首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gastrointestinal glutathione peroxidase (GI-GPx) is believed to prevent absorption of hydroperoxides. GI-GPx is expressed in the intestine together with the other three glutathione peroxidase isoenzymes, raising the question of the physiological role of the different GPx types. We therefore studied the cellular and subcellular distribution of GI-GPx in normal and malignant tissue obtained from patients with colorectal cancer or familial polyposis by immunohistochemistry. In healthy ileum epithelium GI-GPx was preferentially enriched in Paneth cells. In unaffected crypts of colon and rectum, it decreased gradually from the ground to the luminal surface. In crypt ground, GI-GPx was uniformly distributed, whereas in cells at the luminal surface it was concentrated in structures capping the nuclei at the apical pole. In colorectal cancer, GI-GPx expression depended on the stage of malignant transformation. In early stages, GI-GPx was increased and pronouncedly associated with the vesicular structures. In progressed stages of malignancy, structures disintegrated and GI-GPx distribution became more diffuse. These observations support the hypothesis that GI-GPx, apart from being a barrier against hydroperoxide absorption, might be involved in cell growth and differentiation.  相似文献   

2.
The gastrointestinal glutathione peroxidase (GI-GPx) is the fourth member of the GPx family. In rodents, it is exclusively expressed in the gastrointestinal tract, in humans also in liver. It has, therefore, been discussed to function as a primary barrier against the absorption of ingested hydroperoxides. A vital function of GI-GPx can be deduced from the unusual stability of its mRNA under selenium-limiting conditions, the presence of low amounts of GI-GPx protein in selenium deficiency where cGPx is absent, and the fast reappearance of the GI-GPx protein upon refeeding of cultured cells with selenium compared to the slower reappearance of cGPx protein. Furthermore, the Secis efficiency of GI-GPx is low when compared to cGPx and PHGPx. It is, however, almost independent of the selenium status of the cells tested. All these characteristics rank GI-GPx high in the hierarchy of selenoproteins and point to a role of GI-GPx which might be more crucial than that of cGPx, at least in the gastrointestinal system.  相似文献   

3.
4.
Selenoproteins decrease upon selenium-deprivation according to their hierarchical ranking. Whereas classical glutathione peroxidase (cGPx) responds to decreased selenium supply with a complete loss of protein and a marked reduction of mRNA levels, gastrointestinal glutathione peroxidase (GI-GPx) remains detectable and its mRNA is stable. The impact of the 3'UTR on cGPx and GI-GPx mRNA stability was studied in stably transfected HepG2 cells with combinations of mutually exchanged coding regions and 3'UTRs of human cGPx and GI-GPx. Stability of chimeric mRNAs was measured by competitive RT-PCR. We found that GI-GPx 3'UTR is sufficient to stabilize its own mRNA but not that of cGPx.  相似文献   

5.
There is great medical need to develop novel therapies for treatment of human hepatitis C virus (HCV). By gene expression analysis of three HCV-subgenomic RNA replicon cell lines, we identified cellular proteins whose expression is affected by the presence of HCV and therefore may serve as drug targets. Data from cDNA array filter hybridization, as well as from Northern and Western blotting, revealed that the gastrointestinal-glutathione peroxidase (GI-GPx) was drastically down-regulated (up to 20-fold) in all replicon cell lines tested. Concomitantly, total cellular glutathione peroxidase activity was drastically reduced, which rendered these human liver cells more susceptible toward oxidative stress. Interferon alpha caused down-regulation of the HCV-replicon followed by recovery of GI-GPx expression to nearly normal levels. Furthermore, expression of GI-GPx in replicon cells by gene transduction caused down-regulation of HCV RNA in a dose-dependent manner. Moreover, activating the endogenous gene coding for GI-GPx by all-trans-retinoic acid (RA) was sufficient to cause down-regulation of the HCV replicon. A small interfering RNA duplex abrogated GI-GPx up-regulation by RA and concomitantly suppression of HCV. The RA effect was dependent on the presence of sodium selenite, was reversible, and was independent of RNA-activated protein kinase. Taken together, these results show that HCV inhibits the expression of GI-GPx in replicon cells to promote its intracellular propagation. Modulation of GI-GPx activity may open new avenues of treatment for HCV patients.  相似文献   

6.
7.
8.
9.
Analysis of the selenoproteome identified five glutathione peroxidases (GPxs) in mammals: cytosolic GPx (cGPx, GPx1), phospholipid hydroperoxide GPx (PHGPX, GPx4), plasma GPx (pGPX, GPx3), gastrointestinal GPx (GI-GPx, GPx2) and, in humans, GPx6, which is restricted to the olfactory system. GPxs reduce hydroperoxides to the corresponding alcohols by means of glutathione (GSH). They have long been considered to only act as antioxidant enzymes. Increasing evidence, however, suggests that nature has not created redundant GPxs just to detoxify hydroperoxides. cGPx clearly acts as an antioxidant, as convincingly demonstrated in GPx1-knockout mice. PHGPx specifically interferes with NF-kappaB activation by interleukin-1, reduces leukotriene and prostanoid biosynthesis, prevents COX-2 expression, and is indispensable for sperm maturation and embryogenesis. GI-GPx, which is not exclusively expressed in the gastrointestinal system, is upregulated in colon and skin cancers and in certain cultured cancer cells. GI-GPx is a target for Nrf2, and thus is part of the adaptive response by itself, while PHGPx might prevent cancer by interfering with inflammatory pathways. In conclusion, cGPx, PHGPx and GI-GPx have distinct roles, particularly in cellular defence mechanisms. Redox sensing and redox regulation of metabolic events have become attractive paradigms to unravel the specific and in part still enigmatic roles of GPxs.  相似文献   

10.
Selenoprotein mRNAs are particular in several aspects. They contain a specific secondary structure in their 3'UTR, called Secis (selenocysteine inserting sequence), which is indispensable for selenocysteine incorporation, and they are degraded under selenium-limiting conditions according to their ranking in the hierarchy of selenoproteins. In the familiy of selenium-dependent glutathione peroxidases (GPx) the ranking is GI-GPx > or = PHGPx > cGPx = pGPx. This phenomenon was studied by mutually combining the coding regions of GI-GPx, PHGPx and cGPx with their 3'UTRs. HepG2 cells were stably transfected with the resulting constructs. Expression of glutathione peroxidases was estimated by activity measurement and Western blotting, the selenium-dependent mRNA stability by real-time PCR. Whereas 3'UTRs from stable PHGPx and GI-GPx could be exchanged without loss of stability, they were not able to stabilize cGPx mRNA. cGPx 3'UTR rendered GI-GPx and PHGPx mRNA unstable. Thus, cGPx mRNA contains selenium-responsive instability elements in both the translated and the untranslated region, which cannot be compensated by one of the stable homologs. Stabilizing efficiency of an individual GPx 3'UTR did not correlate with the efficiency of selenocysteine incorporation. PHGPx 3'UTR was equally effective as cGPx 3'UTR in enhancing GPx activity in all constructs, while GI-GPx 3'UTR showed a markedly lower efficacy. We conclude that different mRNA sequences and/or RNA-binding proteins might regulate mRNA stability and translation of selenoprotein mRNA.  相似文献   

11.
Summary Luminal secretions within colorectal cancers have been assumed to be the counterpart of normal goblet cell mucin. The aim of this study was to establish whether secretory material within colorectal cancers may in fact be traced to different lineages: goblet cells and columnar cells. The distribution of the apomucins MUC1 and MUC2, non-O-acetylated sialic acid and the carbohydrate structures sialosyl Tn, Tn, Lewisx, sialosyl Lewisx and Lewisy was studied in normal colorectal mucosa and colorectal cancer specimens using standard histochemical techniques. Unmasking of MUC1 and MUC2 was achieved using periodic acid and saponification-neuraminidase-periodic acid pretreatment respectively. Within normal and malignant epithelium, correlations and/or co-localization could be demonstrated for goblet cells with MUC2, non-O-acetylated sialic acid, sialosyl Tn, Tn (Golgi region) and sialosyl Lewisx, and for columnar cells with MUC1, Lewisx, sialosyl Lex, Tn (cytoplasm) and Lewisy (UEA-1). The goblet cell spectrum was associated with mucin-like (type I) luminal secretions within cancers, whereas the columnar cell spectrum characterized non-mucin-like (type II) secretions and intracytoplasmic lumina. These data indicate that colorectal cancer mucin can be broadly separated into two types: secretory mucin linked to cells of goblet lineage and up-regulated membrane-associated mucin of presumed columnar cell origin. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
Low selenium (Se) status has been associated with increased risk of colorectal cancer (CRC). Se is present as the amino acid selenocysteine in selenoproteins, such as the glutathione peroxidases. Se incorporation requires specific RNA structures in the 3' untranslated region (3'UTR) of the selenoprotein mRNAs. A single nucleotide polymorphism (SNP) occurs at nucleotide 718 (within the 3'UTR) in the glutathione peroxidase 4 gene. In the present study, Caco-2 cells were transfected with constructs in which type 1 iodothyronine deiodinase coding region was linked to the GPx4 3'UTR with either C or T variant at position 718. Higher reporter activity was observed in cells expressing the C variant compared to those expressing the T variant, under either Se-adequate or Se-deficient conditions. In addition, a disease association study was carried out in cohorts of patients with either adenomatous polyps, colorectal adenocarcinomas and in healthy controls. A higher proportion of individuals with CC genotype at the GPx4 T/C 718 SNP was present in the cancer group, but not in the polyp group, compared with the control group (P < 0.05). The present data demonstrate the functionality of the GPx4 T/C 718 SNP and suggest that T genotype is associated with lower risk of CRC.  相似文献   

13.
Setaria cervi a bovine filarial parasite secretes selenium glutathione peroxidase during in vitro cultivation. A significant amount of enzyme activity was detected in the somatic extract of different developmental stages of the parasite. Among different stages, microfilariae showed a higher level of selenium glutathione peroxidase activity followed by males then females. However, when the activity was compared in excretory secretory products of these stages males showed higher activity than microfilariae and female worms. The enzyme was purified from female somatic extract using a combination of glutathione agarose and gel filtration chromatography, which migrated as a single band of molecular mass approximately = 20 kDa. Selenium content of purified enzyme was estimated by atomic absorption spectroscopy and found to be 3.5 ng selenium/microg of protein. Further, inhibition of enzyme activity by potassium cyanide suggested the presence of selenium at the active site of enzyme. This is the first report of identification of selenium glutathione peroxidase from any filarial parasite.  相似文献   

14.
《Free radical research》2013,47(11-12):1245-1266
Abstract

The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.  相似文献   

15.
Circu ML  Aw TY 《Free radical research》2011,45(11-12):1245-1266
The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.  相似文献   

16.
Based on animal models, dietary polyphenols are predicted to be promising chemopreventive agents in humans. Allspice, clove, and thyme extracts as well as defined dietary polyphenolic compounds were, therefore, tested for their ability to activate mechanisms related to phase 1 enzymes, i.e., the PXR-regulated CYP3A4 promoter, and phase 2 enzymes, i.e. the EpRE-regulated promoters of gastrointestinal glutathione peroxidase (GI-GPx) and heme oxygenase-1 (HO-1), examples of Nrf2-regulated genes. From the compounds tested, clove and thyme extracts as well as curcumin and resveratrol activated the PXR. PXR activation correlated with the activation of the CYP3A4 promoter in the case of thyme extract, curcumin, and resveratrol, but not in the case of clove extract. Allspice extract, EGCG, and quercetin did not activate PXR but enhanced CYP3A4 promoter activity. Thyme extract and quercetin activated the EpRE of HO-1. Both significantly activated the GI-GPx promoter, effects that depended on a functional EpRE. Resveratrol did not activate the isolated EpRE but enhanced the GI-GPx promoter activity, whereas clove extract even inhibited it. It is concluded that individual polyphenols as well as polyphenol-rich plant extracts may affect phase 1 and 2 enzyme expression by distinct mechanisms that must be elucidated, before potential health effects can reliably be predicted.  相似文献   

17.
We investigated glutathione level, activities of selenium independent GSH peroxidase, selenium dependent GSH peroxidase, GSH S-transferase, GSH reductase and the rate of lipid peroxidation expressed as the level of malondialdehyde in liver tissues obtained from patients diagnosed with cirrhosis or hepatocellular carcinoma. GSH level was found to be lower in malignant tissues compared to adjacent normal tissues and it was higher in cancer than in cirrhotic tissue. Non-Se-GSH-Px activity was lower in cancer tissue compared with adjacent normal liver or cirrhotic tissue, while Se-GSH-Px activity in cancer was found to be similar to its activity in cirrhotic tissue and lower compared to control tissue. An increase in GST activity was observed in cirrhotic tissue compared with cancer tissue, whereas the GST activity in cancer was lower than in adjacent normal tissue. The activity of GSH-R was similar in cirrhotic and cancer tissues, but higher in cancer tissue compared to control liver tissue. An increased level of MDA was found in cancer tissue in comparison with control tissue, besides its level was higher in cancer tissue than in cirrhotic tissue. Our results show that the antioxidant system of cirrhosis and hepatocellular carcinoma is severely impaired. This is associated with changes of glutathione level and activities of GSH-dependent enzymes in liver tissue. GSH and enzymes cooperating with it are important factors in the process of liver diseases development.  相似文献   

18.
The administration of chemotherapeutic agents for colorectal carcinoma is associated with an increase in oxidative stress and a concomitant decrease in antioxidant and element levels in the blood. This study investigated the effects of 5-fluorouracil (5-FU) chemotherapy on the levels of lipid peroxidation, reduced glutathione (GSH), glutathione peroxidase (GSH-Px), antioxidant vitamins, and elements in colorectal cancer patients. Twelve patients with newly diagnosed colorectal carcinoma and 12 healthy subjects were included in this study. Blood samples were collected from both the healthy controls and patients. 5-FU was intravenously administered to the patients for 6 weeks, and blood samples were collected again from the treatment group. In the patient group, lipid peroxidation levels were increased in both the plasma and erythrocyte samples, whereas GSH-Px activity and concentrations of GSH, vitamin E, and β-carotene in erythrocytes were decreased. The oxidant, antioxidant, and plasma calcium values were lower in 5-FU-treated patients than in the controls. Plasma vitamin A, chloride, sodium, and potassium concentrations did not change with 5-FU treatment. In conclusion, oxidative stress in patients with newly diagnosed colorectal cancer is attributable to the disease and not to 5-FU treatment. Blood vitamin E, β-carotene, GSH, and GSH-Px levels could be useful as early biomarkers of the prognosis of colorectal cancer patients.  相似文献   

19.
《Free radical research》2013,47(12):1446-1457
Enhanced level of nuclear erythroid-related factor-2 (Nrf2) has been associated with cancer chemo/radioresistance. Therefore, the role of Nrf2 in radiosensitization of malignant cells induced by a combination of 2-deoxy-D-Glucose (2-DG) and 6-aminonicotinamide (6-AN) was investigated. Two established human malignant cells lines namely KB (head and neck squamous carcinoma) and BMG-1 (cerebral glioma) were used. Following treatment with a combination of 2-DG (5 mM) and 6-AN (5 μM), irradiated (2Gy) KB and BMG-1 cells were assessed for protein level of Nrf2, Keap1 and γ-glutamylcysteine synthetase (γ-GCS) by western blotting and mRNA expression of γ-GCS, glutathione reductase (GR) and glutathione peroxidase (GPx1) by RT-PCR at 24 hours post treatment. A significant decrease in the level of Nrf2 with a concomitant increase in Keap1 was observed in both the irradiated malignant cells at 24 hours following treatment with combination (2-DG + 6-AN). Down regulation of γ-GCS, GR and GPx1 at 24 hours following treatment with combination (2-DG + 6-AN) resulted in abrogation of glutathione (GSH)-mediated defense in both the irradiated malignant cells. Eventual accumulation of ROS led to radiosensitization of both the malignant cells. These results indicate that deregulated Nrf2-Keap1 signalling leads to the radiosensitization of malignant cells due to abrogated glutathione defense. Metabolic modification-mediated down regulation of Nfr2 and its downstream signalling may have a potential of improving tumour radiotherapy.  相似文献   

20.
Decorin is generally recognized as a tumor suppressing molecule. Nevertheless, although decorin has been shown to be differentially expressed in malignant tissues, it has often remained unclear whether, in addition to non-malignant stromal cells, cancer cells also express it. Here, we first used two publicly available databases to analyze the current information about decorin expression and immunoreactivity in normal and malignant human colorectal tissue samples. The analyses demonstrated that decorin expression and immunoreactivity may vary in cancer cells of human colorectal tissues. Therefore, we next examined decorin expression in normal, premalignant and malignant human colorectal tissues in more detail using both in situ hybridization and immunohistochemistry for decorin. Our results invariably demonstrate that malignant cells within human colorectal cancer tissues are devoid of both decorin mRNA and immunoreactivity. Identical results were obtained for cells of neuroendocrine tumors of human colon. Using RT-qPCR, we showed that human colon cancer cell lines are also decorin negative, in accordance with the above in vivo results. Finally, we demonstrate that decorin transduction of human colon cancer cell lines causes a significant reduction in their colony forming capability. Thus, strategies to develop decorin-based adjuvant therapies for human colorectal malignancies are highly rational.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号