首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported that, in leukemia cells, the cytotoxicity of the anticancer agent N-(4-hydroxyphenyl)retinamide (4-HPR) is mediated by mitochondria-derived reactive oxygen species (ROS) and cardiolipin peroxidation. Here, we have analyzed at greater depth the 4-HPR-triggered molecular events, demonstrating that 4-HPR induces an early (15 min) increase in ceramide levels by sphingomyelin hydrolysis and later (from 1 h) by de novo synthesis. Using specific inhibitors of both pathways, we demonstrate that ceramide accumulation is responsible for early ROS generation, which act as apoptotic signalling intermediates leading to conformational activation of Bak and Bax, loss of mitochondrial membrane potential (ΔΨm), mitochondrial membrane permeabilization (MMP) and cell death. Enforced expression of Bcl-2 has no effect on 4-HPR-induced oxidative stress, but notably prevents mitochondrial alterations and apoptosis, indicating that Bcl-2 functions by regulating events downstream of ROS generation. In conclusion, our study delineates for the fist time the sequence and timing of the principal events induced by 4-HPR in leukemia cells and points to the potential use of modulators of ceramide metabolism as enhancers in 4-HPR-based therapies.  相似文献   

2.
4-(Hydroxyphenyl)retinamide (4-HPR) is a synthetic retinoid with a strong apoptotic effect towards different cancer cell lines in vitro, and it is currently tested in clinical trials. Increases of reactive oxygen species (ROS) and modulation of endogenous sphingolipid levels are well-described events observed upon 4-HPR treatment, but there is still a lack of understanding of their relationship and their contribution to cell death. LC-MS analysis of sphingolipids revealed that in human leukemia CCRF-CEM and Jurkat cells, 4-HPR induced dihydroceramide but not ceramide accumulation even at sublethal concentrations. Myriocin prevented the 4-HPR-induced dihydroceramide accumulation, but it did not prevent the loss of viability and increase of intracellular ROS production. On the other hand, ascorbic acid, Trolox, and vitamin E reversed 4-HPR effects on cell death but not dihydroceramide accumulation. NDGA, described as a lipoxygenase inhibitor, exerted a significantly higher antioxidant activity than vitamin E and abrogated 4-HPR-mediated ROS. It did not however rescue cellular viability. Taken together, this study demonstrates that early changes observed upon 4-HPR treatment, i.e., sphingolipid modulation and ROS production, are mechanistically independent events. Furthermore, the results indicate that 4-HPR-driven cell death may occur even in the absence of dihydroceramide or ROS accumulation. These observations should be taken into account for an improved design of drug combinations.  相似文献   

3.
In endothelium, reoxygenation after hypoxia (H/R) has been shown to induce production of reactive oxygen species (ROS) by complex III of the mitochondrial respiratory chain. The purpose of the present study was to test the involvement of ceramide in this phenomenon. Human umbilical vein endothelial cells underwent 2 h of hypoxia (PO2, approximately 20 mmHg) without glucose and 1 h of reoxygenation (PO2, approximately 120 mmHg) with glucose. ROS production was measured by the fluorescent marker 2',7'-dichlorodihydrofluorescein diacetate, and cell death by propidium iodide. We showed that 1) after 1 h of reoxygenation, fluorescence had risen and that ROS production was inhibited by desipramine, an inhibitor of sphingomyelinase, an enzyme responsible for ceramide production (126 +/- 7% vs. 48 +/- 12%, P < 0.05); 2) administration of ceramide (N-acetylsphingosine) per se (i.e., in the absence of H/R) induced ROS production (65 +/- 3%), which was inhibited by complex III inhibitor: antimycin A (24 +/- 3%, P < 0.0001), or stigmatellin (31 +/- 2%, P < 0.0001); 3) hypoxia/reoxygenation-induced ROS production was not affected by either ceramide-activated protein kinase inhibitor dimethyl aminopurine or mitochondrial permeability transition inhibitor cyclosporin A but was significantly inhibited by the antiapoptotic protein Bcl-2 (82 +/- 8%, P < 0.05); 4) ceramide-induced ROS production was also inhibited by Bcl-2 (41 +/- 4%, P < 0.0001). These results demonstrate that in endothelial cells submitted to hypoxia and glucose depletion followed by reoxygenation with glucose, the pathway implicated in mitochondrial complex III ROS production is ceramide dependent and is decreased by the antiapoptotic protein Bcl-2.  相似文献   

4.
Human cytochrome c oxidase subunit VIa polypeptide 1 (COX6A1) was identified as a novel suppressor of Bcl-2-associated X protein (Bax)-mediated cell death using yeast-based functional screening of a mammalian cDNA library. The overexpression of COX6A1 significantly suppressed Bax- and N-(4-hydroxyphenyl)retinamide (4-HPR)-induced apoptosis in yeast and human glioblastoma-derived U373MG cells, respectively. The generation of reactive oxygen species (ROS) in response to Bax or 4-HPR was inhibited in yeast and U373MG cells that expressed COX6A1, indicating that COX6A1 exerts a protective effect against ROS-induced cell damage. 4-HPR-induced mitochondrial translocation of Bax, release of mitochondrial cytochrome c, and activation of caspase-3 were markedly attenuated in U373MG cells that stably expressed COX6A1. Our results demonstrate that yeast-based functional screening of human genes for inhibitors of Bax-sensitivity in yeast identified a protein that not only suppresses the toxicity of Bax in yeast, but also has a potential role in protecting mammalian cells from 4-HPR-induced apoptosis.  相似文献   

5.
Induction of apoptosis in cancer cells has become the major focus of anti-cancer therapeutics development. WithaferinA, a major chemical constituent of Withania somnifera, reportedly shows cytotoxicity in a variety of tumor cell lines while its molecular mechanisms of action are not fully understood. We observed that withaferinA primarily induces oxidative stress in human leukemia HL-60 cells and in several other cancer cell lines. The withanolide induced early ROS generation and mitochondrial membrane potential (Δψmt) loss, which preceded release of cytochrome c, translocation of Bax to mitochondria and apoptosis inducing factor to cell nuclei. These events paralleled activation of caspases −9, −3 and PARP cleavage. WA also activated extrinsic pathway significantly as evidenced by time dependent increase in caspase-8 activity vis-à-vis TNFR-1 over expression. WA mediated decreased expression of Bid may be an important event for cross talk between intrinsic and extrinsic signaling. Furthermore, withaferinA inhibited DNA binding of NF-κB and caused nuclear cleavage of p65/Rel by activated caspase-3. N-acetyl-cysteine rescued all these events suggesting thereby a pro-oxidant effect of withaferinA. The results of our studies demonstrate that withaferinA induced early ROS generation and mitochondrial dysfunction in cancer cells trigger events responsible for mitochondrial -dependent and -independent apoptosis pathways.  相似文献   

6.
Drug-induced interphasic apoptosis in human leukemia cells is mediated through intracellular signaling pathways, of which the most proximal (initiating) event remains unclear. Indeed, both early ceramide generation and procaspase-8 cleavage have been individually identified as the initial apoptotic signaling events which precede the mitochondrial control of the apoptotic execution phase in Type II cells. In order to evaluate whether or not procaspase-8 cleavage is requisite for initial ceramide generation and rapid interphasic apoptosis, we investigated the chronological ordering of early ceramide generation and caspase-8 cleavage induced by daunorubicin (DNR) and 1-beta-D-arabinofuranosylcytosine (Ara-C) in U937 cells. We further evaluated the impact of these two drugs on initial ceramide generation and apoptosis in wild-type Jurkat cells and Jurkat clones mutated for caspase-8 and Fas-associated death domain. We show that while both DNR and Ara-C similarly induced early ceramide generation (within 5-20 min) and interphasic apoptosis in all cell models, caspase-8 cleavage was only observed farther downstream (4.5 h) and only in DNR-treated cells. Furthermore, neither DNR or Ara-C induced caspase-8 activation. These results demonstrate that caspase-8 cleavage is not requisite for the drug-induced activation of the ceramide-mediated interphasic apoptotic pathway in human Type II leukemic cells.  相似文献   

7.
Globular adiponectin (gAd), a truncated form of adipocyte-derived cytokine, stimulates RAW 264 cells to produce reactive oxygen species (ROS), which trigger an apoptotic cascade. In this study, we investigated the generation of intracellular and mitochondrial ROS in gAd-stimulated RAW 264 cells. Treatment with gAd efficiently induced the generation of intracellular and mitochondrial ROS, as detected by dichlorodihydrofluorescein diacetate and MitoSOX fluorescence, respectively. Furthermore, gAd treatment significantly increased 8-oxoguanine, a specific indicator of oxidative DNA damage. The transfection of RAW 264 cells with iNOS- and gp91phox-specific small interfering RNA reduced markedly the generation of intracellular, but not mitochondrial, ROS. Quantitative PCR revealed that the expression ratio of Bcl-2 to Bax was reduced in a time-dependent manner in gAd-treated RAW 264 cells. The overexpression of Bcl-2 markedly inhibited gAd-induced apoptosis in RAW 264 cells and also reduced both the intracellular and the mitochondrial ROS generation induced by gAd treatment. Moreover, the overexpression of Bcl-2 significantly suppressed gAd-induced NO secretion and NOS activity. In addition, the inhibition of NOS activity partially reduced the oxidative DNA damage induced by gAd. Taken together, these results demonstrate that the gAd-induced apoptotic pathway acting via ROS/RNS generation involves Bcl-2.  相似文献   

8.
We have shown previously that sulforaphane (SFN), a constituent of many edible cruciferous vegetables including broccoli, suppresses growth of prostate cancer cells in culture as well as in vivo by causing apoptosis, but the sequence of events leading to cell death is poorly defined. Using PC-3 and DU145 human prostate cancer cells as a model, we now demonstrate, for the first time, that the initial signal for SFN-induced apoptosis is derived from reactive oxygen species (ROS). Exposure of PC-3 cells to growth-suppressive concentrations of SFN resulted in ROS generation, which was accompanied by disruption of mitochondrial membrane potential, cytosolic release of cytochrome c, and apoptosis. All these effects were significantly blocked on pretreatment with N-acetylcysteine and overexpression of catalase. The SFN-induced ROS generation was significantly attenuated on pretreatment with mitochondrial respiratory chain complex I inhibitors, including diphenyleneiodonium chloride and rotenone. SFN treatment also caused a rapid and significant depletion of GSH levels. Collectively, these observations indicate that SFN-induced ROS generation is probably mediated by a nonmitochondrial mechanism involving GSH depletion as well as a mitochondrial component. Ectopic expression of Bcl-xL, but not Bcl-2, in PC-3 cells offered significant protection against the cell death caused by SFN. In addition, SFN treatment resulted in an increase in the level of Fas, activation of caspase-8, and cleavage of Bid. Furthermore, SV40-immortalized mouse embryonic fibroblasts (MEFs) derived from Bid knock-out mice displayed significant resistance toward SFN-induced apoptosis compared with wild-type MEFs. In conclusion, the results of the present study indicate that SFN-induced apoptosis in prostate cancer cells is initiated by ROS generation and that both intrinsic and extrinsic caspase cascades contribute to the cell death caused by this highly promising cancer chemopreventive agent.  相似文献   

9.
Ceramide signaling in fenretinide-induced endothelial cell apoptosis   总被引:6,自引:0,他引:6  
Stress stimuli can mediate apoptosis by generation of the lipid second messenger, ceramide. Herein we investigate the molecular mechanism of ceramide signaling in endothelial apoptosis induced by fenretinide (N-(4-hydroxyphenyl)retinamide (4-HPR)). 4-HPR, a synthetic derivative of retinoic acid that induces ceramide in tumor cell lines, has been shown to have antiangiogenic effects, but the molecular mechanism of these is largely unknown. We report that 4-HPR was cytotoxic to endothelial cells (50% cytotoxicity at 2.4 microm, 90% at 5.36 microm) and induced a caspase-dependent endothelial apoptosis. 4-HPR (5 microm) increased ceramide levels in endothelial cells 5.3-fold, and the increase in ceramide was required to achieve the apoptotic effect of 4-HPR. The 4-HPR-induced increase in ceramide was suppressed by inhibitors of ceramide synthesis, fumonisin B(1), myriocin, and l-cycloserine, and 4-HPR transiently activated serine palmitoyltransferase, demonstrating that 4-HPR induced de novo ceramide synthesis. Sphingomyelin levels were not altered by 4-HPR, and desipramine had no effect on ceramide level, suggesting that sphingomyelinase did not contribute to the 4-HPR-induced ceramide increase. Finally, the pancaspase inhibitor, t-butyloxycarbonyl-aspartyl[O-methyl]-fluoromethyl ketone, suppressed 4-HPR-mediated apoptosis but not ceramide accumulation, suggesting that ceramide is upstream of caspases. Our results provide the first evidence that increased ceramide biosynthesis is required for 4-HPR-induced endothelial apoptosis and present a molecular mechanism for its antiangiogenic effects.  相似文献   

10.

Background

Diallyl trisulfide (DATS) is one of the major constituents in garlic oil and has demonstrated various pharmacological activities, including antimicrobial, antihyperlipidemic, antithrombotic, and anticancer effects. However, the mechanisms of antiproliferative activity in leukemia cells are not fully understood. In this study, the apoptotic effects of DATS were investigated in human leukemia cells.

Results

Results of this study indicated that treatment with DATS resulted in significantly inhibited leukemia cell growth in a concentration- and time-dependent manner by induction of apoptosis. In U937 cells, DATS-induced apoptosis was correlated with down-regulation of Bcl-2, XIAP, and cIAP-1 protein levels, cleavage of Bid proteins, activation of caspases, and collapse of mitochondrial membrane potential. The data further demonstrated that DATS increased intracellular reactive oxygen species (ROS) generation, which was attenuated by pretreatment with antioxidant N-acetyl-l-cysteine (NAC), a scavenger of ROS. In addition, administration of NAC resulted in significant inhibition of DATS-induced apoptosis by inhibiting activation of caspases.

Conclusions

The present study reveals that the cytotoxicity caused by DATS is mediated by generation of ROS and subsequent activation of the ROS-dependent caspase pathway in U937 leukemia cells.  相似文献   

11.
The dihydroceramide, ceramide, sphingomyelin, lactosylceramide, and ganglioside species of A2780 human ovarian carcinoma cells treated with the synthetic retinoids N-(4-hydroxyphenyl)retinamide (fenretinide, 4-HPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) in culture were characterized by ESI-MS. We characterized 32 species of ceramide and dihydroceramide, 15 of sphingomyelin, 12 of lactosylceramide, 9 of ganglioside GM2, and 6 of ganglioside GM3 differing for the long-chain base and fatty acid structures. Our results indicated that treatment with both 4-HPR and 4-oxo-4-HPR led to a marked increase in dihydroceramide species, while only 4-oxo-4-HPR led to a minor increase of ceramide species. Dihydroceramides generated in A2780 cells in response to 4-HPR or 4-oxo-4-HPR differed for their fatty acid content, suggesting that the two drugs differentially affect the early steps of sphingolipid synthesis. Dihydroceramides produced upon treatments with the drugs were further used for the synthesis of complex dihydrosphingolipids, whose levels dramatically increased in drug-treated cells.  相似文献   

12.
Mitochondria play central roles in cellular metabolism and apoptosis and are a major source of reactive oxygen species (ROS). We investigated the role of ROS and mitochondria in radiation-induced apoptosis in multiple myeloma cells. Two distinct levels of ROS were generated following irradiation: a small increase observed early, and a pronounced late increase, associated with depletion of reduced glutathione (GSH) and collapse of mitochondrial membrane potential (deltapsi(m)). Exogenous ROS and caspase-3 induced deltapsi(m) drop and cytochrome c release from mitochondria, which could be prevented by molecular (dominant-negative caspase-9) and pharmacologic (zVAD-fmk) caspase inhibitors and overexpression of Bcl-2. Exogenous ROS also induced mitochondrial permeability transition (PT) pore opening and cytochrome c release in isolated mitochondria, which could be blocked by inhibition of PT with cyclosporin A. These results indicate that the late ROS production is associated with increased PT pore opening and decreased deltapsi(m), and GSH, events associated with caspase activation and cytochrome c release.  相似文献   

13.
Granulysin is a cytolytic molecule released by CTL via granule-mediated exocytosis. In a previous study we showed that granulysin induced apoptosis using both caspase- and ceramide-dependent and -independent pathways. In the present study we further characterize the biochemical mechanism for granulysin-induced apoptosis of tumor cells. Granulysin-induced death is significantly inhibited by Bcl-2 overexpression and is associated with a rapid (1-5 h) loss of mitochondrial membrane potential, which is not mediated by ceramide generation and is not inhibited by the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Ceramide generation induced by granulysin is a slow event, only observable at longer incubation times (12 h). Apoptosis induced by exogenous natural (C(18)) ceramide is truly associated with mitochondrial membrane potential loss, but contrary to granulysin, this event is inhibited by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Ceramide-induced apoptosis is also completely prevented by Bcl-2 overexpression. The nuclear morphology of cells dying after granulysin treatment in the presence of caspase inhibitors suggested the involvement of mitochondrial apoptosis-inducing factor (AIF) in granulysin-induced cell death. We demonstrate using confocal microscopy that AIF is translocated from mitochondria to the nucleus during granulysin-induced apoptosis. The majority of Bcl-2 transfectants are protected from granulysin-induced cell death, mitochondrial membrane potential loss, and AIF translocation, while a small percentage are not protected. In this small percentage the typical nuclear apoptotic morphology is delayed, being of the AIF type at 5 h time, while at longer times (12 h) the normal apoptotic morphology is predominant. These and previous results support a key role for the mitochondrial pathway of apoptosis, and especially for AIF, during granulysin-induced tumoral cell death.  相似文献   

14.
We are interested in the cytotoxic and proinflammatory effects of particulate pollutants in the respiratory tract. We demonstrate that methanol extracts made from diesel exhaust particles (DEP) induce apoptosis and reactive oxygen species (ROS) in pulmonary alveolar macrophages and RAW 264.7 cells. The toxicity of these organic extracts mimics the cytotoxicity of the intact particles and could be suppressed by the synthetic sulfhydryl compounds, N-acetylcysteine and bucillamine. Because DEP-induced apoptosis follows cytochrome c release, we studied the effect of DEP chemicals on mitochondrially regulated death mechanisms. Crude DEP extracts induced ROS production and perturbed mitochondrial function before and at the onset of apoptosis. This mitochondrial perturbation follows an orderly sequence of events, which commence with a change in mitochondrial membrane potential, followed by cytochrome c release, development of membrane asymmetry (annexin V staining), and propidium iodide uptake. Structural damage to the mitochondrial inner membrane, evidenced by a decrease in cardiolipin mass, leads to O-*2 generation and uncoupling of oxidative phosphorylation (decreased intracellular ATP levels). N-acetylcysteine reversed these mitochondrial effects and ROS production. Overexpression of the mitochondrial apoptosis regulator, Bcl-2, delayed but did not suppress apoptosis. Taken together, these results suggest that DEP chemicals induce apoptosis in macrophages via a toxic effect on mitochondria.  相似文献   

15.
A triterpenediol (TPD) comprising of isomeric mixture of 3α, 24-dihydroxyurs-12-ene and 3α, 24-dihydroxyolean-12-ene from Boswellia serrata induces apoptosis in cancer cells. An attempt was made in this study to investigate the mechanism of cell death by TPD in human leukemia HL-60 cells. It inhibited cell proliferation with IC50 ∼ 12 μg/ml and produced apoptosis as measured by various biological end points e.g. increased sub-G0 DNA fraction, DNA ladder formation, enhanced AnnexinV-FITC binding of the cells. Further, initial events involved massive reactive oxygen species (ROS) and nitric oxide (NO) formation, which were significantly inhibited by their respective inhibitors. Persistent high levels of NO and ROS caused Bcl-2 cleavage and translocation of Bax to mitochondria, which lead to loss of mitochondrial membrane potential (Δψm) and release of cytochrome c, AIF, Smac/DIABLO to the cytosol. These events were associated with decreased expression of survivin and ICAD with attendant activation of caspases leading to PARP cleavage. Furthermore, TPD up regulated the expression of cell death receptors DR4 and TNF-R1 level, leading to caspase-8 activation. These studies thus demonstrate that TPD produces oxidative stress in cancer cells that triggers self-demise by ROS and NO regulated activation of both the intrinsic and extrinsic signaling cascades.  相似文献   

16.
Cytochrome c release is a central step in the apoptosis induced by many death stimuli. Bcl-2 plays a critical role in controlling this step. In this study, we investigated the upstream mechanism of cytochrome c release induced by ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA14-1), a recently discovered small molecule inhibitor of Bcl-2. HA14-1 was found to induce cytochrome c release from the mitochondria of intact cells but not from isolated mitochondria. Cytochrome c release from isolated mitochondria requires the presence of both HA14-1 and exogenous Ca(2+). This suggests that both mitochondrial and extramitochondrial signals are important. In intact cells, treatment with HA14-1 caused Ca(2+) spike, change in mitochondrial membrane potential (Delta psi(m)) transition, Bax translocation, and reactive oxygen species (ROS) generation prior to cytochrome c release. Pretreatment with either EGTA acetoxymethyl ester or vitamin E resulted in a significant decrease in cytochrome c release and cell death induced by HA14-1. Furthermore pretreatment with RU-360, an inhibitor of the mitochondrial Ca(2+) uniporter, or with EGTA acetoxymethyl ester, but not with vitamin E, prevented the HA14-1-induced Delta psi(m) transition and Bax translocation. This suggests that ROS generation is an event that occurs after the Delta psi(m) transition and Bax translocation. Together these data demonstrate that the Ca(2+) spike, mitochondrial Bcl-2 presensitization, and subsequent Delta psi(m) transition, Bax translocation, and ROS generation are important upstream signals for cytochrome c release upon HA14-1 stimulation. The involvement of endoplasmic reticulum and mitochondrial signals suggests both organelles are crucial for HA14-1-induced apoptosis.  相似文献   

17.
A high resistance and heterogeneous response to conventional anti-cancer chemotherapies characterize malignant cutaneous melanoma, the most aggressive and deadly form of skin cancer. Withaferin A (WFA), a withanolide derived from the medicinal plant Withania somnifera, has been reported for its anti-tumorigenic activity against various cancer cells. For the first time, we examined the death-inducing potential of WFA against a panel of four different human melanoma cells and investigated the cellular mechanisms involved. WFA induces apoptotic cell death with various IC50 ranging from 1.8 to 6.1 μM. The susceptibility of cells toward WFA-induced apoptosis correlated with low Bcl-2/Bax and Bcl-2/Bim ratios. In all cell lines, the apoptotic process triggered by WFA involves the mitochondrial pathway and was associated with Bcl-2 down regulation, Bax mitochondrial translocation, cytochrome c release into the cytosol, transmembrane potential (ΔΨm) dissipation, caspase 9 and caspase 3 activation and DNA fragmentation. WFA cytotoxicity requires early reactive oxygen species (ROS) production and glutathione depletion, the inhibition of ROS increase by the antioxidant N-acetylcysteine resulting in complete suppression of mitochondrial and nuclear events. Altogether, these results support the therapeutic potential of WFA against human melanoma.  相似文献   

18.
Most anti-cancer agents induce apoptosis, however, a development of multidrug resistance in cancer cells and defects in apoptosis contribute often to treatment failure. Here, the mechanism of curcumin-induced apoptosis was investigated in human leukemia HL60 cells and their HL60/VCR multidrug-resistant counterparts. In both cell lines curcumin induced a bi-phasic ceramide generation with a slow phase until 6 h followed by a more rapid one. The level of the ceramide accumulation correlated inversely with the cell viability. We found that the ceramide elevation resulted from multifarious changes of the activity of sphingolipid-modifying enzymes. In both cell lines curcumin induced relatively fast activation of neutral sphingomyelinase (nSMase), which peaked at 3 h, and was followed by inhibition of sphingomyelin synthase activity. In addition, in HL60/VCR cells the glucosylceramide synthase activity was diminished by curcumin. This process was probably due to curcumin-induced down-regulation of P-gp drug transporter, since cyclosporine A, a P-gp blocker, also inhibited the glucosylceramide synthase activity. Inhibition of nSMase activity with GW4869 or silencing of SMPD3 gene encoding nSMase2 reversed the curcumin-induced inhibition of sphingomyelin synthase without affecting the glucosylceramide synthase activity. The early ceramide generation by nSMase was indispensable for the later lipid accumulation, modulation of Bax, Bcl-2 and caspase 3 levels, and for reduction of cell viability in curcumin-treated cells, as all these events were inhibited by GW4869 or nSMase2 depletion. These data indicate that the early ceramide generation by nSMase2 induced by curcumin intensifies the later ceramide accumulation via inhibition of sphingomyelin synthase, and controls pro-apoptotic signaling.  相似文献   

19.
The mechanism of apoptosis induced by human galectin-1, a mammalian beta-galactoside-binding protein with a remarkable cytotoxic effect on activated peripheral T cells and tumor T cell lines has been extensively investigated in this study. Here we first show that galectin-1 initiate the acid sphingomyelinase mediated release of ceramide and this event is critical in the further steps. Elevation of ceramide level coincides with exposure of phosphatidylserine on the outer cell membrane. The downstream events, decrease of Bcl-2 protein amount, depolarization of the mitochondria and activation of the caspase 9 and caspase 3 depend on production of ceramide. All downstream steps, including production of ceramide, require the generation of membrane rafts and the presence of two tyrosine kinases, p56(lck) and ZAP70. Based on our findings we suggest a model of the mechanism of galectin-1 triggered cell death.  相似文献   

20.
Our recent studies have shown that the de novo sphingolipids play a role in apoptosis of photosensitized cells. To elucidate the involvement of the de novo sphingolipids in reactive oxygen species (ROS) production and mitochondrial depolarization during apoptosis, the stress inducer photodynamic therapy (PDT) with the photosensitizer Pc 4 was used. In Jurkat cells PDT-triggered ROS production or mitochondrial membrane potential (deltapsi(m)) loss was not prevented by the de novo sphingolipid synthesis inhibitor ISP-1. However, PDT + C16-ceramide led to enhanced mitochondrial depolarization and DEVDase activation. The superoxide dismutase mimic manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) protected Jurkat cells from ROS generation and apoptosis, but not from deltapsi(m) reduction. Sphinganine or C16-ceramide counteracted MnTBAP-induced protection from apoptosis in Jurkat, as well as CHO cells. In LY-B cells, CHO-derived mutants deficient in serine palmitoyltransferase (SPT) activity and the de novo sphingolipid synthesis, mitochondrial depolarization, but not ROS generation, was suppressed post-PDT. In LY-B cells transfected with the SPT component LCB1, deltapsi(m) collapse post-PDT was restored. The data support the following hypotheses: MnTBAP protects against apoptosis via steps downstream of deltapsi(m) loss; de novo sphingolipids are not required for ROS generation, but can play a role in deltapsi(m) dissipation in photosensitized apoptotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号