acid and glutathione within cells.  相似文献   

11.
《Free radical research》2013,47(3):236-243
Abstract

Novel silylated triarylmethyl (TAM) radicals based on TAM core CT-03 and their electron paramagnetic resonance (EPR) spectra are evaluated as a function of oxygen concentration. Combination of peak-to-peak linewidth of the EPR signal and electrochemical determination allows designing a method for oxygen quantification in phosphate buffer, dimethylsulfoxide, and dichloromethane, which can be extended to other solvents.  相似文献   

12.
Tetrathiatriarylmethyl (TAM) radicals represent soluble paramagnetic probes for biomedical electron paramagnetic resonance (EPR)-based spectroscopy and imaging. There is an increasing demand in the development of multifunctional, biocompatible and targeted trityl probes hampered by the difficulties in derivatization of the TAM structure. We proposed a new straightforward synthetic strategy using click chemistry for the covalent conjugation of the TAM radical with a water-soluble biocompatible carrier exemplified here by dextran. A set of dextran-grafted probes varied in the degrees of Finland trityl radical loading and dextran modification by polyethelene glycol has been synthesized. The EPR spectrum of the optimized macromolecular probe exhibits a single narrow line with high sensitivity to oxygen and has advantages over the unbound Finland trityl of being insensitive to interactions with albumin. In vivo EPR imaging of tissue oxygenation performed in breast tumor-bearing mouse using dextran-grafted probe demonstrates its utility for preclinical oximetric applications.  相似文献   

13.
《Free radical research》2013,47(3-6):187-195
Since 1971. when nitroxides were first reported to be bioreduced, several cellular enzymes, in addition to ascorbic acid. have been found to catalyze the reduction of nitroxides to their corresponding hydroxylami-nes. Numerous studies have demonstrated that cellular bioreduction of nitroxides are both dependent upon the structure of the nitroxide and cell type. For example, pyrrolidinyloxyls are considerably more resistant to bioreduction than their corresponding piperidinyloxyls. In addition, cellular levels of reductases present in freshly isolated rat hepatocytes are considerably greater than concentrations found in freshly isolated rat enterocytes. Thus, through the proper selection of a cell type and an appropriate nitroxide. one can study cellular-mediated free radical processes.

With the discovery that α-hydrogen-containing nitroxides, including 2, Z-dimethyl-S-hydroxy-l-pyrrolidinyloxyl (DMPO-OH) decompose rapidly in the presence of superoxide and thiols, the ability to determine if hydroxyl radical is generated during stimulation of human neutrophils, is in doubt. To explore the limits of spin trapping in this context. we have studied the effect of varying the rates of superoxide production. in the presence and absence of thiols, on the decomposition of DMPO-OH. In parallel studies, we have found that t-butyl α-methyl-4-pyridinyl-N-oxide nitroxide (4-POBN-CH3) will not degrade in the presence of superoxide and a thiol. From these studies. we have determined that if hydroxyl radicals were generated as an isolated event in the presence of a continual flow of superoxide. spin trapping might not be able to detect its formation. Otherwise. spin trapping should be able to measure hydroxyl radicals. if continually generated, during activation of human neutrophils.  相似文献   

14.
We report the synthesis of novel spin-labeled porphyrins containing isoindoline nitroxides (TMIO-APTPP and TMIO-APTSPP) and their manganese complexes (Mn-TMIO-APTPP and Mn-TMIO-APTSPP). These compounds represent potential new tools for electron paramagnetic resonance (EPR) as well as novel spin probes. Both TMIO-APTPP and TMIO-APTSPP have characteristic UV absorption peaks of free base porphyrin, while the characteristic absorption peaks of their manganese complexes Mn-TMIO-APTPP and Mn-TMIO-APTSPP shifted to shorter wavelengths. Electron paramagnetic resonance (EPR) spectroscopy indicated that these compounds all exhibit hyperfine splittings characteristic of EPR spectra of tetramethylisoindoline nitroxides, the typical nitroxide g values of approximately 2.006, and nitrogen isotropic hyperfine coupling constants (a(N) values) of about 14 G (293 K). The observed linewidths (La) for TMIO-APTSPP (0.73 G) and Mn-TMIO-APTSPP (0.65 G) in distilled water are significantly narrower than for TMIO-APTPP (1.475 G) and Mn-TMIO-APTPP (1.55 G) in chloroform.  相似文献   

15.
The effect of superoxide dismutase, catalase, metal-chelating agents and hydroxyl radical scavengers on the toxicity of alloxan to isolated ob/ob mouse pancreatic islets in vitro has been compared with the reported ability of such substances to protect against alloxan diabetes in vivo. Superoxide dismutase and catalase protected beta-cells of isolated pancreatic islets against alloxan cytotoxicity, as did the hydroxyl radical scavengers dimethyl sulfoxide (DMSO) and butanol. However, 1,3-dimethylurea and thiourea, that are recognised as effective hydroxyl radical scavengers and that protect animals against the diabetogenic effects of alloxan, were without effect. Similarly, desferrioxamine, that inhibits hydroxyl radical formation from alloxan in chemically defined systems, did not protect against alloxan toxicity. Diethylenetriamine pentaacetic acid, which does not inhibit hydroxyl radical formation from alloxan, also gave no significant protection. The results indicate a role for superoxide radical and hydrogen peroxide in the mechanism of toxicity of alloxan but do not support the involvement of the hydroxyl radical in this process. Alternative explanations must be sought for the ability of hydroxyl radical scavengers and metal-chelating agents to protect against alloxan toxicity in vivo.  相似文献   

16.
Although laboratory data clearly suggest a role for oxidants (dioxygen and free radicals derived from dioxygen) in the pathogenesis of many age-related and degenerative diseases (such as arthrosis and arthritis), methods to image such species in vivo are still very limited. This methodological problem limits physiopathologic studies about the role of those species in vivo, the effects of their regulation using various drugs, and the evaluation of their levels for diagnosis of degenerative diseases. In vivo electron paramagnetic resonance (EPR) imaging and spectroscopy are unique, noninvasive methods used to specifically detect and quantify paramagnetic species. However, two problems limit their application: the anatomic location of the EPR image in the animal body and the relative instability of the EPR probes. Our aim is to use EPR imaging to obtain physiologic and pathologic information on the mouse knee joint. This article reports the first in vivo EPR image of a small tissue, the mouse knee joint, with good resolution (≈ 160 μm) after intra-articular injection of a triarylmethyl radical EPR probe. It was obtained by combining EPR and x-ray micro-computed tomography for the first time and by taking into account the disappearance kinetics of the EPR probe during image acquisition to reconstruct the image. This multidisciplinary approach opens the way to high-resolution EPR imaging and local metabolism studies of radical species in vivo in different physiologic and pathologic situations.  相似文献   

17.
Electron paramagnetic resonance (EPR) spin-trapping and spin-probing techniques were applied to determine antioxidant activity of extracts of catkin, leaves, and spiny burs of Castanea sativa against physiologically relevant reactive species—superoxide and hydroxyl radical generated in simple chemical systems and hydrogen peroxide applied on erythrocytes. Efflux of K+ was used as a marker of membrane integrity. Chemical composition of extracts was analyzed using HPLC/DAD and LC/MS. Extracts showed high antioxidative capacity against superoxide but lower activity against hydroxyl radical. They protected fluidity and integrity of membranes of erythrocytes exposed to hydrogen peroxide. Levels of derivatives of ellagitannins showed positive correlation with the antioxidative activity of extracts. Therefore, ellagitannins from chestnut extracts could represent easily accessible natural antioxidants and beneficial component of human diet in pathophysiological conditions related to oxidative stress. In conclusion, EPR spectroscopy represents a valuable tool for evaluation of antioxidant activity in both hydrophilic and lipophilic media. This work was supported by the Federal Ministry of Education and Science of Bosnia and Herzegovina Grant No. 614300 and the Ministry of Science, Technology, and Development of Republic of Serbia Grant No. 143016. We would like to thank Ms. Ana Martinović on technical support.  相似文献   

18.
To clarify the effect of superoxide dismutase (SOD) on the formation of hydroxyl radical in a standard reaction mixture containing 15 microM of xanthone, 0.1 M of 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and 45 mM of phosphate buffer (pH 7.4) under UVA irradiation, electron paramagnetic resonance (EPR) measurements were performed. SOD enhanced the formation of hydroxyl radicals. The formation of hydroxyl radicals was inhibited on the addition of catalase. The rate of hydroxyl radical formation also slowed down under a reduced oxygen concentration, whereas it was stimulated by disodium ethylenediaminetetraacetate (EDTA) and diethyleneaminepentaacetic acid (DETAPAC). Above findings suggest that O(2), H(2)O(2), and iron ions participate in the reaction. SOD possibly enhances the formation of the hydroxyl radical in reaction mixtures of photosensitizers that can produce O(2)(-.).  相似文献   

19.
Recent reviews evidence that the naturally occurring compounds containing the chromone skeleton exhibit antiradical activities, providing protection against oxidative stress. The antioxidant activities of 13 new synthesized chromonyl‐2,4‐thiazolidinediones, chromonyl‐2,4‐imidazolidinediones and chromonyl‐2‐thioxoimidzolidine‐4‐ones were evaluated using in vitro antioxidant assays, including superoxide anion radical (), hydroxyl radical (), 2,2‐diphenyl‐1‐picryl‐hydrazyl free radical (DPPH?) scavenging capacity and total antioxidant capacity ferric ion reducing activity. Superoxide anion radical was produced using potassium superoxide/18‐crown‐6‐ether dissolved in dimethylsulfoxide, and the Fenton‐like reaction (Fe(II) + H2O2) was a generator of hydroxyl radicals. Chemiluminescence, spectrophotometry, electron paramagnetic resonance (EPR) and 5,5‐dimethyl‐1‐pyrroline‐N‐oxide (DMPO) as the spin trap were the measurement techniques. The results showed that the majority of the chromone derivatives tested showed a strong scavenging effect towards free radicals, similar to the chemiluminescence reaction with superoxide anion radical with a high activity, inhibition of the DMPO‐OOH radical EPR signal (24–58%), the DMPO‐OH radical EPR signal (4–75%) and DPPH radical EPR signal (6–100%) at 1 mmol/L. Several of the examined compounds exhibited the high reduction potentials. The results obtained show that the new synthesized chromone derivatives may directly scavenger reactive oxygen species and thus may play a protective role against oxidative damage. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Oxygen radicals have been implicated as important mediators of myocardial ischemic and reperfusion injury. A major product of oxygen radical formation is the highly reactive hydroxyl radical via a biological Fenton reaction. The sarcoplasmic reticulum is one of the major target organelles injured by this process. Using a oxygen radical generating system consisting of dihydroxyfumarate and Fe3+-ADP, we studied lipid peroxidation and Ca2+-ATPase of cardiac sarcoplasmic reticulum. Incubation of sarcoplasmic reticulum with dihydroxyfumarate plus Fe3+-ADP significantly inhibited enzyme activity. Addition of superoxide dismutase, superoxide dismutase plus catalase (15 micrograms/ml) or iron chelator, deferoxamine (1.25-1000 microM) protected Ca2+-ATPase activity. Time course studies showed that this system inhibited enzyme activity in 7.5 to 10 min. Similar exposure of sarcoplasmic reticulum to dihydroxyfumarate plus Fe3+-ADP stimulated malondialdehyde formation. This effect was inhibited by superoxide dismutase, catalase, singlet oxygen, and hydroxyl radical scavengers. EPR spin-trapping with 5,5-dimethyl-1-pyrroline-N-oxide verified production of the hydroxyl radical. The combination of dihydroxyfumarate and Fe3+-ADP resulted in a spectrum of hydroxyl radical spin trap adduct, which was abolished by ethanol, catalase, mannitol, and superoxide dismutase. The results demonstrate the role of oxygen radicals in causing inactivation of Ca2+-ATPase and inhibition of lipid peroxidation of the sarcoplasmic reticulum which could possibly be one of the important mechanisms of oxygen radical-mediated myocardial injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号