首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidative deamination by hydrogen peroxide in the presence of metals   总被引:1,自引:0,他引:1  
Various amines, including lysine residue of bovine serum albumin, were oxidatively deaminated to form the corresponding aldehydes by a H 2 O 2 /Cu 2+ oxidation system at physiological pH and temperature. The resulting aldehydes were measured by high-performance liquid chromatography. We investigated the effects of metal ions, pH, inhibitors, and O 2 on the oxidative deamination of benzylamine by H 2 O 2 . The formation of benzaldehyde was the greatest with Cu 2+ , and catalysis occurred with Co 2+ , VO 2+ , and Fe 3+ . The reaction was greatly accelerated as the pH value rose and was markedly inhibited by EDTA and catalase. Dimethyl sulfoxide and thiourea, which are hydroxyl radical scavengers, were also effective in inhibiting the generation of benzaldehyde, indicating that the reaction is a hydroxyl radical-mediated reaction. Superoxide dismutase greatly stimulated the reaction, probably due to the formation of hydroxyl radicals. O 2 was not required in the oxidation, and instead slightly inhibited the reaction. We also examined several oxidation systems. Ascorbic acid/O 2 /Cu 2+ and hemoglobin/H 2 O 2 systems also converted benzylamine to benzaldehyde. The proposed mechanism of the oxidative deamination by H 2 O 2 /Cu 2+ system is discussed.  相似文献   

2.
The differing effects of O-methylated catecholamines and their dihydroxyphenyl precursors on the production of ?OH were quantified using a previously established specific salicylate hydroxylation assay in conjunction with a sensitive electrochemical detection system. The production of ?OH by the Fenton reaction was diminished significantly by O-methylated catecholamines (O-methyldopa, O-methyldopamine, O-methyltyrosine, and N-acetyl-O-methyldopamine), whereas radical production was augmented by dihydroxyphenyls (DOPA, dopamine, and N-acetyldopamine), including those with methylated side chains (N-methyldopamine and α-methyldopa). Monohydroxyphenyls such as octopamine, tyramine, tyrosine, and α-methyltyrosine had little or no effect on radical production. These data show that a methyl group positioned on the side chain of a catecholamine does not alter its pro-oxidant behavior, while a methyl group positioned on the aromatic ring renders the catecholamine sterically or kinetically unfavorable for coordination with transition metals, thus preventing the promotion of Fenton chemistry. These results highlight the importance of O-methylation in forming catechols that are less reactive than their dihydroxyphenyl precursors. Thus, factors regulating the methylation of brain catecholamines may play a crucial role in mediating neuronal integrity during aging and in the pathogenesis of certain neurodegenerative disorders. Competitive side-chain methylation reactions may sustain or perpetuate some dihydroxyphenyls, creating an oxidatively less favorable environment for cells than would result from compounds formed by O-methylation.  相似文献   

3.
The competition method in which the Fenton reaction is employed as an OH radical generator and deoxyribose as a detecting molecule, has been used to determine the rate constants for reactions of the OH radical with its scavengers. Nonlinear competition plots were obtained for those scavengers which reacted with the Fenton reagents (Fe2+ or H2O2). Ascorbic acid is believed to overcome this problem. We have investigated the kinetics of deoxyribose degradation by -OH radicals generated by the Fenton reaction in the presence of ascorbic acid, and observed that the inclusion of ascorbic acid in the Fenton system greatly increased the rate of OH radical generation. As a result, the interaction between some scavengers and the Fenton reagents became negligeable and linear competition plots of A7A vs scavenger concentrations were obtained. The effects of experimental conditions such as, the concentrations of ascorbic acid, deoxyribose, H2O2 and Fe2+-EDTA, the EDTA/Fe2+ ratio as well as the incubation time, on the deoxyribose degradation and the determination of the rate constant for mercaptoethanol chosen as a reference compound were studied. The small standard error, (6.76± 0.21) ±' 109M-1s-1 observed for the rate constant values for mercaptoethanol determined under 13 different experimental conditions, indicates the latter did not influence the rate constant determination. This is in fact assured by introducing a term, kx, into the kinetic equation. This term represents the rate of-OH reactions with other reagents such as ascorbic acid, Fe2+-EDTA, H2O2 etc. The agreement of the rate constants obtained in this work with that determined by pulse radiolysis techniques for cysteine, thiourea and many other scavengers, suggests that this simple competition method is applicable to a wide range of compounds, including those which react with the Fenton reagents and those whose solubility in water is low.  相似文献   

4.
The degradation of 2,4,6-tribromophenol (TBP) by biological and chemical treatments was studied. Biological treatment involved the use of Laetoporeus sulfureus, Gloephyllum trabeum, and Ganoderma australe in liquid culture. Despite the inhibitory effects of TBP on the fungal growth, these fungi were able to degrade TBP after 15 days of biotreatment. At 66, 116, and 183 μ M TBP, the degradation by G. australe was the most efficient (71% to 77%), whereas G. trabeum and L. sulfureus degraded between 50% and 60% of three TBP concentrations. The removal of organic bromine reached values of 50% in all cases. The chemical treatment (1,2-dihydroxybenzene-assisted Fenton reaction) achieved up to 90% of TBP degradation. However, only 40% of TBP was mineralized and the toxicity level did not undergo changes during the chemical treatment. On the other hand, a 30% reduction in toxicity was obtained with a combined chemical-biological treatment.  相似文献   

5.
Brown rot fungi degrade wood, in initial stages, mainly through hydroxyl radicals (•OH) produced by Fenton reactions. These Fenton reactions can be promoted by dihydroxybenzenes (DHBs), which can chelate and reduce Fe(III), increasing the reactivity for different substrates. This mechanism allows the extensive degradation of carbohydrates and the oxidation of lignin during wood biodegradation by brown rot fungi. To understand the enhanced reactivity in these systems, kinetics experiments were carried out, measuring •OH formation by the spin-trapping technique of electron paramagnetic resonance spectroscopy. As models of the fungal DHBs, 1,2-dihydroxybenzene (catechol), 2,3-dihydroxybenzoic acid and 3,4-dihydroxybenzoic acid were utilized as well as 1,2-dihydroxy-3,5-benzenedisulfonate as a non-Fe(III)-reducing substance for comparison. Higher amounts and maintained concentrations of •OH were observed in the driven Fenton reactions versus the unmodified Fenton process. A linear correlation between the logarithms of complex stability constants and the •OH production was observed, suggesting participation of such complexes in the radical production.  相似文献   

6.
Fenton反应及其可能的活性产物   总被引:2,自引:0,他引:2  
活性氧对许多生物分子,如脂质、蛋白质和DNA等均可引起损伤,它与许多疾病过程相联系.由超氧阴离子自由基和过氧化氢所引起的许多损伤被认为与它们转变为反应活性更强的组分有关,这些组分包括羟自由基及可能的高价铁组分.实验材料及理论结果表明,当铁盐与过氧化氢混合时,除羟自由基产生以外,高价铁组分也被认为同时产生.Fenton试剂的活性中间体是一亲核加合物,其反应活性及其产物不同于游离态羟自由基的反应活性及产物.Fenton试剂的产物分布依赖于不同的过渡金属离子、不同的配位体、不同的反应底物以及不同的溶剂基体效应.  相似文献   

7.
比色法测定Fenton反应产生的羟自由基及其应用   总被引:46,自引:0,他引:46  
Fenton反应产生的羟自由基与二甲亚砜反应,生成甲基亚磺酸,再与坚牢蓝BB盐反应生成偶氮砜,比色法测定其含量可间接测定OH·的生成量. 通过对测定条件的研究,得到最佳实验方案. 抗氧化剂药物硫脲和抗坏血酸与羟自由基清除率具有明显的量效关系. 测定了核桃、黑芝麻等几种天然食物的水提取物清除羟自由基的功能. 此法可用于羟自由基清除剂的筛选.  相似文献   

8.
Phosvitin, a phosphoprotein known as an iron-carrier in egg yolk, binds almost all the yolk iron. In this study, we investigated the effect of phosvitin on Fe(II)-catalyzed hydroxyl radical (?OH) formation from H2O2 in the Fenton reaction system. Using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and deoxyribose degradation assays, we observed by both assays that phosvitin more effectively inhibited ?OH formation than iron-binding proteins such as ferritin and transferrin. The effectiveness of phosvitin was related to the iron concentration, indicating that phosvitin acts as an antioxidant by chelating iron ions. Phosvitin accelerates Fe(II) autoxidation and thus decreases the availability of Fe(II) for participation in the ?OH-generating Fenton reaction. Furthermore, using the plasmid DNA strand breakage assay, phosvitin protected DNA against oxidative damage induced by Fe(II) and H2O2. These results provide insight into the mechanism of protection of the developing embryo against iron-dependent oxidative damage in ovo.  相似文献   

9.
A dihydroxybenzenes(DHB)-driven Fenton reaction was found to be more efficient than a simple Fenton reaction based on OH radical and activated species production. The reason for this enhanced reactivity by [Fe DHB] complexes is not well understood, but results suggest that it may be explained by the formation of oxidation species different from those formed during the classic Fenton reactions. In previous work, greater concentrations, and more sustained production of OH over time were observed in DHB driven Fenton reactions versus neat Fenton and Fenton-like reactions. In this work, chemiluminescence (CL) was monitored, and compared to OH production kinetics. The CL of the DHB-driven Fenton reaction was shorter than that for sustained production of OH. CL appears to have been caused by excited Fe(IV) species stabilized by the DHB ligands initially formed in the reaction. Formation of this species would have to have occurred by the reaction between OH and Fe(III) in a DHB complex.  相似文献   

10.
N-Nitrosodimethylamine (NDMA) in phosphate buffer was rapidly decomposed by Fenton reagent composed of H2O2, and Fe(II) ion. Electron spin resonance (ESR) studies using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) showed that characteristic four line 1:2:2:1 ESR signals due to the DMPO-OH adduct formed on treatment of DMPO with Fenton reagent disappeared in the presence of NDMA, and N-nitrosodiethylamine (NDEA), suggesting the interaction of the N-nitrosamines with Fenton reagent. Treatment of the N-nitrosamines with Fenton reagent generated nitric oxide (NO) as estimated by ESR technique using cysteine–Fe(II), and N-methyl- -glucaminedithiocarbamate (MGD)–Fe(II) complexes. Characteristic 3, and single line signals due to 2 cysteine–Fe(II)–NO, and 2 cysteine–Fe(II)–2 NO complexes, respectively, and three line signals due to MGD–Fe(II)–NO were observed. Considerable amount of NO were liberated as determined by NO2, the final oxidation product of NO formed by reaction with dissolved oxygen in the aqueous medium. Spontaneous release of a small amount of NO from the N-nitrosamines was observed only on incubation in neutral buffers. Above results indicate that the N-nitrosamines were decomposed accompanying concomitant release of NO on contact with reactive oxygen species.  相似文献   

11.
The formation of hydroxyl radicals (OH*) by peroxidase was confirmed by EPR spectroscopy using ethanol/alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone as a spin-trapping system specific of OH*. The effect of OH*, generated either non-enzymatically with the Fenton reaction (H(2)O(2) + Fe(2+)) or with horseradish peroxidase in the presence of O(2) and NADH, on cell walls isolated from maize (Zea mays) coleoptiles or soybean (Glycine max) hypocotyls was investigated. OH* produced by these reactions attack polysaccharides in the wall, demonstrated by the release of a heterogeneous mixture of polymeric breakdown products into the incubation medium. The peroxidase-catalyzed degradation of cell-wall polysaccharides can be inhibited by KCN and superoxide radical (O(2)*) or OH* scavengers. These data support the hypothesis that OH*, produced by cell-wall peroxidases in vivo, act as wall-loosening agents in plant extension growth.  相似文献   

12.
Photo-Fenton氧化法处理废水的原理及影响因素   总被引:12,自引:0,他引:12  
Photo-Fenton高级氧化技术是处理难降解有毒有机废水的一种有效的方法。本文阐述了该氧化法的原理及其影响因素,photo-Fenton氧化法在反应中会产生大量羟自由基(·OH),它是一种非常活泼及非选择性物种,其氧化电位为2.8V,氧化能力很强,能够引发水溶液中大部分有机物的氧化还原反应。其优点是操作简便及无二次污染等,反应产物Fe3+可与OH反应形成Fe(OH)3沉淀而对环境无害。缺点是反应必须在pH≤3条件下进行,且H2O2消耗量大而导致价格昂贵,处理成本较高等。  相似文献   

13.
A method involving high performance liquid chromatography (HPLC) separation associated with tandem mass spectrometry (MS/MS) detection in the multiple reaction monitoring mode was set-up for the measurement of 2-hydroxy-2'-deoxyadenosine (2-OHdAdo). This modified nucleoside, arising from the radical oxidation of 2'-deoxyadenosine (dAdo), has been described in the literature as a potential biological marker of the Fenton reaction. Using the specific and sensitive HPLC-MS/MS assay, 8-oxo-7,8-dihydro-2'-deoxyadenosine, 4,6-diamino-5-formamidopyrimidine and 2-hydroxy-2'-deoxyadenosine (2-OHdAdo) were measured within 2'-deoxyadenosine and DNA solutions either exposed to γ-rays or treated under Fenton reaction conditions. It was found that the yield of 2-OHdAdo was low compared to that of 8-oxodAdo under most of the oxidative conditions studied. In particular and in contrast to previous works, the formation of 2-OHdAdo was shown to be a minor process both upon gamma irradiation and under Fenton reaction conditions. However, a significant yield of formation of 2-OHdAdo was observed either upon incubation with high concentrations of Fe 2+ ions in the absence of hydrogen peroxide or upon γ-radiolysis of a nucleoside solution in the presence of the copper/ ( o )-phenanthroline complex.  相似文献   

14.
近年来的动物实验结果表明电磁辐射的危害主要是具有神经系统毒性、诱发肿瘤和生殖系统损伤等,广域、隐蔽和累积效应是辐射的特点,除对机体进行直接损伤外,还可导致间接损伤,即通过产生活性氧(ROS)和自由基攻击生物大分子。为了迅速和简便地检测辐射毒性的大小建立了新型的辐射生物传感器,构建了携带SOS反应和氧化应激反应相关的SulA、RecA、Cda和SoxR四种启动子融合经过密码子简并性优化的增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)报告因子的工程菌传感器,并对这些生物传感器进行了γ射线辐照处理,筛选出了针对γ射线响应较好的,优选RecA工程菌传感器。利用PCR和Overlap PCR克隆获得了启动子-报告因子融合基因,并插入表达载体PUC19中,转化入宿主大肠杆菌DH5α,通过提取质粒进行双酶切和测序验证后,将构建成功的工程菌传感器首先进行化学毒性试剂刺激,一旦化学试剂刺激结果阳性便进行物理辐射刺激。结果显示,构建成功的4种工程菌传感器均对物理辐射产生应答,且随物理辐射剂量的增加(0~30Gy),绿色荧光强度逐渐增强。运用合成生物学手段,成功建立基于生物损伤修复效应和氧化应激反应的辐射生物传感器,具有制备简便、结果可视性等优点,能满足快速、广范围、在线监测的需求,在细胞毒性物、辐射环境乃至空间射线的损伤能力测定方面具有良好的应用前景。  相似文献   

15.
The toxicity of iron is believed to originate from the Fenton reaction which produces the hydroxyl radical and/or oxoiron(2+). The effect of nitrogen monoxide on the kinetics of the reaction of iron(II) bound to citrate, ethylenediamine-N,N′-diacetate (edda), ethylenediamine-N,N,N′,N′-tetraacetate (edta), (N-hydroxyethyl)amine-N,N′,N′-triacetate (hedta), and nitrilotriacetate (nta) with hydrogen peroxide was studied by stopped-flow spectrophotometry. Nitrogen monoxide inhibits the Fenton reaction to a large extent. For instance, hydrogen peroxide oxidizes iron(II) citrate with a rate constant of 5.8×103 M−1 s−1, but in the presence of nitrogen monoxide, the rate constant is 2.9×102 M−1 s−1 . Similar to hydrogen peroxide, the reaction of tert-butyl hydroperoxide with iron(II) complexes is also efficiently inhibited by nitrogen monoxide. Generally, nitrogen monoxide binds rapidly to a coordination site of iron(II) occupied by water. The rate of oxidation is influenced by the rate of dissociation of the nitrogen monoxide from iron(II). Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
The free flavin-dependent Fenton reaction was detected in cell-free extracts of Chlorella. The corresponding enzyme was purified to homogeneity, and its N-terminal sequence was highly homologous to those of aldo-keto reductase family enzymes. The purified enzyme displayed aldehyde reductase activity in the presence of NADPH. Additionally, it showed ferric reductase activity and drove the Fenton reaction in the presence of free FAD and NADH.  相似文献   

17.
本文报道热空气,大肠杆菌K12D31诱导柞蛹血淋巴,提高溶菌酶活力的方法。应用选择性热变性,等电点沉淀,DEAE-纤维素离子交换层析,CC-纤维素亲和层析等分离技术从柞蚕蛹血淋巴中提取溶菌酶,溶菌酶比活力达36700u/mg蛋白,提高了150倍,活力回收达48.6%。  相似文献   

18.
19.
卵清溶菌酶及其定点突变体热力学稳定性研究   总被引:4,自引:0,他引:4  
测定了野生型卵清溶菌酶及其定点突变体的E、A31V、I55L、S91A、D101A、SIS、SVS、TIT、TVS(后者三个字母为该酶序列中第40、55、91位的氨基酸残基,野生型为TIS)在不同浓度脲溶液中的变性热力学参数和酶活性,稳定性有变化 16.86-28.67kJ/mol,变性中点脲浓度为4.89-6.24mol/L。并对这个过程的可能机理,定点突变引起的过渡热,和学参数的变化,及个别氨  相似文献   

20.
We have established controlled conditions for studying the reaction of chemically and radiolytically produced hydroxyl radical (OH) with 2-deoxy-D-ribose (2-DR). Ascorbate (ASC) or dithiothreitol (DTT) and cuprous or cupric ions were used to generate the OH-radical. The OH-radical was detected using the classical method of measuring the amount of thiobarbituric acid reactive products (TBARP) formed by OH-mediated 2-DR degradation, but using sensitive fluorescent detection of the TBARP production to quantify the OH-radical. All experiments were performed with adequate O2 concentrations. The copper reaction with ASC consumes O2 in a manner that is strongly dependent on copper concentration, and less dependent on ascorbate concentration. For an independent check of the Cu2+ catalyzed ASC oxidation kinetics, the decay of ASC absorbency at 265 nm, as well as the increase of H2O2 absorbency at 240 nm, were also monitored. These spectral changes agree well with the O2 consumption data. TBARP production from 2-DR incubated with a Cu2+–ASC mixture or γ-irradiated were also compared. γ-Irradiation of 2-DR solutions shows a dose and 2-DR concentration dependent increase of TBARP generation. Other electron donors, such as DTT, are more complicated in their mechanism of OH-radical production. Incubation of 2-DR with Cu2+-DTT mixtures shows a delay (50 min) before OH-radical generation is detected. Our results suggest that the Cu2+-ASC reaction can be used to mimic the effects of ionizing radiation with respect to OH-radical generation. The good reproducibility and relative simplicity of the 2-DR method with fluorescence detection indicates its usefulness for the quantitation of the OH-radical generated radiolytically or chemically in carefully controlled model systems. © 1997 Elsevier Science Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号